Sustaining Performance While Reducing Energy Consumption: A Control Theory Approach CTRL-A seminar, Grenoble

Sophie CERF*, Raphaël BLEUSE*, Valentin REIS**, Swann PERARNAU**, Éric RUTTEN*

*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

**Argonne National Laboratory

2021-04-13

Energy efficiency in production HPC systems

Current and future HPC systems:

- Toward exascale
- Heterogeneous compute nodes

Reducing energy consumption while preserving performance

Energy efficiency in production HPC systems

Challenges to performance-per-watt efficiency

- Growing complexity of scientific workloads
- Specificity of applications behavior
- Various processor characteristics and performance
- Exogenous limits on progress

Need for dynamic perspective

- Avoid fine-grained modeling
- Robustness to execution context
- Handling phased behavior
 - data, compute, I/O

(Ramesh et al. 2019)

Dynamic Power Management

Global Objectives

- Sustain execution time
- Minimize energy usage

The Runtime Perspective

- Sustain application progress
- Minimize power usage

Actuator and Sensor

Power regulation DVFS (Imes et al. 2015; Imes et al. 2019)

DDCM (Bhalachandra et al. 2015)

RAPL (David et al. 2010; Rotem et al. 2012)

Application behavior Measuring progress with heartbeats (Ramesh et al. 2019)

S. CERF UGA. ANL 2021-04-13

Related Works

On power regulation in HPC

Different objective or static schema

(Eastep et al. 2017) application-oblivious monitoring

On using control theory for power regulation

Applications web servers (Abdelzaher et al. 2008), cloud (Zhou et al. 2016), real-time systems (Imes et al. 2015)

Metrics RAPL (Imes et al. 2019; Lo et al. 2014) Progress metric (Santriaji et al. 2016)

Our contribution

Leveraging RAPL's powercap using control theory with progress objectives in HPC application systems.

Outlines

- 1 Introduction
- 2 Approach and Methodology
- 3 Dynamic Power Regulation using Control Theory
- 4 Experimental Evaluation
- 5 Discussions and Conclusion

Autonomic Computing Approach

The Autonomic Computing approach...

- Periodically monitor application progress
- Choosing at runtime a suitable power cap for processors

... using Control Theory

How Non-intrusive supervising

Why Stability, accuracy, transient performance (Hellerstein et al. 2004)

Principle of Control Theory

Feedback loops

Mesure **performance** and react according to the **error** w.r.t. the desired **setpoint** by leveraging system's **knob**.

Control Theory Methodology

- 1 Introduction
- 2 Approach and Methodology
 - Autonomic Computing Approach
 - Control Theory: Principle & Methodology
- 3 Dynamic Power Regulation using Control Theory
 - Software Architecture
 - Control Formulation
 - System Analysis
 - Model & Control Design
- 4 Experimental Evaluation
 - Measure of the Model Accuracy
 - Evaluation of the Controlled System
- 5 Discussions and Conclusion

Software Architecture

Software Stack Argo NRM resource management framework

Platform 3 clusters from Grid5000 with various nb. of sockets Benchmark STREAM (Desrochers et al. 2016)

Control Formulation

From post-mortem metrics to dynamic measures and knobs

Power actuator

RAPL's power limitation (David et al. 2010):

$$pcap(t_i)$$

Performance sensor

Application's progress (Ramesh et al. 2019): median heartrate

$$\mathsf{progress}(t_i) = \underset{\forall k, \, t_k \in [t_{i-1}, t_i[}{\mathsf{median}} \left(\frac{1}{t_k - t_{k-1}} \right)$$

Progress is correlated with execution time.

Pearson coefficient resp.0.97, 0.80 and 0.80 for gros, dahu and yeti.

Sustaining Performance While Reducing Energy Consumption | Dynamic Power Regulation using Control Theory | System Analysis

Uncontrolled System Analysis

Knob variations impact on performance metric

gros

dahu

yeti

- Poor RAPL actuator accuracy
- Power cap leverages progress with
 - non linearities, saturations, and noise
- Presence of external factors

S. CERF | UGA, ANL | 2021-04-13 13 / 22

Static Characteristic: looking at the time averaged behavior

$$progress = K_L \left(1 - e^{-\alpha(a \cdot pcap + b - \beta)} \right)$$

a, b: characterizing RAPL actuator

 K_L , α , β : cluster- and application-specific

Handling non-linearity:

$$pcap_L = -e^{-\alpha(a \cdot pcap + b - \beta)}$$

$$progress_L = progress - K_L$$

Dynamic perspective

$$\mathsf{progress}_{\mathcal{L}}(t_{i+1}) = \frac{\mathsf{K}_{\mathcal{L}}(t_{i+1} - t_i)}{t_{i+1} - t_i + \tau} \cdot \mathsf{pcap}_{\mathcal{L}}(t_i) + \frac{\tau}{t_{i+1} - t_i + \tau} \cdot \mathsf{progress}_{\mathcal{L}}(t_i)$$

Shape set by control theory, parameters optimized offline

Control Law

Objective Allowed degradation ϵ Setpoint setpoint = $(1 - \epsilon) \cdot \text{progress}_{\text{max}}$ Error $e(t_i)$ = setpoint - progress (t_i)

Proportional Integral Controller

$$\mathsf{pcap}_L(t_i) = (\mathsf{K}_I(t_i - t_{i-1}) + \mathsf{K}_P) \cdot \mathbf{e}(t_i) - \mathsf{K}_P \cdot \mathbf{e}(t_{i-1}) + \mathsf{pcap}_L(t_{i-1})$$

 K_P and K_I are based on the model parameters

- 1 Introduction
- 2 Approach and Methodology
 - Autonomic Computing Approach
 - Control Theory: Principle & Methodology
- 3 Dynamic Power Regulation using Control Theory
 - Software Architecture
 - Control Formulation
 - System Analysis
 - Model & Control Design
- 4 Experimental Evaluation
 - Measure of the Model Accuracy
 - Evaluation of the Controlled System
- 5 Discussions and Conclusion

Sustaining Performance While Reducing Energy Consumption | Experimental Evaluation | Measure of the Model Accuracy

Experimental Evaluation

Measure of the Model Accuracy

Not a prediction model but used to tune the controller

gros

dahu

yeti

Observations

- Good accuracy.
- The model performs better on clusters with few sockets.

Experimental Evaluation

Time-local behavior

Illustration

■ Progress reaches the objective level $\epsilon = 0.15$

Analysis

gros, dahu unimodal, centered near 0, narrow dispersion

yeti 2nd mode (model limitations at approx. 10Hz)

Experimental Evaluation

Post-mortem analysis

12 degradation levels, min. 30 repetitions each

gros

dahu

yeti

Pareto Front

gros, dahu Family of trade-off from 0% to 15% degradation level gros with $\epsilon = 0.1$: -22% energy, +7% execution time yeti no front, no negative impact of the controller

S. CERF UGA. ANL 2021-04-13

- 1 Introduction
- 2 Approach and Methodology
 - Autonomic Computing Approach
 - Control Theory: Principle & Methodology
- 3 Dynamic Power Regulation using Control Theory
 - Software Architecture
 - Control Formulation
 - System Analysis
 - Model & Control Design
- 4 Experimental Evaluation
 - Measure of the Model Accuracy
 - Evaluation of the Controlled System
- 5 Discussions and Conclusion

Discussions

Exploring trade-offs

Easily configured behavior of the controller

Model limitations

- Cluster- and application-specific parameters and model
- Non-linearities
- Unmodeled progress drop
 - nb. of packages, NUMA architecture, exogenous temperature events

Control solutions considered

- Adaptive Control
- Actuation distribution
- Adding sensors & temperature disturbance anticipation

S. CERF | UGA, ANL | 2021-04-13

Conclusion

Objective Reducing energy consumption while sustaining performance

Approach Dynamic power regulation using Control Theory

Contributions

- Control methodology for HPC systems
- Offline model identification
- Controller design
- Experimental validation on several clusters

S. CERF | UGA, ANL | 2021-04-13

References I

- T. Abdelzaher et al., "Introduction to Control Theory And Its Application to Computing Systems," in *Performance Modeling and Engineering* (2008), pp. 185–215.
- K. J. Åström and T. Hägglund, *PID Controllers: Theory, Design, and Tuning*, Second (International Society of Automation, 1995).
- S. Bhalachandra et al., "Using Dynamic Duty Cycle Modulation to Improve Energy Efficiency in High Performance Computing," in IPDPS workshops (2015).
- H. David et al., "RAPL: Memory Power Estimation and Capping," in ISLPED (2010), pp. 189–194.
- S. Desrochers et al., "A Validation of DRAM RAPL Power Measurements," in MEMSYS (2016), pp. 455–470.
- J. Eastep et al., "Global Extensible Open Power Manager: A Vehicle for HPC Community Collaboration on Co-Designed Energy Management Solutions," in ISC, Vol. 10266, Lecture Notes in Computer Science (2017), pp. 394–412.
- J. L. Hellerstein et al., Feedback Control of Computing Systems, (Wiley, 2004).
- C. Imes et al., "CoPPer: Soft Real-time Application Performance Using Hardware Power Capping," in ICAC (2019), pp. 31–41.

References II

- C. Imes et al., "POET: A Portable Approach to Minimizing Energy Under Soft Real-time Constraints," in RTAS (2015), pp. 75–86.
- D. Lo et al., "Towards Energy Proportionality for Large-Scale Latency-Critical Workloads," in ISCA (2014), pp. 301–312.
- Ramesh et al., "Understanding the Impact of Dynamic Power Capping on Application Progress," in IPDPS (2019), pp. 793–804.
- E. Rotem et al., "Power-Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge," IEEE Micro 32, 20–27 (2012).
- M. H. Santriaji and H. Hoffmann, "GRAPE: Minimizing Energy for GPU Applications with Performance Requirements," in MICRO (2016), 16:1–16:13.
- Y. Zhou et al., "CASH: Supporting laaS Customers with a Sub-core Configurable Architecture," in ISCA (2016), pp. 682–694.

Model and Controller Parameters

Description	Notation	Unit	gros	dahu	yeti
RAPL slope	а	[1]	0.83	0.94	0.89
RAPL offset	Ь	[W]	7.07	0.17	2.91
	α	[1/W]	0.047	0.032	0.023
power offset	β	[W]	28.5	34.8	33.7
linear gain	K_L	[Hz]	25.6	42.4	78.5
time constant	au	[s]	1/3	1/3	1/3
	$ au_{obj}$	[s]	10	10	10
lower power limit	pcap ^{MIN}	[W]	40	40	40
higher power limit	pcap ^{MAX}	[W]	120	120	120
	$ au_{obj}$	[s]	10	10	10

S. CERF | UGA, ANL | 2021-04-13

Controller Parameters Computation

 K_P and K_I are based both on the model parameters K_L and τ and on a tunable parameter τ_{obj} (Åström et al. 1995):

$$K_P = \tau/(K_L \cdot \tau_{\rm obj})$$

$$K_I = 1/(K_L \cdot au_{\text{obj}})$$

with $\tau_{\rm obj}$ defining the desired dynamical behavior of the controlled system. The controller is chosen to be nonaggressive:

$$au_{
m obj} = 10\,{
m s} > 10 au$$

.