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Outline

@ Combinatorial complexity

© Deterministic incremental construction of convex hulls
© Randomized incremental algorithm

@ Fast point location

© k-order Voronoi Diagrams
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Combinatorial complexity

The combinatorial complexity of the Voronoi diagram of n points of R¢ is
the same as the combinatorial complexity of the intersection of n
half-spaces of R%*!

The combinatorial complexity of the Delaunay triangulation of n points of
R? is the same as the combinatorial complexity of the convex hull of n
points of R¥+1

Both complexities are the same by duality
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Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope of R? satisfy
s—a+f=2

Schlegel diagram

:'J\

—a®
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Euler formula for 3-polytopes : s —a + f =2

Incidences edges-facets

a<3s—6

>
204 > 3f = F<2s—4

with equality when all facets are triangles
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Beyond the 3rd dimension

Upper bound theorem [McMullen 1970]
If 7 is the intersection of n half-spaces of R¢

nb faces of H = @(n[

Hyperplanes in general position

> any k-face is the intersection of d — k hyperplanes
defining H

> all vertices of H are incident to d edges and have distinct x4

> the affine hull of k< d  edges incident to a vertex p
contains a k-face of H
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Proof of the upper bound theorem

Bounding the number of vertices

© > [4] edges incident to a vertex p are in ht :wq > xq(p) orin hy

= pis a zg-max or z4-min vertex of at least one [£]-face of H
= # vertices of H < 2x# [4]-faces of H

© A k-face is the intersection of d — k hyperplanes defining H

= # k-faces = ( d ﬁ i ) = 0(nF)
= # [4]-faces = O(nL%J)

Bounding the total number of faces
The number of faces incident to p depends on d but not on n
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© Deterministic incremental construction of convex hulls
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Computing the convex hull of n points of R?

Adjacency graph (AG) of the facets

In general position, all the facets are (d — 1)-simplexes

Adjacency graph (V, E)
o IV = set of (d — 1)-faces (facets)

o (f,fYeE iff fnf sharea (d—2)-face
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Incremental algorithm

‘P; : set of the ¢ points that have been
inserted first

conv(P;) : convex hull at step i

f =[p1,...,pq] is a red facet iff its supporting hyperplane separates p; from
conv(P;)
<= orient(pi,...,p4,pi) X orient(py, ..., pq, O) <0

1 1 1
. 1 1 ... 1 Tor Ti1 .- Ldl
Orlent(p07p17"'7pd) = Po P1 . Pd =
Tod Tid - Tdd
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Update of conv(P;)

red facet = facet whose supporting hyperplane separates
o and pit1

horizon : (d — 2)-faces shared by a blue and a red facet

Update conv(P;) :
@ find the red facets

@ remove them and create the
new facets
[pi+1, 9], Vg € horizon
© create the new adjacencies

Complexity
proportional to the number of red facets
Randomized Algorithms
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Updating the adjacency graph

We look at the d-simplices to be removed
and at their neighbors

‘ The number of times a removed d-simplex
' s is considered is equal to the number of its
Lo N7 (d — 2)-faces

d+1 Y\  dd+1)
<(al1)-"

Update cost = O(# created and deleted simplices )
= O(# created simplices)
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Complexity analysis

@ update proportional to the number of red
facets

@ # new facets = |conv(i,d — 1)|
= 0(il*7))

@ fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(p;_1)

(which necessarily exists)

T(n,d) = O(nlogn) + 31, il o iy
:O(nlogn+nL )

Worst-case optimal in even dimensions
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Lower bound

conv({pi}) = tri({z:})

the orientation test reduces to 3
comparisons

orient(pi, p;, Pk ) riT T ik
i) =
©ED z} — a7 1l -z}

" = (zi — a5) (25 — x) (Tk — @)

= Lower bound : Q(nlogn)
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Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of R3
in less than Q(n?)
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Constructing  Del(P), P ={pi,....,p,} CR?

Algorithm

1 Lift the points of P onto the paraboloid x4,; = 2% of RI*!:
pi = pi = (pi, D7)
2 Compute conv({p;})

3 Project the lower hull conv™({p;}) onto R¢

(1+1J

Complexity : ©(nlogn +nl™
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A pedestrian view : insertion of a new point p;

1. Location : find all the d-simplices that conflict with p;
i.e. whose circumscribing ball contains p;

2. Update : construct the new d-simplices
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© Randomized incremental algorithm
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Randomized incremental algorithm

o : a point inside conv(P)
P; : the set of the first ¢ inserted points

conv(P;) : convex hull at step ¢

Conflict graph
bipartite graph {p;} x {facets of conv(P;)}

pitf <= j>i (pjnotyetinserted) A fnNop;#0
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Randomized analysis

Hyp. : points are inserted in random order

Conflict :

Notations R : random sample of size r of P

F(R) = { subsets of d points of R}
Fy(R) = { elements of F'(R) with 0 conflict in R}
(i.e. € conv(R))

F1(R) = { elements of F'(R) with 1 conflict in R}
Ci(r,P) = E(|Fi(R)])

(expectation over all random samples R C P of size )

Lemma
Ci(r,P) =0(rlzl), i=1,2
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Proof of the lemma : Cy(r,P) = Cy(r,P) = O(THJ)

R =R\ {p}

feFRR)f feF(R)andptf (proba = 2)
or f € Fy(R) and R' > the d vertices of f  (proba = =¢)

Qs =

Taking the expectation,

r—

4\ Ry

1
Co(r—1,R) = ;|F1(R)|+ "

Co(’l” - 1,73) = %Cl(’l“, P) + %l Co(T‘,P)

01(’/", 73) = dCo(’l“, 73) -T (Co(T‘,P) - Co(’l" — 1,73))
dCo(T, 73)
o(rlzly

IN
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Randomized analysis 1

Updating the convex hull + memory space

Expected number N (i) of facets created at step ¢

N(G) = ) Proba(feFo(Pi))xg
JEF(P) '
- %o(itgg

= O(nlzl-1

Expected total number of created facets = O(nL%J)

O(n)if d=2,3
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Randomized analysis?2
Updating the conflict graph

Cost proportional to the number of faces of conv(P;) in conflict with p;;
and some p;, j > i

N (i, j) = expected number of faces of conv(P;) in conflict with p;11 and p;,
j>i

P =P U{pit1}U{p,} : a random subset of i + 2 points of P

i) — . (P i+2 71: 2C5(i+1) _oldl-2
N(i.j) fG;P)P“a(fEF(P’”X( 27 ) = 2Rt oty

Expectedn totgl cost of up(;llating the conflict graph
> 3 NG =D (- i) 0GilE]72) = O(nlogn +nlt)

i=1 j=i+1 i=1
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Theorem

@ The convex hull of n points of R? can be computed in time
d
3

O(nlogn + nl J) using O(nLgJ) space

@ The same bounds hold for computing the intersection of n half-spaces
of R?

@ The randomized algorithm can be derandomized
[Chazelle 1992]
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@ Fast point location
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The Delaunay hierarchy

T

Location structure

Level 0 is Del(P) @
Each data point p in level [

is introduced in level [ + 1
with probability 5 = é

A location data structure

A
/o

N4
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Point location in the Delaunay Triangulation

Location of point ¢:
find the nearest neighbor of ¢ in P
n;(q): nearest neighbor of ¢ in P,

Locate ¢ in the highest level

From n;4+1(q) to ni(q):

- use the pointer of n;41(q) to level I
- walk in level | from n;11(q) to n;(q)

The number of steps performed at level(l) : my
my < k if nj41(p) is the kth neighbor of ¢ in P,

Exp(mi) < ) k(1-p5)""'8
0 1
< Alogp 2 t-Arl=3

Expected total number of steps: O(logn).
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© k-order Voronoi Diagrams
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k-order Voronoi Diagrams

Let P be a set of sites.
Each cell in the k-order Voronoi diagram Vory,(P) is the locus of points in R¢
that have the same subset of P as k-nearest neighbors.

Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 29 /39



k-order Voronoi diagrams are power diagrams

Let S1, 59, ... denote the subsets of k points of P.
The k-order Voronoi diagram is the minimization diagram of §(z, S;) :

5(z, S;) — Z (x—p

where b; is the ball

1
Q centered at ¢; = 1 o P
Q with s; = m(0,b;) =c? —r? = % Epesi p?

© and radius r? = ¢7 k ZpGS p?
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Combinatorial complexity of k-order Voronoi diagrams

Theorem

If P be a set of n points in R, the number of vertices and faces in all the
Voronoi diagrams Vor;(P)

of orders j < k is:

10 (kf%T nL%J)

Proof

uses :

> bijection between k-sets and cells in k-order Voronoi diagrams
» the sampling theorem (from randomization theory)
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k-sets and k-order Voronoi diagrams

°
P a set of n points in R¢ * o
k-sets * /.’ °
A k-set of P is a subset P’ of P with size k that ~ e o
can be separated from P\ P’ by a hyperplane ®

k-order Voronoi diagrams
k points of P have a cell in Vory(P) iff there exists
a ball that contains those points and only those

= each cell of Vory(P) corresponds to a k-set of
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k-sets and k-levels in arrangements of hyperplanes

@ For a set of points P € R, we consider the arrangement of the dual
hyperplanes A(P*)

® h defines a k set P’ = h separates P’ (below h) from P\ P’ (above h)
= h* is below the k hyperplanes of P"* and above those of P*\ P’*

@ Fk-sets of P are in 1-1 correspondance with the cells of A(P*) of level £, i.e.
with k hyperplanes of P* above it.
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Bounding the number of k-sets

¢k(P) : Number of k-sets of P = Number of cells of level k in A(P*)

c<k(P) = Zlgk a(P)
¢’ <k(P) : Number of vertices of A(P*) with level at most k
c<k(n) = max|p|—, c<x(P) ' <k(n) = max|pj—y, ' <x(P)

Hyp. in general position : each vertex € d hyperplanes incident to 2¢ cells
Vertices of level k are incident to cells with level € [k, k + d]
Cells of level k have incident vertices with level € [k — d, k]
c<k(n) = O ('<k(n))
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Regions, conflicts and the sampling theorem

O a set of n objects.
F(O) set of configurations defined by O
@ each configuration is defined by a subset of b objects
@ each configuration is in conflict with a subset of O
F;(O) set of configurations in conflict with j objects
|F<x(O)| number of configurations defined by O
in conflict with at most k& objects of O

fo(r) = Exp(|]Fo(R)|) expected number of configurations
defined and without conflict on a random r-sample of O.

The sampling theorem  [Clarkson & Shor 1992]
For 2 <k < 7%, | F<u(O)| <4 (b+1)° K fo([Z]) J
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Proof of the sampling theorem

n—b—k
then,we prove that r—>b o 1
forr =% (n) = 4(b+ 1)k?
r

<<>> B T

>

ENE

1
Z (b4+1)bKb
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Proof of the sampling theorem

end
n—r) (n—>b—k)! n—r—k+j n—r—k+1\"
- H J
n—r—=k)! (n-—>5)! Ly kT \n—b—k+1
J=1
- (n—n/k—kz—i—l)k
- n—=k
> (1—-1/k)" >1/4 pour (2 < k),
b—1 b
rl (n—>5)! r—1 r+1-—9b
= > _—
(r=0)! n! Hn—l_H n
1=0 =1
b
n/k—>
>
> [
1=1
bk 1 n
> bp 2> = <0
= /FQ n) T Eb(b+1)b IDC)”r(k—b+1)'
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Bounding the number of k-sets

¢k(P) : Number of k-sets of P = Number of cells of level & in A(P*).

c<k(P) = Zlgk a(P)
¢’ <i(P) : Number of vertices of A(P*) with level at most k.

Objects O: n hyperplanes of R¢
Configurations : vertices in A(O), b=d

Conflict between v and h: v € h™ ——

Sampling th: /< (P) < 4(d+ 1)%k%fo (| %])

g ¢ <k(n) =0 (kl21nls]
Upper bound th: foqu):O(:M) = <i(n) O(k )

2
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Combinatorial complexities

@ Number of vertices of level < k in an arrangement of n hyperplanes in R¢
Number of cells of level < k in an arrangement of n hyperplanes in R?

Total number of j < k sets for a set of n points in R¢

0 (M%ML%J)

@ Total number of faces in the Voronoi diagrams of order j < k for a set of n

points in R¢
0] <k(%1nL%J)
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