Uniformity of point samples using gap ratio

Sameer Desai

Supervisor: Dr. Arijit Bishnu

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Outline

- 1 Introduction
- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Motivation

Generating uniformly distributed points over a specific domain has applications in

- digital halftoning(Asano, 2008; Teramoto, Asano, Katoh, Doerr, 2006; Zhang et. al., 2011)
- numerical integration (Chazelle: The Discrepancy Method; Matousek: Geometric Discrepancy)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- computer graphics (Chazelle: The Discrepancy Method)
- mesh generation(Asano, Teramoto, 2007)

Motivation

Generating uniformly distributed points over a specific domain has applications in

- digital halftoning(Asano, 2008; Teramoto, Asano, Katoh, Doerr, 2006; Zhang et. al., 2011)
- numerical integration (Chazelle: The Discrepancy Method; Matousek: Geometric Discrepancy)
- computer graphics (Chazelle: The Discrepancy Method)
- mesh generation(Asano, Teramoto, 2007)

The Problem

Given a metric space (\mathcal{M}, δ) , we want to choose a set $P \subsetneq \mathcal{M}$ of k points such that it is uniformly distributed in \mathcal{M} .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Measures of Uniformity: Discrepancy

The discrepancy D(P) of a point set P is, $D(P) = \sup_{B \in \mathcal{R}} |n \cdot \operatorname{vol}(B) - |P \cap B||,$ where \mathcal{R} is the set of rectangles contained in the unit square.

Measures of Uniformity: Discrepancy

• The discrepancy D(P) of a point set P is, $D(P) = \sup_{B \in \mathcal{R}} |n \cdot \operatorname{vol}(B) - |P \cap B||$, where \mathcal{R} is the set of rectangles contained in the unit square.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Computing the measure

How to compute the above discrepancy measure? Seems difficult.

Measures of Uniformity: Discrepancy (contd.)

• What if we restrict *R* to be the set of all axis-parallel rectangles inside *S*?

イロト イポト イヨト イヨト

э

Measures of Uniformity: Discrepancy (contd.)

• What if we restrict *R* to be the set of all axis-parallel rectangles inside *S*?

Solution

For *n* points in a square, $O(n^2 \log n)$ time is required to compute this value (Dobkin and Gunopulos, 1994).

Definition of *Gap Ratio* (A generalization of Teramoto, et. al., 2006)

■ Let (M, δ) be a metric space and let P be a set of n points sampled from M.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition of *Gap Ratio* (A generalization of Teramoto, et. al., 2006)

■ Let (M, δ) be a metric space and let P be a set of n points sampled from M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We define the minimum gap as $r_P := \min_{p,q \in P, p \neq q} \frac{\delta(p,q)}{2}$.

Definition of *Gap Ratio* (A generalization of Teramoto, et. al., 2006)

- Let (M, δ) be a metric space and let P be a set of n points sampled from M.
- We define the minimum gap as $r_P := \min_{p,q \in P, p \neq q} \frac{\delta(p,q)}{2}$.
- The maximum gap is defined as $R_P := \max_{x \in \mathcal{M}} \min_{p \in P} \delta(x, p).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition of *Gap Ratio* (A generalization of Teramoto, et. al., 2006)

- Let (M, δ) be a metric space and let P be a set of n points sampled from M.
- We define the minimum gap as $r_P := \min_{p,q \in P, p \neq q} \frac{\delta(p,q)}{2}$.
- The maximum gap is defined as $R_P := \max_{x \in \mathcal{M}} \min_{p \in P} \delta(x, p).$
- The gap ratio for the point set P is defined as $GR_P := \frac{R_P}{r_P}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Definition of *Gap Ratio* (A generalization of Teramoto, et. al., 2006)

- Let (M, δ) be a metric space and let P be a set of n points sampled from M.
- We define the minimum gap as $r_P := \min_{p,q \in P, p \neq q} \frac{\delta(p,q)}{2}$.
- The maximum gap is defined as $R_P := \max_{x \in \mathcal{M}} \min_{p \in P} \delta(x, p).$
- The gap ratio for the point set P is defined as $GR_P := \frac{R_P}{r_P}$.

The problem

We look to sample a set of points P from \mathcal{M} such that GR_P is minimised.

Making sense of the definition

Figure: Maximum Gap = Covering Radius

Figure: Minimum Gap = Packing Radius

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The problem definition

The optimization problem

Given a metric space (\mathcal{M}, δ) , an integer k and a parameter g, find a set $P \subset \mathcal{M}$ such that |P| = k and $GR_P \leq g$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Consider the Delaunay graph of a point set with gap ratio g. Let θ be the minimum angle in the delaunay triangulation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Clearly $R \ge h$ and $r \le o \implies \sin \theta = \frac{o}{h} \ge \frac{r}{R} = \frac{1}{g}$

Outline

1 Introduction

2 Previous Works

- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Up until now the problem has only been studied in an online setting where the gap ratio is minimised at every stage.

- At least $2^{\frac{\lfloor n/2 \rfloor}{\lfloor n/2 \rfloor + 1}}$ where *n* points are inserted in the interval [0, 1]
- At most 2 where n integral points are inserted in the interval [0, m] where m is a positive integer and 0 < n < m
- No online algorithm can achieve strictly less than 2.5 for a 3 × 3 grid (discrete space)

Previous results (Algorithms)

Algorithms:

- Linear time optimal algorithm for inserting n points in the interval [0, 1]
- An insertion strategy that achieves a gap ratio of at most 2 in a unit square
- An insertion strategy that achieves a gap ratio of at most $2\sqrt{2}$ in a bounded two dimensional grid

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

A Summary of Results

Metric space		Lower Bounds	Hardness	Approximation Factor
General		none	Yes	2-approx. hard
Discrete	connected	2 3	Yes	approx. factor 3
	Graph			$\frac{3}{2}$ -approx. hard
	Euclidean	-	-	$(1+\epsilon) extsf{-approx.}$ algo.
Continuous	Path Connected	1	Yes	approx. factor 2
	Unit Square in \mathbb{R}^2	$\frac{2}{\sqrt{3}} - o(1)$	-	approx. factor $\sqrt{3} + o(1)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

A Summary of Results

Metric space		Lower Bounds	Hardness	Approximation Factor
General		none	Yes	2-approx. hard
Discrete	connected	2 3	Yes	approx. factor 3
	Graph			$\frac{3}{2}$ -approx. hard
	Euclidean	-	-	$(1+\epsilon)$ -approx. algo.
Continuous	Path Connected	1	Yes	approx. factor 2
	Unit Square in \mathbb{R}^2	$\frac{2}{\sqrt{3}} - o(1)$	-	approx. factor $\sqrt{3} + o(1)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

No lower bound for gap ratio

Note the maximum gap and minimum gap are not the maximum and minimum of the same parameter.

Figure: Discrete space (The black points form the sampled set.)

ション ふゆ く 山 マ チャット しょうくしゃ

• Let $\mathcal{M} = V[K_n] \cup V[K_m]$ and the metric δ = edge weights of $K_n \cup K_m$ and ∞ , when there is no edge.

•
$$R = \epsilon/2$$
 and $r = 1/2$. Thus, $GR = \epsilon$.

No lower bound for gap ratio

Figure: Continuous Space (The black points form the sampled set).

- Let *M* be the union of two balls *A* and *B* in ℝ^d of diameter 1 with distance between their centres being ¹/_ε, where 0 < ε < 1.</p>
- *P* is any two points, one in *A* and the other in *B*.
- $R \leq 1$, and $r \geq \frac{1}{2\epsilon} \frac{1}{2}$. Thus, $GR \leq \frac{2\epsilon}{1+\epsilon}$.

Let x and y be the closest pair of points in a sampled set P from a path connected space (M, δ). δ(x, y) = 2r.

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

- Let x and y be the closest pair of points in a sampled set P from a path connected space (M, δ). δ(x, y) = 2r.
- Draw discs of radius r around x and y. The discs should be interior disjoint.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Let x and y be the closest pair of points in a sampled set P from a path connected space (M, δ). δ(x, y) = 2r.
- Draw discs of radius r around x and y. The discs should be interior disjoint.
- A point $z \in \mathcal{M}$ as shown should exist on the boundary of one of the discs because of path connectedness.

- Let x and y be the closest pair of points in a sampled set P from a path connected space (M, δ). δ(x, y) = 2r.
- Draw discs of radius r around x and y. The discs should be interior disjoint.
- A point $z \in \mathcal{M}$ as shown should exist on the boundary of one of the discs because of path connectedness.
- z must be at least at a distance r from P. Thus, $R \ge r$.

• Let \mathcal{M} be the set of vertices of a connected graph and δ be the length of the shortest path.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let \mathcal{M} be the set of vertices of a connected graph and δ be the length of the shortest path.
- Let q be the distance between the closest pair of vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Let *M* be the set of vertices of a connected graph and δ be the length of the shortest path.
- Let q be the distance between the closest pair of vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Then
$$r = \frac{q}{2}$$
 and $R \ge \left\lfloor \frac{q}{2} \right\rfloor$ when $q \ge 2$.

- Let \mathcal{M} be the set of vertices of a connected graph and δ be the length of the shortest path.
- Let q be the distance between the closest pair of vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Then $r = \frac{q}{2}$ and $R \ge \lfloor \frac{q}{2} \rfloor$ when $q \ge 2$. This gives us $\frac{R}{r} \ge f(q) = \frac{2}{q} \lfloor \frac{q}{2} \rfloor$.

- Let *M* be the set of vertices of a connected graph and δ be the length of the shortest path.
- Let q be the distance between the closest pair of vertices.

Then
$$r = \frac{q}{2}$$
 and $R \ge \lfloor \frac{q}{2} \rfloor$ when $q \ge 2$.
This gives us $\frac{R}{r} \ge f(q) = \frac{2}{q} \lfloor \frac{q}{2} \rfloor$.

For
$$q \ge 2$$
, $f(q) = \begin{cases} 1 & q \text{ is even} \\ \frac{q-1}{q} & q \text{ is odd} \end{cases}$.
 $q = 1$ is an exception as R is always at least 1.
Thus $\frac{R}{r} \ge f(q) \ge \frac{2}{3}$.

Lower Bounds: Unit square

Definition (Packing and covering densities)

The density of a family S of sets with respect to a set C of Lebesgue measure $\mu(C) < \infty$, is defined as $d(S, C) = \left(\sum_{S \in S, S \cap C \neq \emptyset} \mu(S) / \mu(C)\right)$.

ション ふゆ く 山 マ チャット しょうくしゃ

Basically, Density $= \frac{\text{Total area covered}}{\text{Area of space}}$. For an unbounded area we may just take the limit over an unbounded area.

Bounds on packing and covering density of plane by congruent disks. (Kuperberg, 1987)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Packing density: $d_1 \leq rac{\pi}{\sqrt{12}}$ and Covering density: $D_1 \geq rac{2\pi}{\sqrt{27}}$.

Suppose we choose k points. Then, we have

Suppose we choose k points. Then, we have

Using the upper bound on packing density

$$rac{k\pi r^2}{\left(1+2r
ight)^2} \leq rac{\pi}{\sqrt{12}} \implies r \leq \left(\sqrt{k\sqrt{12}}-2
ight)^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose we choose k points. Then, we have

Using the upper bound on packing density

$$rac{k\pi r^2}{\left(1+2r
ight)^2} \leq rac{\pi}{\sqrt{12}} \implies r \leq \left(\sqrt{k\sqrt{12}}-2
ight)^{-1}$$

Using the lower bound on covering density

$$rac{k\pi R^2}{1} \geq rac{2\pi}{\sqrt{27}} \implies R \geq \sqrt{rac{2}{k\sqrt{27}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Suppose we choose k points. Then, we have

Using the upper bound on packing density

$$rac{k\pi r^2}{\left(1+2r
ight)^2} \leq rac{\pi}{\sqrt{12}} \implies r \leq \left(\sqrt{k\sqrt{12}}-2
ight)^{-1}$$

Using the lower bound on covering density

$$rac{k\pi R^2}{1} \geq rac{2\pi}{\sqrt{27}} \implies R \geq \sqrt{rac{2}{k\sqrt{27}}}.$$

・ロッ ・雪 ・ ・ ヨ ・ ・

ж

Take the ratio

Thus we have
$$\frac{R}{r} \geq \frac{2}{\sqrt{3}} - o_k(1)$$
.

Outline

1 Introduction

2 Previous Works

- 3 Our Results
- 4 Lower Bounds

5 Hardness

- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Hardness Results

Theorem

In graph metric space, gap ratio problem is NP-complete.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Hardness Results

Theorem

In graph metric space, gap ratio problem is NP-complete.

Theorem

Let \mathcal{M} be a continuous metric space. Then, it is NP-hard to find a finite set $P \subset \mathcal{M}$ of cardinality k such that the gap ratio of P is at most $\frac{2}{a}$ for some q > 2.

うして ふゆう ふほう ふほう うらつ

Theorem

In graph metric space, gap ratio problem is NP-complete.

Theorem

Let \mathcal{M} be a continuous metric space. Then, it is NP-hard to find a finite set $P \subset \mathcal{M}$ of cardinality k such that the gap ratio of P is at most $\frac{2}{a}$ for some q > 2.

Theorem

It is NP-hard to find a set of k points in a path connected space such that gap ratio is 1.

- 「 (西) (西) (西) (日)

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

$\frac{3}{2}$ -Approximation Hardness on graphs

Theorem

In an unweighted graph, it is NP-hard to approximate the gap ratio better than a factor of $\frac{3}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2-Approximation Hardness

Theorem

In a general metric space, it is NP-hard to approximate the gap ratio better than a factor of 2.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

2-Approximation Hardness

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ○

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness

7 Approximation

- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Start with a pair of farthest points in \mathcal{M} . Call this set P_2 .

 P_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Farthest point Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Farthest point Method

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Farthest point Method

$$P_i \leftarrow P_{i-1} \cup \{p_i\} \text{ s.t., } \delta(p_i, P_{i-1}) = \sup_{x \in \mathcal{M}} \delta(x, P_{i-1})$$

$$GR_{P_i} = \frac{R_{P_i}}{r_{P_i}} = \frac{2R_{P_i}}{R_{P_{i-1}}} \le 2$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Without loss of generality, let $P = \{p_1, \ldots, p_k\}$ be the set with optimal gap ratio, and let $GR = \alpha$.

Theorem

Farthest point insertion gives the following approximation guarantees: (i) if $\alpha \ge 1$, then the approximation ratio is $\frac{2}{\alpha} \le 2$, (ii) if $\frac{2}{3} \le \alpha < 1$, the approximation ratio is $\frac{2}{\alpha} \le 3$, and (iii) if $\alpha < \frac{2}{3}$, the approximation ratio is $\frac{4}{2-\alpha} < 3$.

うして ふゆう ふほう ふほう うらつ

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square
- 10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

(k,ϵ) -coreset for set of points in \mathbb{R}^d

Coreset

• A (k, ϵ) - coreset of (\mathcal{M}, δ) for the gap ratio problem is a set $(\mathcal{C}, \delta), \ \mathcal{C} \subset \mathcal{M}$, such that for any $P \subsetneq \mathcal{C}, \ (|P| = k),$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• $(1-\epsilon)$ $GR_P^{\mathcal{M}} \leq GR_P^{\mathcal{C}} \leq (1+\epsilon)$ $GR_P^{\mathcal{M}}$.

ϵ -coreset for set of points in \mathbb{R}^d

Assume $\epsilon \in (0, \frac{1}{2})$ and $\epsilon_1 \coloneqq \frac{\epsilon}{3+2\epsilon} < \epsilon$. Sample set P_1 ($|P_1| = k$) by the farthest point algorithm take a grid as below.

< ロ > < 得 > < 回 > < 回 >

э

 ϵ -coreset for set of points in \mathbb{R}^d

For each cell of the grid choose one point of \mathcal{M} .

 $R_{\min} \leq R_{P_1} \leq 2R_{\min} \implies O\left(k \left\lceil \frac{1}{\epsilon_1} \right\rceil^d\right)$ points are chosen.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This set has k points "close" to the optimal set. So brute force on it gives an $(1 + \epsilon)$ -approximation of the gap ratio.

- $\bullet\,$ Optimal Set
- $(1 + \epsilon)$ approximation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Running time of $(1 + \epsilon)$ -algorithm

• We look at
$$O\left(\left(k\left\lceil\frac{1}{\epsilon_1}\right\rceil^d\right)^k\right)$$
 sets.

• Finding closest pair takes $O(k \log k)$.

- Computing the maximum gap takes O((n-k)k) time
- Total runtime: $O\left(k^k \left\lceil \frac{1}{\epsilon_1} \right\rceil^{kd} (k \log k + (n-k)k)\right)$ time.

うして ふゆう ふほう ふほう うらつ

The runtime is comparable to the best known algorithms of k-center.

$(1+\epsilon)$ -algorithm (Streaming)

- In the streaming case the idea is to to maintain a coreset similar to the above.
- The key to the coreset selection: farthest point algorithm gave a constant approximation of the covering radius, i.e., $R_{\min} \leq R_{P_1} \leq 2R_{\min}$
- Doubling algorithm for k-centre has this property in the streaming case. To be precise, $R_{\min} \leq R_{P_1} \leq 8R_{\min}$, which allows us again to choose a grid with cell size $O\left(\frac{R_{P_1}}{2\sqrt{d}}\right)$.
- Thus we again get a core-set by choosing one point per grid cell.

To Sum up

Metric space		Lower Bounds	Hardness	Approximation Factor
General		none	Yes	2-approx. hard
Discrete	connected	2 3	Yes	approx. factor 3
	Graph			$\frac{3}{2}$ -approx. hard
	Euclidean	-	-	$(1+\epsilon)$ -approx. algo.
Continuous	Path Connected	1	Yes	approx. factor 2
	Unit Square in \mathbb{R}^2	$\frac{2}{\sqrt{3}} - o(1)$	-	approx. factor $\sqrt{3} + o(1)$

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset

9 The unit square

10 Gap Ratio and discrepancy

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Randomised methods

Theorem

When *n* points are sampled using jittered sampling in a unit square, then the gap ratio is $O\left(\sqrt[2d]{n}\right)$ with probability at least $\frac{1}{2}$.

- $m \times m$ grid
- At most (^m/_d)^d balls are considered.
- A_i denotes the event that the *i*-th ball is hit by two points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbb{P}(2r \le 2\epsilon) \ge \mathbb{P}(\cup A_i)$$

$$\ge \sum \mathbb{P}(A_i) - \sum \mathbb{P}(A_i \cap A_j)$$

$$= \sum {\binom{2^d}{2}} \left(\frac{c_d \epsilon^d}{2^d} / \frac{1}{m^d}\right)^2 - \sum {\binom{2^d}{2}}^2 \left(\frac{c_d \epsilon^d}{2^d} / \frac{1}{m^d}\right)^4$$

$$= \left(\frac{m}{d}\right)^d {\binom{2^d}{2}} \left(\frac{c_d \epsilon^d}{2^d} / \frac{1}{m^d}\right)^2 - \left(\frac{\binom{m}{d}}{2}\right)^d {\binom{2^d}{2}}^2 \left(\frac{c_d \epsilon^d}{2^d} / \frac{1}{m^d}\right)^4$$

$$= \left(\frac{m}{d}\right)^d {\binom{2^d}{2}} \left(\frac{c_d \epsilon^d m^d}{2^d}\right)^2$$

$$- \frac{1}{2} \left(\frac{m}{d}\right)^d \left(\left(\frac{m}{d}\right)^d - 1\right) {\binom{2^d}{2}}^2 \left(\frac{c_d \epsilon^d m^d}{2^d}\right)^4$$

Set
$$\epsilon^{2d} = 2^{2d} {\binom{2^d}{2}}^{-1} m^{-2d} \left(\left(\frac{m}{d} \right)^d - 1 \right)^{-1} c_d^{-2}.$$

Thus, $\mathbb{P} \left(2r \le 2\epsilon \right) \ge \frac{1}{2} \frac{\left(\frac{m}{d} \right)^d}{\left(\left(\frac{m}{d} \right)^d - 1 \right)} > \frac{1}{2}$
Use $R \ge \frac{\sqrt{d}}{2m}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Randomised methods

Theorem

Suppose *n* points are sampled uniformly at random in a *d*-dimensional unit cube. Then the gap ratio $\rightarrow \infty$ as $n \rightarrow \infty$ with probability 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A tight lower bound for the unit square

Theorem

Let the point set P be the vertex set of a constrained Delaunay triangulation of the square with |P| points such that the maximum angle is at least $\frac{\pi}{2}$. Then $GR_P \ge \sqrt{2}$.

うして ふゆう ふほう ふほう うらつ

A tight lower bound for the unit square

Consider any triangular face Δ of the Delaunay mesh of P and any angle θ of it. Let c be the radius of the circumcircle of Δ .

Proof

• $s \ge r$, $c \le R$; where r: minimum gap and R: maximum gap.

•
$$\sin \theta = \frac{s}{c} \ge \frac{r}{R} = \frac{1}{g}$$
.

- Let θ_{\max} : largest angle; then, $\theta_{\max} \geq \frac{\pi}{2}$.
- Then, $g^{-1} \leq \sin \theta_{\min} \leq \sin \frac{\pi \theta_{\max}}{2} \leq \sin \frac{\pi}{4} \leq \frac{1}{\sqrt{2}}$

Farthest Point algorithm achieves the lower bound

Initialisation: Sample a farthest pair of points.

 P_2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Farthest Point algorithm achieves the lower bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

We continue for a few iterations.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

We continue for a few iterations.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We continue for a few iterations.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Note that

- Every new point is a Voronoi vertex of the point set from the previous iteration.
- Gap ratio becomes $\sqrt{2}$ when the Voronoi digram tiles the unit square with congruent square cells.

• Point samples of size *n*, where $n = k^2$ or $n = k^2 + (k - 1)^2$ for some *k* achieve $\sqrt{2}$.

Theorem

If the set *P* of size $n \ge 4$ points is sampled from the unit square using the farthest point algorithm then the gap ratio is $\sqrt{2}$ if and only if $n = G_j$ where,

$$G_j = \begin{cases} 4^{i-1} + 2^i + 1 & j = 2i - 1\\ 2 \cdot 4^{i-1} + 2^i + 1 & j = 2i \end{cases}$$

for $i \in \mathbb{N}$.

Other point sets which achieve the lower bound

Not all the grid patterns occur in the farthest point pattern, for eg.:- the 4×4 grid does not occur in the farthest point method. Also grid patterns which do not have the corners of the square do not occur in the farthest point algorithm.

Figure: (a) Point sample of size $40 = 2 \cdot 5 \cdot 4 = 2 \cdot k \cdot (k-1)$ with gap ratio = $\sqrt{2}$; (b) A 4 × 4 sample with no point on the boundary

Lattices: 1-parameter family

$$\begin{aligned} \Delta &: \mathbb{R}^d \to \mathbb{R} \\ \Delta &(x) = \langle x, \mathbf{1} \rangle = \sum_{i=1}^d x_i \\ D &= \frac{\delta - 1}{d} \\ T_\delta &: \mathbb{R}^d \to \mathbb{R}^d \\ x &\mapsto x + D\Delta(x) . \mathbf{1} \\ L_\delta &\coloneqq T_\delta \left(\mathbb{Z}^d \right) \end{aligned}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lattices: 1-parameter family

$$g^{2} = \begin{cases} \frac{(d^{2}-1)+(d^{2}+2)\delta^{2}+(d^{2}-1)\delta^{4}}{3d^{2}\delta^{2}} & 0 \leq \delta \leq \frac{1}{\sqrt{d+1}} \\ \frac{(d^{2}-1)+(d^{2}+2)\delta^{2}+(d^{2}-1)\delta^{4}}{3(d+\delta^{2}-1)} & \frac{1}{\sqrt{d+1}} \leq \delta \leq 1 \\ \begin{cases} \frac{d^{2}-1+\delta^{2}}{d+\delta^{2}-1} & d \text{ is odd} \\ \frac{d^{2}-2+\delta^{2}}{d+\delta^{2}-1} + \frac{1}{\delta^{2}(d+\delta^{2}-1)} & d \text{ is even} \end{cases} & 1 \leq \delta \leq \sqrt{d+1} \\ \begin{cases} \frac{d^{2}-1+\delta^{2}}{d+\delta^{2}-1} & d \text{ is odd} \\ \frac{d^{2}-2+\delta^{2}}{d+\delta^{2}-1} + \frac{1}{\delta^{2}(d+\delta^{2}-1)} & d \text{ is even} \end{cases} & \sqrt{d+1} \leq \delta \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lattices: Random construction

Theorem

Suppose the fundamental region of a lattice is obtained by using two unit vectors an an angle chosen uniformly at random from $\left[0, \frac{\pi}{2}\right]$. Then,

$$\mathbb{P}\left(\text{Gap Ratio of lattice} \ge g\right)$$

$$= \begin{cases} \frac{1}{2} - \frac{2}{\pi} \arccos\left(\frac{2}{g^2} - 1\right) + \frac{2}{\pi} \arcsin\left(\frac{1}{g}\right) & g \in \left(\frac{2}{\sqrt{3}}, \sqrt{2}\right) \\ \frac{2}{\pi} \arcsin\left(\frac{1}{g}\right) & g \ge \sqrt{2} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

1 Introduction

- 2 Previous Works
- 3 Our Results
- 4 Lower Bounds
- 5 Hardness
- 6 Approximation Hardness
- 7 Approximation
- 8 Coreset
- 9 The unit square

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Gap Ratio and discrepancy (1D)

Discrepancy in 1 dimension

$$D_N = \sup_{0 \le a < b \le 1} \left| b - a - \frac{A([a, b), P)}{N} \right|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

For N points in the interval [0,1] with discrepancy $D_N < \frac{2}{n}$, $GR \le \frac{D_N}{\frac{1}{N} - \frac{D_N}{2}} = \frac{4}{2 - ND_N} - 2.$

Gap Ratio and discrepancy (1D)

Proof

We can bound r by looking at the smallest interval with exactly 2 points i.e., $-D_N \leq 2r - \frac{2}{N}$. Thus, $r \geq \frac{1}{N} - \frac{D_N}{2}$.

Proof

We can bound the largest interval [a, b) which contains exactly no point as, $b - a \le D_N$. Thus, we have $R \le D_N$.

Thanks !