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Combinatorial complexity

The combinatorial complexity of the Voronoi diagram of n points of Rd is
the same as the combinatorial complexity of the intersection of n
half-spaces of Rd+1

The combinatorial complexity of the Delaunay triangulation of n points of
Rd is the same as the combinatorial complexity of the convex hull of n
points of Rd+1

Both complexities are the same by duality
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Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope of R3 satisfy

s− a+ f = 2

Schlegel diagram

s = s�
a� = a + 1
f � = f + 1

a� = a + 1
f � = f

s� = s + 1
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Euler formula for 3-polytopes : s− a+ f = 2

Incidences edges-facets

2a ≥ 3f =⇒ a ≤ 3s− 6
f ≤ 2s− 4

with equality when all facets are triangles
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Beyond the 3rd dimension

Upper bound theorem [McMullen 1970]

If H is the intersection of n half-spaces of Rd

nb faces of H = Θ(nb d2c)

Hyperplanes in general position

I any k-face is the intersection of d− k hyperplanes
defining H

I all vertices of H are incident to d edges and have distinct xd

I the affine hull of k < d edges incident to a vertex p
contains a k-face of H
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Proof of the upper bound theorem

Bounding the number of vertices

1 ≥ dd2e edges incident to a vertex p are in h+p : xd ≥ xd(p) or in h−p
⇒ p is a xd-max or xd-min vertex of at least one d d

2
e-face of H

⇒ # vertices of H ≤ 2×# d d
2
e-faces of H

2 A k-face is the intersection of d− k hyperplanes defining H

⇒ # k-faces =

(
n

d− k

)
= O(nd−k)

⇒ # d d
2
e-faces = O(nb

d
2
c)

Bounding the total number of faces
The number of faces incident to p depends on d but not on n
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Computing the convex hull of n points of Rd

Adjacency graph (AG) of the facets

In general position, all the facets are (d− 1)-simplexes

Adjacency graph (V,E)

V = set of (d− 1)-faces (facets)

(f, f ′) ∈ E iff f ∩ f ′ share a (d− 2)-face
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Incremental algorithm

Pi : set of the i points that have been
inserted first

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

s

t

f = [p1, ..., pd] is a red facet iff its supporting hyperplane separates pi from
conv(Pi)
⇐⇒ orient(p1, ..., pd, pi)× orient(p1, ..., pd, O) < 0

orient(p0, p1, ..., pd) =

∣∣∣∣ 1 1 ... 1
p0 p1 ... pd

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 ... 1
x01 x11 ... xd1

...
... ...

...
x0d x1d ... xdd

∣∣∣∣∣∣∣∣∣
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Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d− 2)-faces shared by a blue and a red facet

Update conv(Pi) :

1 find the red facets

2 remove them and create the
new facets

[pi+1, g], ∀g ∈ horizon

3 create the new adjacencies

O

pi

conv(Ei)

e

s

t

Complexity

proportional to the number of red facets
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Updating the adjacency graph

We look at the d-simplices to be removed
and at their neighbors

The number of times a removed d-simplex
is considered is equal to the number of its
(d− 2)-faces

≤
(
d+ 1
d− 1

)
= d(d+1)

2

Update cost = O(# created and deleted simplices )
= O(# created simplices)
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Complexity analysis

update proportional to the number of red
facets

# new facets = |conv(i, d− 1)|
= O(ib

d−1
2 c)

fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(pi−1)

(which necessarily exists)

O

pi

conv(Ei)

e

s

t

T (n, d) = O(n log n) +
∑n
i=1 i

b d−1
2 c)

= O(n log n+ nb d+1
2 c)

Worst-case optimal in even dimensions
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Lower bound

xi

pi = (xi, x
2
i )

y = x2 conv({pi}) =⇒ tri({xi})

the orientation test reduces to 3
comparisons

orient(pi, pj , pk) =

∣∣∣∣ xi − xj xi − xk

x2
i − x2

j x2
i − x2

k

∣∣∣∣
= (xi − xj)(xj − xk)(xk − xi)

=⇒ Lower bound : Ω(n log n)
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Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of R3

in less than Ω(n2)
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Constructing Del(P ), P = {p1, ..., pn} ⊂ Rd

Algorithm

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi, p

2
i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n+ nb
d+1
2
c)
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A pedestrian view : insertion of a new point pi

1. Location : find all the d-simplices that conflict with pi
i.e. whose circumscribing ball contains pi

2. Update : construct the new d-simplices

T

pi

pi

pi
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Randomized incremental algorithm

o : a point inside conv(P)

Pi : the set of the first i inserted points

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

Conflict graph

bipartite graph {pj} × {facets of conv(Pi)}

pj † f ⇐⇒ j > i (pj not yet inserted) ∧ f ∩ opj 6= ∅
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Randomized analysis

Hyp. : points are inserted in random order

Conflict : †

Notations R : random sample of size r of P
F (R) = { subsets of d points of R}
F0(R) = { elements of F (R) with 0 conflict in R}

(i.e. ∈ conv(R))

F1(R) = { elements of F (R) with 1 conflict in R}
Ci(r,P) = E(|Fi(R)|)

(expectation over all random samples R ⊂ P of size r)

Lemma

Ci(r,P) = O(rb d2c), i = 1, 2
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Proof of the lemma : C1(r,P) = C0(r,P) = O(rbd2c)

R′ = R \ {p}

f ∈ F0(R
′) if f ∈ F1(R) and p † f (proba = 1

r )

or f ∈ F0(R) and R′ 3 the d vertices of f (proba = r−d
r )

Taking the expectation,

C0(r − 1, R) =
1

r
|F1(R)|+ r − d

r
|F0(R)|

C0(r − 1,P) =
1

r
C1(r,P) +

r − d
r

C0(r,P)

C1(r,P) = dC0(r,P)− r (C0(r,P)− C0(r − 1,P))

≤ dC0(r,P)

= O(rb d2c)
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Randomized analysis 1
Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(i) =
∑

f∈F (P)

Proba(f ∈ F0(Pi))×
d

i

=
d

i
O
(
ib d2c

)
= O(nb d2c−1)

Expected total number of created facets = O(nb d2c)

O(n) if d = 2, 3
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Randomized analysis2
Updating the conflict graph

Cost proportional to the number of faces of conv(Pi) in conflict with pi+1

and some pj , j > i
N(i, j) = expected number of faces of conv(Pi) in conflict with pi+1 and pj ,
j > i

P+
i = Pi ∪ {pi+1} ∪ {pj} : a random subset of i+ 2 points of P

N(i, j) =
∑

f∈F (P)

Proba(f ∈ F2(P+
i ))×

(
i+ 2
2

)−1

=
2C2(i+ 1)

(i+ 1)(i+ 2)
= O(ib

d
2 c−2)

Expected total cost of updating the conflict graph
n∑
i=1

n∑
j=i+1

N(i, j) =

n∑
i=1

(n− i)O(ib d
2 c−2) = O(n log n+ nb d

2 c)
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Theorem

The convex hull of n points of Rd can be computed in time

O(n log n+ nb d2c) using O(nb d2c) space

The same bounds hold for computing the intersection of n half-spaces
of Rd

The randomized algorithm can be derandomized
[Chazelle 1992]
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The Delaunay hierarchy

A location data structure

Level 0 is Del(P)

Each data point p in level l
is introduced in level l + 1
with probability β = 1

α

Location structure

1/α

Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 26 / 39



Point location in the Delaunay Triangulation

Location of point q:
find the nearest neighbor of q in P
nl(q): nearest neighbor of q in Pl
Locate q in the highest level
From nl+1(q) to nl(q):
- use the pointer of nl+1(q) to level l
- walk in level l from nl+1(q) to nl(q)

The number of steps performed at level(l) : ml

ml ≤ k if nl+1(p) is the kth neighbor of q in Pl

Exp(ml) ≤
nl∑
k=1

k(1− β)k−1β

≤ β
[
− ∂

∂β

∑
k

(1− β)k
]

=
1

β

Expected total number of steps: O(log n).
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k-order Voronoi Diagrams

Let P be a set of sites.
Each cell in the k-order Voronoi diagram Vork(P ) is the locus of points in Rd
that have the same subset of P as k-nearest neighbors.
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k-order Voronoi diagrams are power diagrams

Let S1, S2, . . . denote the subsets of k points of P .
The k-order Voronoi diagram is the minimization diagram of δ(x, Si) :

δ(x, Si) =
1

k

∑
p∈Si

(x− p)2

= x2 − 2

k

∑
p∈Si

p · x+
1

k

∑
p∈Si

p2

= π(bi, x)

where bi is the ball

1 centered at ci = 1
k

∑
p∈Si

p

2 with si = π(o, bi) = c2i − r2i = 1
k

∑
p∈Si

p2

3 and radius r2i = c2i − 1
k

∑
p∈Si p

2 .
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Combinatorial complexity of k-order Voronoi diagrams

Theorem
If P be a set of n points in Rd, the number of vertices and faces in all the
Voronoi diagrams Vorj(P )
of orders j ≤ k is:

O
(
kd

d+1
2 e nb

d+1
2 c
)

Proof
uses :

I bijection between k-sets and cells in k-order Voronoi diagrams
I the sampling theorem (from randomization theory)
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k-sets and k-order Voronoi diagrams

P a set of n points in Rd

k-sets
A k-set of P is a subset P ′ of P with size k that
can be separated from P \ P ′ by a hyperplane

k-order Voronoi diagrams
k points of P have a cell in Vork(P ) iff there exists
a ball that contains those points and only those

⇒ each cell of Vork(P ) corresponds to a k-set of
φ(P ) σ

h(σ)

P
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k-sets and k-levels in arrangements of hyperplanes

For a set of points P ∈ Rd, we consider the arrangement of the dual
hyperplanes A(P ∗)

h defines a k set P ′ ⇒ h separates P ′ (below h) from P \ P ′ (above h)
⇒ h∗ is below the k hyperplanes of P ′∗ and above those of P ∗ \ P ′∗

k-sets of P are in 1-1 correspondance with the cells of A(P ∗) of level k, i.e.
with k hyperplanes of P ∗ above it.
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Bounding the number of k-sets

ck(P ) : Number of k-sets of P = Number of cells of level k in A(P ∗)
c≤k(P ) =

∑
l≤k cl(P )

c′≤k(P ) : Number of vertices of A(P ∗) with level at most k
c≤k(n) = max|P |=n c≤k(P ) c′≤k(n) = max|P |=n c

′
≤k(P )

Hyp. in general position : each vertex ∈ d hyperplanes incident to 2d cells

Vertices of level k are incident to cells with level ∈ [k, k + d]

Cells of level k have incident vertices with level ∈ [k − d, k]

c≤k(n) = O (c′≤k(n))
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Regions, conflicts and the sampling theorem

O a set of n objects.

F(O) set of configurations defined by O

each configuration is defined by a subset of b objects

each configuration is in conflict with a subset of O

Fj(O) set of configurations in conflict with j objects
|F≤k(O)| number of configurations defined by O

in conflict with at most k objects of O
f0(r) = Exp(|F0(R|) expected number of configurations

defined and without conflict on a random r-sample of O.

The sampling theorem [Clarkson & Shor 1992]

For 2 ≤ k ≤ n
b+1 , |F≤k(O)| ≤ 4 (b+ 1)b kb f0(

⌊
n
k

⌋
)
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Proof of the sampling theorem

f0(r) =
∑
j

|Fj(O)|

(
n− b− j
r − b

)
(
n
r

) ≥ |F≤k(O)|

(
n− b− k
r − b

)
(
n
r

)

then,we prove that
for r = n

k

(
n− b− k
r − b

)
(
n
r

) ≥ 1

4(b+ 1)bkb

(
n− b− k
r − b

)
(
n
r

) =
r!

(r − b)!
(n− b)!
n!︸ ︷︷ ︸

≥ 1

(b+1)bkb

(n− r)!
(n− r − k)!

(n− b− k)!

(n− b)!︸ ︷︷ ︸
≥ 1

4
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Proof of the sampling theorem
end

(n− r)!
(n− r − k)!

(n− b− k)!

(n− b)! =

k∏
j=1

n− r − k + j

n− b− k + j
≥
(
n− r − k + 1

n− b− k + 1

)k

≥
(
n− n/k − k + 1

n− k

)k
≥ (1− 1/k)

k ≥ 1/4 pour (2 ≤ k),

r!

(r − b)!
(n− b)!
n!

=

b−1∏
l=0

r − l
n− l ≥

b∏
l=1

r + 1− b
n

≥
b∏
l=1

n/k − b
n

≥ 1/kb(1− bk

n
)b ≥ 1

kb(b+ 1)b
pour (k ≤ n

b+ 1
).
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Bounding the number of k-sets

ck(P ) : Number of k-sets of P = Number of cells of level k in A(P ∗).
c≤k(P ) =

∑
l≤k cl(P )

c′≤k(P ) : Number of vertices of A(P ∗) with level at most k.

Objects O: n hyperplanes of Rd

Configurations : vertices in A(O), b = d

Conflict between v and h : v ∈ h+

Sampling th: c′≤k(P ) ≤ 4(d+ 1)dkdf0
(⌊
n
k

⌋)
Upper bound th: f0(

⌊
n
k

⌋
) = O

(
nb d

2 c
kb d

2 c

)
⇒ c′≤k(n) = O

(
kd d

2 enb d
2 c
)
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Combinatorial complexities

Number of vertices of level ≤ k in an arrangement of n hyperplanes in Rd

Number of cells of level ≤ k in an arrangement of n hyperplanes in Rd

Total number of j ≤ k sets for a set of n points in Rd

O
(
kd d

2 enb d
2 c
)

Total number of faces in the Voronoi diagrams of order j ≤ k for a set of n
points in Rd

O
(
kd d+1

2 enb d+1
2 c
)
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