Lecture 3 Randomized Algorithms

Jean-Daniel Boissonnat

Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017

Outline

Combinatorial complexity

2 Deterministic incremental construction of convex hulls

- 3 Randomized incremental algorithm
- 4 Fast point location
- 5 k-order Voronoi Diagrams

The combinatorial complexity of the Voronoi diagram of n points of \mathbb{R}^d is the same as the combinatorial complexity of the intersection of n half-spaces of \mathbb{R}^{d+1}

The combinatorial complexity of the Delaunay triangulation of n points of \mathbb{R}^d is the same as the combinatorial complexity of the convex hull of n points of \mathbb{R}^{d+1}

Both complexities are the same by duality

Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope of \mathbb{R}^3 satisfy

s - a + f = 2

Euler formula for 3-polytopes : s - a + f = 2

Incidences edges-facets

$$2a \ge 3f \implies \qquad \begin{array}{c} a \le 3s - 6\\ f \le 2s - 4 \end{array}$$

with equality when all facets are triangles

Beyond the 3rd dimension

Upper bound theorem

If ${\mathcal H}$ is the intersection of n half-spaces of ${\mathbb R}^d$

nb faces of $\mathcal{H} = \Theta(n^{\lfloor})$

[McMullen 1970]

Hyperplanes in general position

- \blacktriangleright any k-face is the intersection of d-k hyperplanes defining $\mathcal H$
- ▶ all vertices of \mathcal{H} are incident to d edges and have distinct x_d
- \blacktriangleright the affine hull of k < d % = k < k < d edges incident to a vertex p contains a k-face of $\mathcal H$

Computational Geometry and Topology

Randomized Algorithms

Proof of the upper bound theorem

Bounding the number of vertices

$$\begin{array}{l} \bullet \geq \left\lceil \frac{d}{2} \right\rceil \text{ edges incident to a vertex } p \text{ are in } h_p^+ : x_d \geq x_d(p) \text{ or in } h_p^- \\ \Rightarrow p \text{ is a } x_d \text{-max or } x_d \text{-min vertex of at least one } \left\lceil \frac{d}{2} \right\rceil \text{-face of } \mathcal{H} \\ \Rightarrow \# \text{ vertices of } \mathcal{H} \leq 2 \times \# \left\lceil \frac{d}{2} \right\rceil \text{-faces of } \mathcal{H} \end{array}$$

2 A k-face is the intersection of d - k hyperplanes defining \mathcal{H}

$$\Rightarrow \# k \text{-faces} = \binom{n}{d-k} = O(n^{d-k})$$
$$\Rightarrow \# \left\lceil \frac{d}{2} \right\rceil \text{-faces} = O(n^{\lfloor \frac{d}{2} \rfloor})$$

Bounding the total number of faces

The number of faces incident to p depends on d but not on n

2 Deterministic incremental construction of convex hulls

3) Randomized incremental algorithm

4 Fast point location

5 *k*-order Voronoi Diagrams

Computational Geometry and Topology

Adjacency graph (AG) of the facets

In general position, all the facets are (d-1)-simplexes

Adjacency graph (V, E)

•
$$V = \text{set of } (d-1) \text{-faces (facets)}$$

•
$$(f, f') \in E$$
 iff $f \cap f'$ share a $(d-2)$ -face

Incremental algorithm

 \mathcal{P}_i : set of the i points that have been inserted first

 $\operatorname{conv}(\mathcal{P}_i)$: convex hull at step i

 $f = [p_1, ..., p_d]$ is a red facet iff its supporting hyperplane separates p_i from $\mathsf{conv}(\mathcal{P}_i)$

 $\Longleftrightarrow \texttt{orient}(p_1,...,p_d,p_i) \times \texttt{orient}(p_1,...,p_d,O) < 0$

$$\operatorname{orient}(p_0, p_1, \dots, p_d) = \left| \begin{array}{cccc} 1 & 1 & \dots & 1 \\ p_0 & p_1 & \dots & p_d \end{array} \right| = \left| \begin{array}{ccccc} 1 & 1 & \dots & 1 \\ x_{01} & x_{11} & \dots & x_{d1} \\ \vdots & \vdots & \dots & \vdots \\ x_{0d} & x_{1d} & \dots & x_{dd} \end{array} \right|$$

Update of $conv(\mathcal{P}_i)$

red facet = facet whose supporting hyperplane separates o and p_{i+1} horizon : (d-2)-faces shared by a blue and a red facet

```
Update conv(\mathcal{P}_i) :
```

```
find the red facets
```

icension remove them and create the new facets
 [p_{i+1}, q], ∀q ∈ horizon

I create the new adjacencies

Complexity

proportional to the number of red facets

Updating the adjacency graph

We look at the $d\mbox{-simplices}$ to be removed and at their neighbors

The number of times a removed *d*-simplex is considered is equal to the number of its (d-2)-faces $\leq \begin{pmatrix} d+1\\ d-1 \end{pmatrix} = \frac{d(d+1)}{2}$

Update cost = O(# created and deleted simplices)= O(# created simplices)

Complexity analysis

• update proportional to the number of red facets

• # new facets =
$$|\operatorname{conv}(i, d-1)|$$

= $O(i^{\lfloor \frac{d-1}{2} \rfloor})$

 fast locate : insert the points in lexicographic order and search a 1st red facet in star(p_{i-1}) (which necessarily exists)

$$\begin{split} T(n,d) &= O(n\log n) + \sum_{i=1}^{n} i^{\lfloor \frac{d-1}{2} \rfloor} \\ &= O(n\log n + n^{\lfloor \frac{d-1}{2} \rfloor}) \end{split}$$

Worst-case optimal in even dimensions

Computational Geometry and Topology

Randomized Algorithms

Lower bound

$$\operatorname{conv}(\{p_i\}) \Longrightarrow \operatorname{tri}(\{x_i\})$$

the orientation test reduces to 3 comparisons

orient
$$(p_i, p_j, p_k) = \begin{vmatrix} x_i - x_j & x_i - x_k \\ x_i^2 - x_j^2 & x_i^2 - x_k^2 \end{vmatrix}$$

= $(x_i - x_j)(x_j - x_k)(x_k - x_i)$

 \implies Lower bound : $\Omega(n \log n)$

Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of \mathbb{R}^3 in less than $\Omega(n^2)$

Constructing Del(P), $P = \{p_1, ..., p_n\} \subset \mathbb{R}^d$

Algorithm

- 1 Lift the points of P onto the paraboloid $x_{d+1} = x^2$ of \mathbb{R}^{d+1} : $p_i \to \hat{p}_i = (p_i, p_i^2)$
- 2 Compute $conv(\{\hat{p}_i\})$
- 3 Project the lower hull conv $^-(\{\hat{p}_i\})$ onto \mathbb{R}^d

Complexity : $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

A pedestrian view : insertion of a new point p_i

1. Location : find all the *d*-simplices that conflict with p_i i.e. whose circumscribing ball contains p_i

2. Update : construct the new *d*-simplices

Deterministic incremental construction of convex hulls

8 Randomized incremental algorithm

4 Fast point location

Randomized incremental algorithm

o: a point inside $conv(\mathcal{P})$

 \mathcal{P}_i : the set of the first *i* inserted points

 $\operatorname{conv}(\mathcal{P}_i)$: convex hull at step i

Conflict graph bipartite graph $\{p_j\} \times \{\text{facets of } \text{conv}(\mathcal{P}_i)\}$

 $p_j \dagger f \iff j > i \pmod{p_j}$ not yet inserted) $\land f \cap op_j \neq \emptyset$

Randomized analysis

Hyp. : points are inserted in random order Conflict : †

Notations R: random sample of size r of \mathcal{P} $F(R) = \{ \text{ subsets of } d \text{ points of } R \}$ $F_0(R) = \{ \text{ elements of } F(R) \text{ with } 0 \text{ conflict in } R \}$ $(i.e. \in \text{ conv}(R))$ $F_1(R) = \{ \text{ elements of } F(R) \text{ with } 1 \text{ conflict in } R \}$ $C_i(r, \mathcal{P}) = E(|F_i(R)|)$ (expectation over all random samples $R \subset \mathcal{P}$ of size r)

Lemma

$$C_i(r, \mathcal{P}) = O(r^{\lfloor \frac{d}{2} \rfloor}), \quad i = 1, 2$$

Computational Geometry and Topology

Proof of the lemma : $C_1(r, \mathcal{P}) = C_0(r, \mathcal{P}) = O(r^{\lfloor \frac{d}{2} \rfloor})$

 $R'=R\setminus\{p\}$

$$f \in F_0(R') \text{ if } f \in F_1(R) \text{ and } p \dagger f \qquad (\text{proba} = \frac{1}{r}) \\ \text{or } f \in F_0(R) \text{ and } R' \ni \text{the } d \text{ vertices of } f \qquad (\text{proba} = \frac{r-d}{r})$$

Taking the expectation,

$$C_{0}(r-1,R) = \frac{1}{r} |F_{1}(R)| + \frac{r-d}{r} |F_{0}(R)|$$

$$C_{0}(r-1,\mathcal{P}) = \frac{1}{r} C_{1}(r,\mathcal{P}) + \frac{r-d}{r} C_{0}(r,\mathcal{P})$$

$$C_{1}(r,\mathcal{P}) = d C_{0}(r,\mathcal{P}) - r (C_{0}(r,\mathcal{P}) - C_{0}(r-1,\mathcal{P}))$$

$$\leq d C_{0}(r,\mathcal{P})$$

$$= O(r^{\lfloor \frac{d}{2} \rfloor})$$

Randomized analysis 1

Updating the convex hull + memory space

Expected number N(i) of facets created at step i

$$\begin{split} N(i) &= \sum_{f \in F(\mathcal{P})} \operatorname{Proba}(f \in F_0(\mathcal{P}_i)) \times \frac{d}{i} \\ &= \frac{d}{i} O\left(i^{\lfloor \frac{d}{2} \rfloor}\right) \\ &= O(n^{\lfloor \frac{d}{2} \rfloor - 1}) \end{split}$$

Expected total number of created facets = $O(n^{\left\lfloor \frac{d}{2} \right\rfloor})$

$$O(n)$$
 if $d = 2, 3$

Randomized analysis2

Updating the conflict graph

Cost proportional to the number of faces of $\operatorname{conv}(\mathcal{P}_i)$ in conflict with p_{i+1} and some p_j , j > iN(i, j) = expected number of faces of $\operatorname{conv}(\mathcal{P}_i)$ in conflict with p_{i+1} and p_j , j > i

 $\mathcal{P}_i^+ = \mathcal{P}_i \cup \{p_{i+1}\} \cup \{p_j\}$: a random subset of i+2 points of \mathcal{P}

$$N(i,j) = \sum_{f \in F(\mathcal{P})} \operatorname{Proba}(f \in F_2(\mathcal{P}_i^+)) \times \left(\begin{array}{c} i+2\\2 \end{array}\right)^{-1} = \frac{2C_2(i+1)}{(i+1)(i+2)} = O(i^{\left\lfloor \frac{d}{2} \right\rfloor - 2})$$

Expected total cost of updating the conflict graph $\sum_{i=1}^{n} \sum_{j=i+1}^{n} N(i,j) = \sum_{i=1}^{n} (n-i) O(i^{\left\lfloor \frac{d}{2} \right\rfloor - 2}) = O(n \log n + n^{\left\lfloor \frac{d}{2} \right\rfloor})$

Theorem

- The convex hull of n points of \mathbb{R}^d can be computed in time $O(n \log n + n^{\lfloor \frac{d}{2} \rfloor})$ using $O(n^{\lfloor \frac{d}{2} \rfloor})$ space
- The same bounds hold for computing the intersection of n half-spaces of \mathbb{R}^d
- The randomized algorithm can be derandomized

[Chazelle 1992]

Deterministic incremental construction of convex hulls

Randomized incremental algorithm

The Delaunay hierarchy

A location data structure

Level 0 is $Del(\mathcal{P})$

Each data point p in level l is introduced in level l+1 with probability $\beta=\frac{1}{\alpha}$

Point location in the Delaunay Triangulation

Location of point q:

find the nearest neighbor of q in \mathcal{P} $n_l(q)$: nearest neighbor of q in \mathcal{P}_l

Locate q in the highest level From $n_{l+1}(q)$ to $n_l(q)$:

- use the pointer of $n_{l+1}(q)$ to level l
- walk in level l from $n_{l+1}(\boldsymbol{q})$ to $n_l(\boldsymbol{q})$

The number of steps performed at $level(l) : m_l$ $m_l \le k$ if $n_{l+1}(p)$ is the kth neighbor of q in \mathcal{P}_l

$$\begin{aligned} \mathsf{Exp}(m_l) &\leq \sum_{k=1}^{n_l} k (1-\beta)^{k-1} \beta \\ &\leq \beta \Big[-\frac{\partial}{\partial \beta} \sum_k (1-\beta)^k \Big] = \frac{1}{\beta} \end{aligned}$$

Expected total number of steps: $O(\log n)$.

Deterministic incremental construction of convex hulls

B) Randomized incremental algorithm

4 Fast point location

k-order Voronoi Diagrams

Let P be a set of sites. Each cell in the k-order Voronoi diagram $\mathrm{Vor}_k(P)$ is the locus of points in \mathbb{R}^d that have the same subset of P as k-nearest neighbors.

Computational Geometry and Topology

Randomized Algorithms

k-order Voronoi diagrams are power diagrams

Let S_1, S_2, \ldots denote the subsets of k points of P. The k-order Voronoi diagram is the minimization diagram of $\delta(x, S_i)$:

$$\delta(x, S_i) = \frac{1}{k} \sum_{p \in S_i} (x - p)^2$$
$$= x^2 - \frac{2}{k} \sum_{p \in S_i} p \cdot x + \frac{1}{k} \sum_{p \in S_i} p^2$$
$$= \pi(b_i, x)$$

where b_i is the ball

1 centered at
$$c_i = \frac{1}{k} \sum_{p \in S_i} p$$
2 with $s_i = \pi(o, b_i) = c_i^2 - r_i^2 = \frac{1}{k} \sum_{p \in S_i} p^2$
3 and radius $r_i^2 = c_i^2 - \frac{1}{k} \sum_{p \in S_i} p^2$.

Theorem

If P be a set of n points in \mathbb{R}^d , the number of vertices and faces in all the Voronoi diagrams $Vor_j(P)$ of orders j < k is:

$$O\left(k^{\lceil\frac{d+1}{2}\rceil} n^{\lfloor\frac{d+1}{2}\rfloor}\right)$$

Proof

uses :

- ▶ bijection between *k*-sets and cells in *k*-order Voronoi diagrams
- the sampling theorem (from randomization theory)

k-sets and k-order Voronoi diagrams

P a set of n points in \mathbb{R}^d

k-sets

A k-set of P is a subset P' of P with size k that can be separated from $P\setminus P'$ by a hyperplane

k-order Voronoi diagrams

k points of P have a cell in ${\rm Vor}_k(P)$ iff there exists a ball that contains those points and only those

 \Rightarrow each cell of $\mathrm{Vor}_k(P)$ corresponds to a k-set of $\phi(P)$

k-sets and k-levels in arrangements of hyperplanes

• For a set of points $P\in \mathbb{R}^d,$ we consider the arrangement of the dual hyperplanes $\mathcal{A}(P^*)$

- h defines a k set P' ⇒ h separates P' (below h) from P \ P' (above h)
 ⇒ h* is below the k hyperplanes of P'* and above those of P* \ P'*
- k-sets of P are in 1-1 correspondance with the cells of A(P*) of level k, i.e. with k hyperplanes of P* above it.

Bounding the number of k-sets

 $\begin{array}{ll} c_k(P) &: \text{Number of } k\text{-sets of } P = \text{Number of cells of level } k \text{ in } \mathcal{A}(P^*) \\ c_{\leq k}(P) &= \sum_{l \leq k} c_l(P) \\ c'_{\leq k}(P) &: \text{Number of vertices of } \mathcal{A}(P^*) \text{ with level at most } k \\ c_{\leq k}(n) &= \max_{|P|=n} c_{\leq k}(P) \ c'_{\leq k}(n) = \max_{|P|=n} c'_{\leq k}(P) \end{array}$

Hyp. in general position : each vertex $\in d$ hyperplanes incident to 2^d cells Vertices of level k are incident to cells with level $\in [k, k + d]$ Cells of level k have incident vertices with level $\in [k - d, k]$

$$c_{\leq k}(n) = O\left(c'_{\leq k}(n)\right)$$

Computational Geometry and Topology

Randomized Algorithms

Regions, conflicts and the sampling theorem

O a set of n objects.

 $\mathcal{F}(O)$ set of configurations defined by O

- each configuration is defined by a subset of b objects
- each configuration is in conflict with a subset of O

$$\begin{split} \mathcal{F}_j(O) & \text{set of configurations in conflict with } j \text{ objects} \\ |\mathcal{F}_{\leq k}(O)| & \text{number of configurations defined by } O \\ & \text{ in conflict with at most } k \text{ objects of } O \\ f_0(r) &= \mathsf{Exp}(|\mathcal{F}_0(R|) \text{ expected number of configurations} \\ & \text{ defined and without conflict on a random } r\text{-sample of } O. \end{split}$$

The sampling theorem[Clarkson & Shor 1992]For $2 \le k \le \frac{n}{b+1}$, $|\mathcal{F}_{\le k}(O)| \le 4 \ (b+1)^b \ k^b \ f_0(\lfloor \frac{n}{k} \rfloor)$

Proof of the sampling theorem

$$f_{0}(r) = \sum_{j} |\mathcal{F}_{j}(O)| \frac{\binom{n-b-j}{r-b}}{\binom{n}{r}} \ge |\mathcal{F}_{\le k}(O)| \frac{\binom{n-b-k}{r-b}}{\binom{n}{r}}$$
then, we prove that
for $r = \frac{n}{k}$

$$\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} \ge \frac{1}{4(b+1)^{b}k^{b}}$$

$$\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} = \underbrace{\frac{r!}{(r-b)!} \frac{(n-b)!}{n!}}_{\ge \frac{1}{(b+1)^{b}k^{b}}} \underbrace{\frac{(n-r-k)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!}}_{\ge \frac{1}{4}}$$

Proof of the sampling theorem $_{\mbox{\tiny end}}$

$$\begin{aligned} \frac{(n-r)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!} &= \prod_{j=1}^{k} \frac{n-r-k+j}{n-b-k+j} \ge \left(\frac{n-r-k+1}{n-b-k+1}\right)^{k} \\ &\ge \left(\frac{n-n/k-k+1}{n-k}\right)^{k} \\ &\ge (1-1/k)^{k} \ge 1/4 \text{ pour } (2 \le k), \end{aligned}$$

$$\begin{split} \frac{r!}{(r-b)!} \frac{(n-b)!}{n!} &= \prod_{l=0}^{b-1} \frac{r-l}{n-l} \ge \prod_{l=1}^{b} \frac{r+1-b}{n} \\ &\ge \prod_{l=1}^{b} \frac{n/k-b}{n} \\ &\ge 1/k^b (1-\frac{bk}{n})^b \ge \frac{1}{k^b (b+1)^b} \text{ pour } (k \le \frac{n}{b+1}). \end{split}$$

Bounding the number of k-sets

 $\begin{array}{ll} c_k(P) & : \text{Number of } k\text{-sets of } P = \text{Number of cells of level } k \text{ in } \mathcal{A}(P^*).\\ c_{\leq k}(P) = \sum_{l \leq k} c_l(P)\\ c'_{\leq k}(P) : \text{Number of vertices of } \mathcal{A}(P^*) \text{ with level at most } k. \end{array}$

$$\begin{array}{l} \text{Sampling th: } c'_{\leq k}(P) \leq 4(d+1)^d k^d f_0\left(\left\lfloor \frac{n}{k} \right\rfloor\right) \\ \text{Upper bound th: } f_0(\left\lfloor \frac{n}{k} \right\rfloor) = O\left(\frac{n^{\left\lfloor \frac{d}{2} \right\rfloor}}{k^{\left\lfloor \frac{d}{2} \right\rfloor}}\right) \end{array} \end{array} \right\} \Rightarrow c'_{\leq k}(n) = O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$

Combinatorial complexities

• Number of vertices of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Number of cells of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Total number of $j \leq k$ sets for a set of n points in \mathbb{R}^d

$$O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$

 $\bullet\,$ Total number of faces in the Voronoi diagrams of order $j\leq k$ for a set of n points in \mathbb{R}^d

$$O\left(k^{\left\lceil\frac{d+1}{2}\right\rceil}n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$$