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Energy efficiency in production HPC systems

Current and future HPC systems:
m Toward exascale

m Heterogeneous compute nodes
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Reducing energy consumption while preserving performance
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Sustaining Performance While Reducing Energy Consumption | Introduction

Energy efficiency in production HPC systems

Challenges to performance-per-watt efficiency
m Growing complexity of scientific workloads

m Specificity of applications behavior

m Exogenous limits on progress

m Various processor characteristics and performance

Need for dynamic perspective

m Avoid fine-grained modeling

blocks/second

m Robustness to execution context
m Handling phased behavior
m data, compute, I/O
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(Ramesh et al. 2019)
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Dynamic Power Management

Global Objectives The Runtime Perspective
m Sustain execution time m Sustain application progress
m Minimize energy usage m Minimize power usage

Actuator and Sensor

Power regulation DVFS (Imes et al. 2015; Imes et al. 2019)
DDCM (Bhalachandra et al. 2015)
RAPL (David et al. 2010; Rotem et al. 2012)

Application behavior Measuring progress with heartbeats (Ramesh et al.
2019)
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Related Works

On power regulation in HPC
Different objective or static schema

(Eastep et al. 2017) application-oblivious monitoring

On using control theory for power regulation
Applications web servers (Abdelzaher et al. 2008), cloud (Zhou et al.
2016), real-time systems (Imes et al. 2015)

Metrics RAPL (Imes et al. 2019; Lo et al. 2014)
Progress metric (Santriaji et al. 2016)

Our contribution

Leveraging RAPL's powercap using control theory with progress
objectives in HPC application systems.
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Outlines

Introduction

Approach and Methodology

Dynamic Power Regulation using Control Theory
Experimental Evaluation

Discussions and Conclusion
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Autonomic Computing Approach

The Autonomic Computing approach...
m Periodically monitor application progress

m Choosing at runtime a suitable power cap for processors

power application
cap_ | [E=2ka| progress
~ g =2

Controller System

using Control Theory
How Non-intrusive supervising

Why Stability, accuracy, transient performance (Hellerstein et al.
2004)
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Methodology

Principle of Control Theory

Feedback loops

Mesure performance and react according to the error w.r.t. the desired
setpoint by leveraging system's knob.

ldisturbance
setpoint error knob Controlled performance
%@—) Controller > >
System
Power control in HPC
temperature,
desired iI/O, ste. application
progress error powercap HPC progress
Controller > >
System
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Methodology

Control Theory Methodology

1. 2. 3. ; 4.
Problem Control System ) Model & Control Evalu’ation
Definition Formulation Analysis Design /

Identify a knob

Define the objectives

Analyze signals
properties and
dependencies

Identify a
performance metric

Evaluate the
controlled system
w.rt. objectives

o

the

constraints

___update’™ Design the controlle
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Dynamic Power Regulation using Control Theory
m Software Architecture
m Control Formulation
m System Analysis
m Model & Control Design
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Architecture

Software Architecture

Software Stack Argo NRM resource management framework

Slice
Node sensor Applicati
i cation
Resource | “" PP
Manager | sensor/
c tuator
(passive)
Python runner Resources
Identification| | Controller
CPU RAM
r| cores
»

Platform 3 clusters from Grid5000 with various nb. of sockets
Benchmark STREAM (Desrochers et al. 2016)
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Control Formulation

From post-mortem metrics to dynamic measures and knobs

Power actuator
RAPL'’s power limitation (David et al. 2010):

pcap(t;)

Performance sensor

Application’s progress (Ramesh et al. 2019): median heartrate

0 ()
rogress|t;) = median _—
Prog ' Vk, teelti—,t] \tk — tk—1

Progress is correlated with execution time.
Pearson coefficient resp.0.97, 0.80 and 0.80 for gros, dahu and yeti.
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Uncontrolled System Analysis

Knob variations impact on performance metric

Dynamic Power Regulation using Control Theory =System Analysis
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m Poor RAPL actuator accuracy
m Power cap leverages progress with
® non linearities, saturations, and noise

m Presence of external factors
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Modeling

Static Characteristic: looking at the time averaged behavior

progress = K| (1 — e~ (a-pcap+ —‘8))

, b: characterizing RAPL actuator

Progress [Hz]
IS
8

KL, o, B: cluster- and application-specific
m Handling non-linearity:
—a(a-pcap+b—p3)

i T pcap, = —e

40 60

80
Powercap (W]

progress; = progress — K|

Dynamic perspective

Ki(tiv1 — t) T
L T t) + ————— - t
6 PP ) g proeressi(8)

Shape set by control theory, parameters optimized offline

progress, (ti+1) =
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Design

Control Law

Objective Allowed degradation ¢
Setpoint setpoint = (1 — €) - progress,.,
Error e(t;) = setpoint — progress(t;)

allowed application

degradation setpoint error powerca| progress
—»| Transducer Controller g A H.PC. >
% pplication

Proportional Integral Controller

pcap, (ti) = (K(ti — tic1) + Kp) - e(ti) — -e(ti—1) + pcap,(ti—1)

and are based on the model parameters
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Experimental Evaluation
m Measure of the Model Accuracy
m Evaluation of the Controlled System
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Experimental Evaluation

Measure of the Model Accuracy

Experimental Evaluation Measure of the Model Accuracy

Not a prediction model but used to tune the controller
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gros yeti

Observations

m Good accuracy.

m The model performs better on clusters with few sockets.
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Experimental Evaluation

Time-local behavior

Experimental Evaluation

Evaluation of the Controlled System

Progress [Hz]

Power [W]

N
S

[llustration

+ Measure
Objective value
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m Progress reaches the

objective level € = 0.15
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Analysis

gros

dahu

cluster

yeti

4
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-100 -50 50
Trackina error [Hz1

gros, dahu unimodal, centered near 0,

narrow dispersion

yeti 2nd mode (model limitations

at approx. 10Hz)
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Experimental Evaluation

Post-mortem analysis

12 degradation levels, min. 30 repetitions each
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gros dahu yeti

Pareto Front

gros, dahu Family of trade-off from 0% to 15% degradation level
gros with € = 0.1: -22% energy, +7% execution time

yeti no front, no negative impact of the controller
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Discussions and Conclusion
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Discussions

Exploring trade-offs

m Easily configured behavior of the controller

Model limitations
m Cluster- and application-specific parameters and model
m Non-linearities

m Unmodeled progress drop
m nb. of packages, NUMA architecture, exogenous temperature events

Control solutions considered
m Adaptive Control
m Actuation distribution

m Adding sensors & temperature disturbance anticipation

S. CERF =~ UGA, ANL  2021-04-13 21 /22



Sustaining Performance While Reducing Energy Consumption | Discussions and Conclusion

Conclusion

Objective Reducing energy consumption allowed .
. o degradation power application
while sustaining performance

progress

Controller System

Approach Dynamic power regulation using
Control Theory

Contributions

Control methodology for HPC systems -
Offline model identification P

Controller design

Experimental validation on several clusters

) 20 30
Energy consumption (K]
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Model and Controller Parameters

Description Notation Unit ‘ gros dahu yeti
RAPL slope a [1] 0.83 0.94 0.89
RAPL offset b [W] 707 017 291
o' [1/W] 0.047 0.032 0.023
power offset B [W] 28.5 34.8 33.7
linear gain KL [Hz] 25.6 42.4 78.5
time constant T [s] 1/3 1/3 1/3
Tobj [s] 10 10 10
lower power limit arezg [W] 40 40 40
higher power limit ey N [W] 120 120 120
Tobj [s] | 10 10 10
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Controller Parameters Computation

Kp and K| are based both on the model parameters K; and 7 and on a
tunable parameter 7op; (Astrom et al. 1995):

Kp = 7/(KL - Tobj)

K[ = 1/(K[_ o Tobj)

with 7op; defining the desired dynamical behavior of the controlled system.
The controller is chosen to be nonaggressive:

Tobj = 10s > 107
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