
Self-­‐tuning	
 Transac1onal	
 Memory	

via	
 Machine	
 Learning	
 	

and	
 Analy1cal	
 Modeling	

	

Paolo	
 Romano	

	

INESC-­‐ID	

Ins+tuto	
 Superior	
 Técnico,	
 Lisbon	
 University	

	

	

	

Roadmap
• Background on Transactional Memory

•  alternative implementations

•  TM performance tuning

• Gray box based self-tuning
•  Provisioning and optimization of a Distributed TM
•  Divide and conquer
•  Bootstrapping
•  Hybrid ensembling

Multi-cores are
now ubiquitous

The multi-core (r)evolution Shared Memory

CPU
1

CPU
2

CPU
3

CPU
4

Concurrent programming
is complex

Hard to get right:
•  fine-grained locks
•  deadlocks
•  correctness

Classic approach:
Locking

atomic {
 withdraw(acc1,val);
 deposit(acc2,val);
}

Transactional
Memory abstraction

Programmer identifies atomic blocks
Runtime implements synchronization

Transactional Memory System

(A very incomplete)
Historical perspective on TM

Hardware
TM

[ISCA]

1993 1995

Software
TM

[PODC]

2005

1st Intel
dual core

CPU

2014

1st Intel
CPU with

HTM

Intel’s Haswell CPU targets mainstream computing platforms:
•  including desktops, servers, laptops, and tablets

Recently also IBM has integrated HTM supports in its high-end CPUs:
•  BG/Q, zEC12, Power8

Transactional Memory:
One abstraction, many implementations

•  Software (STM):
•  instrumenting read and write accesses

•  PRO: flexibility
•  CON: instrumentation overheads

•  Hardware (HTM):
•  extension of the cache consistency mechanism

•  PRO: no instrumentation overheads
•  CON: hw is inherently limited

•  Hybrid (HyTM)
•  mix of the two worlds that tries to achieve the best of both

•  Distributed (DTM)

•  natural extension of TM for distributed shared memory
•  PRO: fault-tolerance, potential for higher scalability
•  CON: synchronization costs are amplified

Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014 6

Software TM

int i = 0

…

atomic {
 i++
}

int i = 0
…
TM.begin-tx()
int tmp =
TM.read(&i)
tmp++
TM.write(&i, tmp)
TM.end-tx()

Source program Compiled program

instrumentation

to invoke STM

•  Non-negligible instrumentation overheads

•  Highly flexible:
•  Avoid inherent restrictions of hardware implementations

•  Over 10 years of research on STM
 è highly optimized prototypes and designs

Transactional Memory:
One abstraction, many implementations

•  Software (STM):
•  instrumenting read and write accesses

•  PRO: flexibility
•  CON: instrumentation overheads

•  Hardware (HTM):
•  extension of the cache consistency mechanism

•  PRO: no instrumentation overheads
•  CON: hw is inherently limited

•  Hybrid (HyTM)
•  mix of the two worlds that tries to achieve the best of both

•  Distributed (DTM)

•  natural extension of TM for distributed shared memory
•  PRO: fault-tolerance, potential for higher scalability
•  CON: synchronization costs are amplified

HTM: Intel Transactional Synchronization Extensions (TSX)

CPU
1

CPU
2

Memory Bus

L1
Cache

L1
Cache

L2 Cache L2 Cache

L3 Cache

CPU 1 CPU 2

xbegin

TSX: on

read x: 0 // Set bit read on x cache line

x: 0 -- r

write y = 1 // Buffer write in L1 cache

y: 1 -- w

xend // Atomically clean bits and publish

x: 0
y: 1

xbegin
read y: 1

write y = 2

xabort

invalidation snooped write
invalidates tx read

…

…

y: 1 -- r
x: 0
y: 2

Restrictions of TSX
No progress guarantees:

•  A transaction may always abort

…due to a number of reasons:

•  Forbidden instructions

•  Capacity of caches

•  Faults and signals

•  Contending transactions, aborting each other

Transactional Memory:
One abstraction, many implementations

•  Software (STM):
•  instrumenting read and write accesses

•  PRO: flexibility
•  CON: instrumentation overheads

•  Hardware (HTM):
•  extension of the cache consistency mechanism

•  PRO: no instrumentation overheads
•  CON: hw is inherently limited

•  Hybrid (HyTM)
•  mix of the two worlds that tries to achieve the best of both

•  Distributed (DTM)

•  natural extension of TM for distributed shared memory
•  PRO: fault-tolerance, potential for higher scalability
•  CON: synchronization costs are amplified

Distributed Transactional Memory
11 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

• Extends the reach of TM abstraction to distributed
applications

• Enhanced scalability, high-availability and fault-tolerance

• Attractive paradigm for the cloud

At the convergence of two areas
12 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

Transac1ons	
 allow	
 to:	

	

1.  Deal	
 with	
 remote	
 data	
 races	

2.  Boost	
 performance	
 by	
 batching	
 remote	

synchroniza+ons	
 during	
 commit	
 phase	

•  Natural	
 source	
 of	
 inspira+on	
 for	
 DSTMs...	

•  but	
 DSTMs	
 have	
 unique	
 requirements,	

e.g.:	

•  >70%	
 txs	
 are	
 100x	
 shorter	
 in	
 DSTM	

Distributed	
 Shared	
 Memory	
 Distributed	
 Databases	

Distributed Transactional Memory

Roadmap
• Background on Transactional Memory

•  alternative implementations

•  TM performance tuning

• Gray box based self-tuning
•  Provisioning and optimization of a Distributed TM
•  Divide and conquer
•  Bootstrapping
•  Hybrid ensembling

TM performance tuning
•  TM abstraction allows for encapsulating a vast range of

alternative implementation strategies
•  no one size fits all solution [SPAA08, PACT14]

• Each implementation comes with various tuning-knobs:
•  number of retries in HTM [ICAC14]
•  granularity of locks in STM [PPoPP08]

• Parallelism degree:
•  how many threads should be concurrently active? [EuroPar14]

•  Thread mapping:
•  on which cores should the active threads be executed? [JPDC14]

14 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

TM tuning: no one size fits all
15 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

ASPLOS Submission #137– Confidential Draft – Do Not Distribute!!

ProteusTM: Abstraction Meets Performance in Transactional Memory

Abstract
The Transactional Memory (TM) paradigm promises to

greatly simplify the development of concurrent applications.
This led, over the years, to the creation of a plethora of TM
implementations delivering wide ranges of performance across
workloads. Yet, no universal TM implementation fits each and
every workload. In fact, the best TM in a given workload can
reveal to be disastrous for another one. This forces developers
to face the complex task of tuning TM implementations, which
significantly hampers the wide adoption of TMs.

In this paper, we address the challenge of automatically
identifying the best TM implementation for a given workload.
Our proposed system, ProteusTM, hides behind the TM inter-
face a large library of implementations. Under the hood, it
leverages an innovative, multi-dimensional online optimiza-
tion scheme, combining two popular machine learning tech-
niques: Collaborative Filtering and Bayesian Optimization.

We integrated ProteusTM in GCC and demonstrated its
ability to switch TM implementations and adapt several con-
figuration parameters (e.g., number of threads). We extensively
evaluated ProteusTM, obtaining average performance < 3%
from optimal, and gains up to 100⇥ over static alternatives.

1. Introduction
The advent of multi-cores has brought parallel computing to
the fore-front of software development, fostering research on
paradigms to simplify the development of concurrent applica-
tions. The Transactional Memory (TM) [35] abstraction is a
prominent approach that promotes a simple idiom for synchro-
nizing code: programmers specify only what should be done
atomically (via serializable transactions), leaving to the TM
the responsibility of implementing how to achieve it.

Over time, several works have provided evidence [57, 46,
52] on the effectiveness of TM to simplify the development
and verification of concurrent programs, enhancing code reli-
ability and productivity. Recently, the relevance of TM was
amplified by the standardization of constructs in popular lan-
guages (such as C/C++ [49]), and by the integration of hard-
ware support in processors by Intel and IBM [67, 39].
The abstraction vs performance dilemma. Unfortunately,
TM performance remains a controversial matter [11]: despite
the large body of work in the area, the search for a “univer-
sal” TM with optimal performance across all workloads has
been unsuccessful.Fig. 1 conveys experimental evidence of
the strong sensitivity of TM to the workload characteristics.
We report on the energy efficiency (in Fig. 1a) and through-
put (in Fig. 1b) of various TMs in different architectures and
benchmarks. We normalized the data with respect to the best

 0

 0.2

 0.4

 0.6

 0.8

 1

genome red-black tree labyrinth

N
or

m
al

iz
ed

 w
rt

be
st NOrec:4t

Tiny:8t
HTM:8t

(a) Throughput/Joule on a single-chip
8-core CPU (Machine A in Table 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

vacation red-black tree intruder

N
or

m
al

iz
ed

 w
rt

be
st NOrec:48t

Tiny:8t

Swiss:32t

(b) Throughput on a multi-chip 32-
core CPU (Machine B in Table 2).

Figure 1: Performance heterogeneity in TM applications.

performing configuration for the considered workload. Fig. 1
shows that, in two different architectures and metrics, the
optimal TM configuration differs significantly for each work-
load. Furthermore, choosing wrong configurations can cripple
performance by several orders of magnitude. Interestingly,
some TMs used in these experiments were designed to tackle
various workloads [29, 27], but configuring them properly is
non-trivial and they still cannot perform well for all workloads.

The problem is that the efficiency of existing TM imple-
mentations is strongly dependent on the workloads they face.
Performance can be affected by a number of factors, including
program inputs [26], phases of program execution [24], tuning
of the internal parameters of the TM algorithms [25], as well
as architectural aspects of the underlying hardware [12].

Given the vast TM design space, manually identifying opti-
mal configurations, using trial and error on each workload, is a
daunting task. Overall, the complexity associated with tuning
TM contradicts the motivation at its basis, i.e., to simplify
the life of programmers, and represents a roadblock to the
adoption of TM as a mainstream paradigm [42].
Contributions. We propose a new system, ProteusTM1,
which allows developers to still enjoy the simplicity and ease
of usage of the TM abstraction, while sparing them from the
burden of tuning TM implementations to specific workloads.

Under the simple and elegant interface of TM, ProteusTM
hides a large library of TM implementations. At run-time,
ProteusTM relies on an innovative combination of learning
techniques to pursue optimal efficiency via multi-dimensional
adaptation of the TM implementation and its parameters.

At the heart of ProteusTM lie two key components:
• PolyTM is a polymorphic TM library that encapsulates state-
of-the-art results from research in TM, and has the unique
ability to transparently and dynamically adapt across multiple
dimensions: (i) switch between different TM algorithms; (ii)
reconfigure the internal parameters of a TM; (iii) adapt the
number of threads concurrently generating transactions.
• RecTM is in charge of determining the optimal TM config-

1Proteus is a Greek god who can foretell the future and adapt his shape.

Benchmark Lines of Code Atomic Blocks Description
STAMP [9] 28803 35 Suite of 8 heterogeneous benchmarks with a variety of workloads (genomics, graphs, databases).
Data Structures 3702 12 Concurrent Red-Black Tree, Skip-List, Linked-List and Hash-Map with workloads varying contention and update ratio.
STMBench7 [32] 8623 45 Based on OO7 [10] with many heterogeneous transactions over a large and complex graph of objects.
TPC-C [63] 6690 5 OLTP workload with in-memory storage adapted to use one atomic block encompassing each transaction.
Memcached [58] 12693 120 Caching service with many short transactions that are used to read and update the cache coherently.

Table 1: TM applications used in our evaluation. These 15 benchmarks span a wide variety of workloads and characteristics.

Machine ID Processor / Number of cores / RAM HTM RAPL
Machine A 1 Intel Haswell Xeon E3-1275 3.5GHz /

4 (8 hyper-threads) / 32 GB
Yes Yes

Machine B 4 AMD Opteron 6172 2.1 Ghz / 48 / 32 GB No No

Table 2: Machines used in our experimental test-bed.

More in detail, the Controller builds a bagging ensemble [7]
of k CF learners, each trained on a random subset of the
training set. Then, it computes µx as the average of the values
output by the single predictors, and s2

x as their variance. In
ProteusTM, we use 10 bagged models; we highlight that the
cost of employing them instead of a single one is negligible,
mainly because they are only queried during profiling phases.
Stopping Criterion. As discussed, SMBO requires the defi-
nition of a predicate to stop exploring new configurations.

Our Controller uses a stopping criterion that seeks a bal-
ance between exploration and exploitation by relying on the
notion of EI: it uses the estimated likelihood that additional
explorations may lead to better configurations. More precisely,
the exploration is terminated after k steps when: (i) the EI
decreased in the last 2 iterations; (ii) the EI for the k-th ex-
ploration was marginal, i.e., lower than e with respect to the
current best sampled KPI; (iii) the relative performance im-
provement achieved in the k�1-th iteration did not exceed e .
In §6.3, we evaluate the effectiveness of this policy.

5.3. Monitor: Lightweight Behavior Change Detection

The Monitor periodically gathers KPIs from PolyTM. These
are used for two tasks: (i) while profiling a new workload, they
are fed to the Controller, providing feedback about the quality
of the current configuration; (ii) at steady-state, they are used
to detect a workload change. The Monitor implements the
Adaptive CUSUM algorithm to detect, in a lightweight and
robust way, deviations of the current KPI from the mean value
observed in recent time windows [2]. This allows the Monitor
to detect both abrupt and smooth changes and to promptly
trigger a new profiling phase in our Controller. Note that
environmental changes (e.g., inter-process contention or VM
migration) are indistinguishable from workload changes from
the perspective of our behavior change detection.

6. Evaluation
This section provides an extensive validation of our contribu-
tions. We introduce, in §6.1 the test-bed, applications, and
accuracy metrics used. In §6.2 we assess the overhead in-
curred by PolyTM to provide self-tuning capabilities. In §6.3,
we evaluate the effectiveness of RecTM’s components sepa-
rately. Finally, in §6.4 we evaluate the ability of ProteusTM to
perform online optimization of dynamic workloads.

Machine
ID

TM Backend # threads HTM Abort
Budget

HTM Capacity
Abort Policy

Machine A STMs and
TSX [67]

1,2,3,4,
5,6,7,8

1,2,4,
8,16,20

Set budget to 0;
decrease budget
by 1; halve budget

Machine B STMs 1,2,4,6,
8,16,32,48

N/A N/A

Table 3: Parameters tuned by ProteusTM. STMs are
TinySTM [29], SwissTM [27], NORec [15] and TL2 [22].

6.1. Experimental Test-Bed

We deployed ProteusTM in two machines with different char-
acteristics (described in Table 2) and used a wide variety of
TM applications (summarized in Table 1). We considered over
300 workloads, which are representative of heterogeneous ap-
plications, from highly to poorly scalable, from HTM to STM
friendly [26]. Moreover, we tested three KPIs: execution time,
throughput and EDP (Energy Delay Product, a popular energy
efficiency metric [36]). We measure energy consumption via
RAPL [17] (available on Machine A).

Our system optimizes the KPI by tuning the four dimensions
listed in Table 33. Overall, we consider a total of 130 TM
configurations for Machine A and 32 for Machine B.
Evaluation metrics. We evaluate the performance of Pro-
teusTM along 2 accuracy metrics: Mean Average Percentage
Error (MAPE) and Mean Distance From Optimum (MDFO).

Noting ru,i the real value of the target KPI for workload u
when running with i as configuration, bru,i the corresponding
prediction of the Recommender, and S the set of testing hu, ii
pairs, MAPE is defined as: Âhu,ii2S |ru,i �bru,i|/ru,i.

Noting with i⇤u the optimal configuration for workload u and
with bi⇤u the best configuration identified by the Recommender,
the MDFO for u is computed as: Âhu,·i2S |ru,i⇤u � ru,bi⇤u

|/ru,i⇤u .
MAPE reflects how well the CF learner predicts perfor-

mance for an application. In contrast, MDFO captures the
quality of final recommendations output by the Recommender.

6.2. Overhead Analysis and Reconfiguration Latency

We now assess the overhead of PolyTM, i.e., the inherent
steady-state cost of supporting adaptation. We compare
the performance of a bare TM implementation T with that
achieved by PolyTM using T without triggering adaptation.

Table 4 summarizes the results averaged across all bench-
marks. The contention management for HTM is set to decrease
linearly the retries starting from 5 (a common setting [67, 41]).
We also show the overhead of the optimized code path, em-

3 ProteusTM also includes HybridTMs: we omit them as, in our workloads,
HybridTMs never outperformed STMs/HTMs (similarly to recent work [26]).

7

- Machine A - Machine B

DTM performance tuning
•  Support both scale up and scale out [TAAS14]

•  how many machines should my DTM be provisioned with?
•  how many threads should be active on each machine?

•  Communication latencies play a critical factor
•  select the distributed coordination protocol that maximizes efficiency

[DSN13]
•  dynamically tune parameters (e.g., batching) of the Group

Communication System to enhance efficiency [ICPE15]
•  where should data and code be placed to maximize locality? [ICAC13]

•  Cost of exploration can be much higher [Netys13]:
•  launching a new VM is not as simple as spawning a new thread:

•  latency for VM activation, system reconfiguration, state transfer
•  economical cost for VM activation in the cloud

16 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

Performance of Distributed TM

• Heterogeneous, nonlinear scalability trends!

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 3 4 5 6 7 8 9 10

C
o
m

m
itt

e
d
 T

ra
n
sa

ct
io

n
s/

se
c

Number of nodes

RG - Small RG - Large TPC-C

DTM : Factors limiting scalability	

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

C
o
m

m
it
 P

ro
b
a
b
ili

ty

Number of nodes

RG - Small RG - Large TPC-C

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 2 3 4 5 6 7 8 9 10

N
e
tw

o
rk

 R
T

T
 L

a
te

n
cy

 (
m

ic
ro

se
c)

Number of nodes

RG - Small RG - Large TPC-C 	

Aborted	
 transac+ons	

because	
 of	
 conflicts	

	
 	
 	

	
 	

	

	

Network	
 latency	
 in	

commit	
 phase	

	
 	
 	

	
 	

Roadmap
• Background on Transactional Memory

•  alternative implementations

•  TM performance tuning

• Gray box based self-tuning
•  Provisioning and optimization of a Distributed TM
•  Divide and conquer
•  Bootstrapping
•  Hybrid ensembling

Based on the following papers

1.  D. Didona, P. Romano, S. Peluso, F. Quaglia, Transactional Auto Scaler: Elastic Scaling of In-

Memory Transactional Data Grids, ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 9, 2, 2014, DOI: http://dx.doi.org.10.1145/2620001

2.  D. Didona and Paolo Romano, Performance Modelling of Partially Replicated In-Memory
Transactional Stores, IEEE 22nd International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS'14), September 2014

3.  D. Didona, P. Romano, F. Quaglia, E. Torre, Combining Analytical Modeling and Machine-
Learning to Enhance Robustness of Performance Prediction Models, 6th ACM/SPEC International
Conference on Performance Engineering (ICPE), Feb 2015

4.  D. Didona, P. Romano, Hybrid Machine Learning/Analytical Models for Performance Prediction: a
Tutorial, 6th ACM/SPEC International Conference on Performance Engineering (ICPE), Feb. 2015

5.  D. Didona, P. Romano, Using Analytical Models to Bootstrap Machine Learning Performance
Predictors, IEEE International Conference on Parallel and Distributed Systems (ICPADS),
December 2015

Approaches to Performance Modelling

White Box Black Box

White box modelling

•  Exploit knowledge on internal system dynamics

² model dynamics analytically or via simulation

PROS

•  Good accuracy on average ���

•  Minimal or no learning phase

CONS

•  Simplifying assumptions ���
è low accuracy when these
assumptions do not hold

•  Knowledge of system internals
often unavailable

Related Work

Queuing Theory

Goal

Model a server as a queue

(arrival rate, service demands)! KPIs

• High predictive
power

• Several metrics

• Explicit modeling

• Assumptions,
approximations

Diego Didona (2013) 12 / 30

Related Work

Machine Learning

Goal

Observe x = (x1...xn), y = (y1...yn)

Infer f : y = f (x)

y' = f(x')
Machine Learner

Training input
{xi} Statistical Model

y=f'(x)

Query x'

Training output
{yi = f(xi)}

• No explicit
modeling

• High accuracy in
interpolation

• Poor accuracy in
extrapolation

• Training time

Diego Didona (2013) 14 / 30

Black box modelling

PROS

•  High accuracy in areas already
observed (interpolation)

���

•  Do not require knowledge on
system’s internals

CONS

•  Poor accuracy in non-observed
areas (extrapolation)

•  Curse of dimensionality
Ø  Extensive training phases

Key Observation & Questions

Pros of white-box are cons of black-box & vicev.

Can we achieve the best of the two worlds?

How can black and white box modelling be
reconciled ?

Gray box modeling	

•  Combine	
 WB	
 and	
 BB	
 modeling	

•  Enhance	
 robustness	

–  Lower	
 	
 training	
 +me	
 thx	
 to	
 WBM	

–  Incremental	
 learning	
 thx	
 to	
 BBM	

	
 	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

Gray box modeling	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

Divide and conquer	

•  Modular	
 approach	

– WBM	
 of	
 what	
 is	
 observable/easy	
 to	
 model	

– BBM	
 of	
 what	
 is	
 un-­‐observable	
 or	
 too	
 complex	

•  Reconcile	
 their	
 output	
 in	
 a	
 single	
 func+on	

•  Higher	
 accuracy	
 in	
 extrapola+on	
 thx	
 to	
 WBM	

•  Apply	
 BBM	
 only	
 to	
 sub-­‐problem	

– Less	
 features,	
 lower	
 training	
 +me	

Case study: Infinispan	

•  Distributed	
 in-­‐memory	
 key-­‐value	
 store:	

– Nodes	
 maintain	
 elements	
 of	
 a	
 dataset	

•  Full	
 vs	
 par+al	
 replica+on	
 (#	
 copies	
 per	
 item)	

– Transac+onal	
 -­‐-­‐ACI(D)–	
 manipula+on	
 of	
 data	

•  Concurrency	
 control	
 scheme	
 (enforce	
 isola+on)	

•  Replica+on	
 protocol	
 (disseminate	
 modifica+ons)	

DTM optimization in the Cloud	

•  Important	
 to	
 model	
 network-­‐bound	
 ops	
 but…	

•  Cloud	
 hides	
 detail	
 about	
 network	
 L	

– No	
 topology	
 info	

– No	
 service	
 demand	
 info	

– Addi+onal	
 overhead	
 of	
 virtualiza+on	
 layer	

•  BBM	
 of	
 network-­‐bound	
 ops	
 performance	

– Train	
 ML	
 on	
 the	
 target	
 pla_orm	

TAS/PROMPT [TAAS14,Mascots14]	

•  Analy+cal	
 modeling	
 (queuing	
 theory	
 based)	

–  Concurrency	
 control	
 scheme	
 	

•  E.g.,	
 encounter	
 +me	
 vs	
 commit	
 +me	
 locking	

–  Replica+on	
 protocol	
 	

•  E.g.,	
 PB	
 vs	
 2PC	

–  Replica+on	
 scheme	
 	

•  Par+al	
 vs	
 full	

–  CPU	

•  Machine	
 Learning	

–  Network	
 bound	
 op	
 (prepare,	
 remote	
 gets)	

–  Decision	
 tree	
 regressor	

Analytical model in TAS/PROMPT	

•  Concurrency	
 control	
 scheme	
 (lock-­‐based)	

– A	
 lock	
 is	
 a	
 M/G/1	
 server	

–  Conflict	
 prob	
 =	
 u+liza+on	
 of	
 the	
 server	

•  Replica+on	
 protocol	

– mul+-­‐master/Two-­‐phase	
 Commit	
 based	
 à	
 one	
 model	

–  single-­‐master/primary-­‐backup	
 à	
 two	
 models	

•  Replica+on	
 scheme	

–  Probability	
 of	
 accessing	
 remote	
 data	

–  #	
 nodes	
 involved	
 in	
 commit	

Machine Learning in TAS/PROMPT	

•  Decision	
 tree	
 regressor	

•  Opera+on-­‐specific	
 models	

– Latency	
 during	
 prepare	

– Latency	
 to	
 retrieve	
 remote	
 data	

•  Input	

– Opera+ons	
 rate	
 (prepare,	
 commit,	
 remote	
 get…)	

– Size	
 of	
 messages	

– #	
 nodes	
 involved	
 in	
 commit	

ML accuracy for network bound ops	

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000 35000

P
re

d
ic

te
d
 T

p
re

p
(µ

se
c)

Real Tprep(µsec)

EC2

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000
P

re
d
ic

te
d
 T

p
re

p
(µ

se
c)

Real Tprep(µsec)

Private Cluster

•  Seamlessly	
 portable	
 across	
 infrastructures	
 	

– Here,	
 private	
 cloud	
 and	
 Amazon	
 EC2	

AM and ML coupling	

•  At	
 training	
 +me,	
 all	
 features	
 are	
 monitorable	

•  At	
 query	
 +me	
 they	
 are	
 NOT!	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

EXAMPLE	

•  Current	
 config:	
 5	
 nodes,	
 full	
 replica+on	
 	

– Contact	
 all	
 5	
 nodes	
 at	
 commit	

•  Query	
 config:	
 10	
 nodes,	
 par+al	
 replica+on	

– How	
 many	
 contacted	
 nodes	
 at	
 commit??	

•  AM	
 can	
 provide	
 (es+mates	
 of)	
 missing	
 input	

•  Itera+ve	
 coupling	
 scheme 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	
 	
 ML	
 takes	
 some	
 input	
 parameters	
 from	
 AM	

	

AM	
 takes	
 latencies	
 forecast	
 by	
 ML	
 as	
 input	
 parameter	

Model resolution	

Model’s accuracy	

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

C
o

m
m

it
P

ro
b

a
b

ili
ty

Number of nodes

EC2

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(t

x/
se

c)

Number of nodes

EC2

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

C
o
m

m
it

P
ro

b
a
b
ili

ty

Number of nodes

PB, write transactions only

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(t

x/
se

c)

Number of nodes

PB, write transactions only

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(t

x/
se

c)

Number of nodes

PB, write transactions only

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

TOP:	
 primary-­‐backup.	
 	
 BOTTOM:	
 mul+-­‐master	
 (2PC-­‐based)	

Comparison with Pure ML, I	

•  YCSB	
 (transac+fied)	
 workloads	
 while	
 varying	
 	

–  #	
 opera+ons/tx	

–  Transac+onal	
 mix	
 	

–  Scale	

–  Replica+on	
 degree	

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 20 40 60 80

M
e

a
n

 r
e

la
tiv

e
 e

rr
o

r

Percentage of additional training set

Cubist
M5R

SMOReg
MLP

PROMPTDivide et Impera

Comparison with Pure ML, II	

•  ML	
 trained	
 with	
 TPCC-­‐R	
 and	
 queried	
 for	
 TPCC-­‐W	

•  Pure	
 ML	
 blunders	
 when	
 faced	
 with	
 new	
 workloads	

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(t

x/
se

c)

Number of nodes

real TAS pure ML

Gray box modeling	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

Bootstrapping	

•  Obtain	
 zero-­‐training-­‐+me	
 ML	
 via	
 ini+al	
 AM	

1.  Ini+al	
 (synthe+c)	
 training	
 set	
 of	
 ML	
 from	
 AM	

2.  Retrain	
 periodically	
 with	
 “real”	
 samples	

Analytical !
model!

Boostrapping"
training set!

Machine
learning!
!

Gray box "
model!

Sampling of"
the Parameter Space!

Model construction!

Current
training set!

Machine
learning!

Gray box "
model!

New data"
come in!

(1)	
 (2)	

How many synthetic samples?	

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2000 4000 6000 8000 10000 12000 14000
 0.01

 0.1

 1

 10

 100

 1000

 10000

M
A

P
E

T
ra

in
in

g
 t
im

e
 (

se
c,

 lo
g
sc

a
le

)

Training set size

KVS-MAPE
KVS-time

TOB-MAPE
TOB-time

•  Important	
 tradeoff	

–  Higher	
 #	
 à	
 lower	
 fimng	
 error	
 over	
 the	
 AM	
 output	

–  Lower	
 #	
 à	
 higher	
 density	
 of	
 real	
 samples	
 in	
 dataset	

How to update the synthetic training set?	

•  Merge:	
 simply	
 add	
 real	
 samples	
 to	
 synthe+c	
 set	

•  Replace	
 only	
 the	
 nearest	
 neighbor	
 (RNN)	

•  Replace	
 neighbors	
 in	
 a	
 given	
 region	
 (RNR)	

– Two	
 variants	

Real vs AM function	

Real	
 func+on	

	

AM	
 func+on	

•  Assuming	
 enough	
 point	
 to	
 perfectly	
 learn	
 AM	

Real vs learnt	

Synthe+c	
 sample	

ML	
 func+on	

•  Add	
 real	
 samples	
 to	
 synthe+c	

Merge	

Real	
 sample	

•  Problem:	
 same/near	
 samples	
 have	
 diff.	
 output	

Merge	

•  Remove	
 nearest	
 neighbor	

Replace Nearest Neighbor (RNN)	

•  Preserve	
 distribu+on…	

Replace Nearest Neighbor (RNN)	

•  …	
 but	
 may	
 induce	
 alterna+ng	
 outputs	

Replace Nearest Neighbor (RNN)	

•  Add	
 real	
 and	
 remove	
 synth.	
 samples	
 in	
 a	
 radius	
 	

Replace Nearest Region (RNR)	

•  R	
 =	
 radius	
 defining	
 neighborhood	

Replace Nearest Region (RNR)	

R	

•  R	
 =	
 radius	
 defining	
 neighborhood	

Replace Nearest Region (RNR)	

R	

•  Skew	
 samples’	
 distribu+on	

Replace Nearest Region (RNR)	

•  Replace	
 all	
 synthe+c	
 samples	
 in	
 a	
 radius	
 R	

Replace Nearest Region 2 (RNR2)	

R	

Replace Nearest Region 2 (RNR2)	

•  Maintain	
 distribu+on,	
 piecewise	
 approxima+on	

Weighting	

•  Give	
 more	
 relevance	
 to	
 some	
 samples	

•  Fit	
 beoer	
 the	
 model	
 around	
 real	
 samples	

– “Trust”	
 real	
 samples	
 more	
 than	
 synthe+c	
 ones	

– Useful	
 especially	
 in	
 Merge	

•  Too	
 high	
 can	
 cause	
 over-­‐fimng!	

– Learner	
 fails	
 to	
 generalize	
 	

Evaluation	

•  Case	
 studies	

– Response	
 +me	
 in	
 Total	
 Order	
 Broadcast	
 (TOB)	

•  building	
 block	
 at	
 the	
 basis	
 of	
 many	
 DTM	
 	

•  2-­‐dimensional	
 yet	
 highly	
 nonlinear	
 perf.	
 Func+on	

– Throughput	
 in	
 Distributed	
 TM	
 (Infinispan)	

•  7-­‐dimensional	
 performance	
 func+on	

Weighting	

TOB	
 	

(10K	
 synthe+c	
 samples)	

154 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(a) TOB: 1K synthetic samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
M

A
P

E
Weight (log)

(b) TOB: 10K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(c) DTP: 1K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(d) DTP: 10K synthetic samples

Figure 5.5: Impact of the weight parameter for the Merge updating policy, using 1K and 10K
synthetic samples.

accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.

154 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(a) TOB: 1K synthetic samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(b) TOB: 10K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(c) DTP: 1K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(d) DTP: 10K synthetic samples

Figure 5.5: Impact of the weight parameter for the Merge updating policy, using 1K and 10K
synthetic samples.

accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.

154 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(a) TOB: 1K synthetic samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(b) TOB: 10K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(c) DTP: 1K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(d) DTP: 10K synthetic samples

Figure 5.5: Impact of the weight parameter for the Merge updating policy, using 1K and 10K
synthetic samples.

accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.

DTM	

(10K	
 synthe+c	
 samples)	

Update function	

•  In	
 both	
 considered	
 case	
 studies,	
 simplicity	
 pays	
 off:	

–  the	
 Merge	
 policy	
 performs	
 analogously	
 to	
 RNR2	

–  …but,	
 unlike	
 RNR2,	
 Merge	
 is	
 parameter-­‐free	

5.4. EVALUATION 159

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

Merge

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

RNR2-0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
M

A
P

E
Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

(a) TOB

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

(b) DTP

Figure 5.7: Comparison between Merge and Replace-based Bootstrapping

The plot in Figure 5.7 clearly highlights the advantages that the Bootstrapping technique can

provide, eventually outperforming both the base model and the reference ML-based predictor.

It also shows that, in the considered case studies, and for the considered parameters’ values,

there is no clear winner between the two updating variants. In fact, the conducted evaluation

suggests —maybe surprisingly— that the weighting parameter results to be the one that affects

accuracy the most, up to the point that its careful tuning allows the Merge updating policy to

perform similarly to the —relatively more complex— RNR2.

5.4.2.3 Bootstrapping in extrapolation

So far, the Bootstrapping technique has been evaluated by drawing the additional training set Dt

for the black box learner uniformly at random from a real data set D, and assessing its accuracy

over D\Dt . This means that the learned performance function has been corrected by benefiting

from an unbiased sampling of the whole space over which its accuracy is then assessed. This

section serves the purpose of assessing the Bootstrapping technique’s robustness against biased

sampling strategies: even if provided only with a set R of real samples corresponding to narrow

regions of the parameters’ space, the bootstrapped learner still inherits the predictive power of

the base base predictor when working in extrapolation with respect to R.

A realistic use case for such a scenario would be if the real samples were not to be collected

Visualizing the correction	

BASE	
 MODEL	
 PURE	
 ML	
 (70%	
 TS)	

BOOTSTRAPPED	
 ML	
 (70%	
 TS)	

Gray box modeling	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

	
 	
 	
 	
 	
 Hybrid	
 KNN	

Hybrid	
 boos+ng	
 Probing	

Hybrid Boosting	

•  Learning	
 the	
 error	
 of	
 a	
 model	
 on	
 a	
 func+on	
 may	

be	
 simpler	
 than	
 learning	
 the	
 func+on	
 itself	

	

•  Chain	
 composed	
 by	
 AM	
 +	
 cascade	
 of	
 ML	

•  ML1	
 trained	
 over	
 residual	
 error	
 of	
 AM	

•  MLi,	
 i>1	
 	
 trained	
 over	
 residual	
 error	
 of	
 MLi-­‐1	

Training	
 and Querying Hyboost

<x1,	
 y1>	

<x2,	
 y2>	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn>	

	
 	
 	
 Original	
 	

training	
 set	

Training	

Training	
 and Querying Hyboost	

<x1,	
 y1>	

<x2,	
 y2>	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn>	

<x1,	
 y1-­‐	
 AM(x1)>	

<x2,	
 y2	
 -­‐	
 AM(x2)>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn	
 –	
 AM(xn)>	

Residual	
 error	
 of	
 AM	

	
 	
 	
 Original	
 	

training	
 set	

AM	

Training	

Training	
 and Querying Hyboost	

<x1,	
 y1>	

<x2,	
 y2>	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn>	

<x1,	
 y1-­‐	
 AM(x1)>	

<x2,	
 y2	
 -­‐	
 AM(x2)>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn	
 –	
 AM(xn)>	

<x1,	
 y1-­‐	
 ML1(x1)>	

<x2,	
 y2	
 –	
 ML1(x2)>	

.	

.	

.	

<xn,	
 yn	
 –	
 ML1(xn)>	

ML1	

Residual	
 error	
 of	
 AM	
 Residual	
 error	
 of	
 ML1	

	
 	
 	
 Original	
 	

training	
 set	

AM	

Training	

Training	
 and Querying Hyboost	

<x1,	
 y1>	

<x2,	
 y2>	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn>	

<x1,	
 y1-­‐	
 AM(x1)>	

<x2,	
 y2	
 -­‐	
 AM(x2)>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn	
 –	
 AM(xn)>	

<x1,	
 y1-­‐	
 ML1(x1)>	

<x2,	
 y2	
 –	
 ML1(x2)>	

.	

.	

.	

<xn,	
 yn	
 –	
 ML1(xn)>	

ML1	

Residual	
 error	
 of	
 AM	
 Residual	
 error	
 of	
 ML1	

	
 	
 	
 	
 	
 Query	

F(x)	
 =	
 AM(x)	
 +	
 ML1(x)+…+MLm(x)	

	
 	
 	
 Original	
 	

training	
 set	

AM	

Training	

Gray box modeling	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

	
 	
 	
 	
 	
 Hybrid	
 KNN	

Hybrid	
 boos+ng	
 Probing	

Hybrid KNN	

•  Predict	
 performance	
 of	
 x	
 with	
 model	
 that	
 is	

supposed	
 to	
 be	
 the	
 most	
 accurate	
 for	
 it	

•  Split	
 training	
 set	
 D	
 into	
 D’,	
 D’’	

•  Train	
 ML1…MLN	
 on	
 D’	

– ML	
 can	
 differ	
 in	
 nature,	
 parameters,	
 training	
 set…	

•  For	
 a	
 query	
 sample	
 z	

–  Pick	
 the	
 K	
 training	
 samples	
 in	
 D’’	
 closer	
 to	
 z	

–  Find	
 the	
 model	
 with	
 lowest	
 error	
 on	
 the	
 K	
 samples	

– Use	
 such	
 model	
 to	
 predict	
 f(x)	

KNN Training and Querying	

TR	
 TRAINING	
 SET	

ML1	
 MLn	
 …	
 AM	

KNN Training and Querying	

TR	

ML	
 TRAINING	

	
 	
 	
 	
 	
 SET	

KNN	
 TRAINING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SET	

ML1	
 MLn	
 …	
 AM	

TRAINING	

KNN Training and Querying	

TR	

ML	
 TRAINING	

	
 	
 	
 	
 	
 SET	

KNN	
 TRAINING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SET	

ML1	
 MLn	
 …	
 AM	

QUERYING	

KNN,	
 CUT-­‐OFF	
 C	
 NEAREST	
 NEIGHBORS	

X	

KNN Training and Querying	

TR	

ML	
 TRAINING	

	
 	
 	
 	
 	
 SET	

KNN	
 TRAINING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SET	

ML1	
 MLn	
 …	
 AM	

QUERYING	

KNN,	
 CUT-­‐OFF	
 C	
 NEAREST	
 NEIGHBORS	

EVALUATE	
 ACCURACY	

X	

KNN Training and Querying	

TR	

ML	
 TRAINING	

	
 	
 	
 	
 	
 SET	

KNN	
 TRAINING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SET	

ML1	
 MLn	
 …	
 AM	

QUERYING	

KNN,	
 CUT-­‐OFF	
 C	
 NEAREST	
 NEIGHBORS	

EVALUATE	
 ACCURACY	

X	

MOST	

ACCURATE	

MODEL	

KNN Training and Querying	

TR	

ML	
 TRAINING	

	
 	
 	
 	
 	
 SET	

KNN	
 TRAINING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SET	

ML1	
 MLn	
 …	
 AM	

QUERYING	

KNN,	
 CUT-­‐OFF	
 C	
 NEAREST	
 NEIGHBORS	

EVALUATE	
 ACCURACY	

X	

MOST	

ACCURATE	

MODEL	

F(X)	

Gray box modeling	

•  Will	
 present	
 three	
 methodologies:	

Hybrid	
 ensembling	

Divide	
 and	
 conquer	
 Bootstrapping	

	
 	
 	
 	
 	
 Hybrid	
 KNN	

Hybrid	
 boos+ng	
 Probing	

Probing	

•  Build	
 a	
 ML	
 model	
 as	
 specialized	
 as	
 possible	
 	

– Use	
 AM	
 where	
 it	
 is	
 accurate	

– Train	
 ML	
 only	
 where	
 AM	
 fails	

•  Differences	
 w.r.t.	
 KNN	

– Training:	
 in	
 KNN,	
 ML	
 is	
 trained	
 on	
 all	
 samples:	

•  Here,	
 ML	
 trained	
 on	
 samples	
 for	
 which	
 AM	
 is	
 inaccurate	

– Querying:	
 In	
 KNN,	
 vo+ng	
 decides	
 on	
 ML	
 vs	
 AM	

•  Here,	
 binary	
 classifier	
 predicts	
 when	
 the	
 AM	
 is	
 inaccurate	

Probing training and querying	

<x1,	
 y1>	

<x2,	
 y2>	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

	
 	
 	
 	
 	
 	
 .	

<xn,	
 yn>	

	
 	
 	
 Original	
 	
 training	
 set	

AM	

ML	
 training	
 set	
 Classifier	
 training	
 set	

TRAINING	

Probing training and querying	

	
 	
 	
 Original	
 	
 training	
 set	

AM	

ML	
 training	
 set	
 Classifier	
 training	
 set	

<x1,	
 y1>	

TRAINING	

ERROR	
 <	

CUT-­‐OFF?	

Probing training and querying	

	
 	
 	
 Original	
 	
 training	
 set	

AM	

ML	
 training	
 set	
 Classifier	
 training	
 set	

ERROR	
 <	

CUT-­‐OFF?	

<x1,	
 y1>	

YES	

<x1,	
 AM>	

TRAINING	

Probing training and querying	

	
 	
 	
 Original	
 	
 training	
 set	

AM	

ML	
 training	
 set	
 Classifier	
 training	
 set	

<x2,	
 y2>	

NO	

<x1,	
 AM>	

<x2,	
 ML>	

NO	

<x2,	
 y2>	

ERROR	
 <	

CUT-­‐OFF?	

TRAINING	

Probing training and querying	

ML	

QUERYING	

CLASSIFIER	
 AM	

x	

F(x)	
 =	
 	

AM(x)	
 	
 	
 	
 if	
 	
 Classify(x)	
 =	
 AM	

	

ML(x)	
 	
 	
 	
 	
 otherwise	

Evaluation	

•  Sensi+vity	
 to	
 meta-­‐parameters	

– Hyboost	

•  Size	
 of	
 the	
 chain	

– Hybrid	
 KNN	

•  Proximity	
 cut-­‐off	

– Probing	

•  Minimum	
 AM’s	
 accuracy	
 cut-­‐off	

•  Comparison	
 among	
 the	
 techniques	

HyBoost	

•  Chain	
 composed	
 by	
 AM	
 +	
 Decision	
 Tree	

•  Longer	
 chains	
 yielded	
 negligible	
 improvements	
 in	

the	
 considered	
 case	
 studies	

5.4. EVALUATION 161

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

HyBoost

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

(a) TOB

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

(b) DTP

Figure 5.9: Evaluating the accuracy of HyBoost.

region.

Figure 5.8c, instead, shows the accuracy achieved by a bootstrapped learner trained over a

combination of synthetic samples and the same set of real samples used in the previous case.

Clearly, the accuracy in the right part of the plot is similar to the one in Figure 5.8b; the left part,

instead, which corresponds to the performance queries in extrapolation, portrays a significant

enhancement in accuracy. These improved predictive capabilities in extrapolation stem from the

availability of a synthetic training set provided by the embedded base model. This claim can be

verified by analyzing Figure 5.8a, which reports the accuracy of a Cubist learner trained only

over synthetic data samples: it is easy to see that the left side of the plot is very similar to the

left side of the plot in Figure 5.8b, demonstrating how a bootstrapped learner is able to leverage

the knowledge provided by the base model about the performance of the target application in

unexplored regions of the parameters’ space.

5.4.3 Hybrid Boosting

The conducted evaluation study on the HyBoost technique, described in this section, only fo-

cuses on analyzing the effectiveness of this technique depending on the characteristics of the

white and black box models for two considered case studies. The only tuning parameter of

this technique, in fact, would be the size and the composition of the chain, i.e., the number of

Infinispan	

Tuning of hyper-parameters matters	

•  Comparison	

– Pure	
 AM,	
 Pure	
 ML	
 (Cubist,	
 Decision	
 tree	
 regressor)	
 vs	

– Probing	
 (AM	
 +	
 Cubist)	

•  Analogous	
 considera+ons	
 hold	
 for	
 KNN	

5.4. EVALUATION 165

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 60

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 80 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1
M

A
P

E

Cutoff

PROB 40

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1
M

A
P

E
Cutoff

PROB 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
M

A
P

E
Weight (log)

WBM

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 40

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) 20% and 40% of training set

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(b) 60% and 80% of training set

Figure 5.12: Sensitivity analysis of Probing w.r.t. the c parameter (TOB)

prediction as accurate. The classification algorithm employed to train the classifier responsible

for estimating the best model for a given query is the Weka implementation of the C.45 Decision

Tree (Quinlan, 1993b).

Figure 5.12 and Figure 5.13 report the results of such sensitivity analysis. The first phe-

nomenon that comes evident for both the case studies is that the accuracy does not vary, as a

function of c, as smoothly as in the KNN case, which is the other considered Selection-based

Hybrid Ensemble technique that relies on a cutoff parameter. This is because c directly affects

both the training set of the classifier used and of the black box performance predictor. The

resulting behavior of these two components affects in an intertwined and complex fashion that

ultimately results in the portrayed accuracy trends.

Also, as expectable, for both case studies, the lower the employed cut-off value the more

the accuracy is similar to the one attained by the black box model. This happens because the

underlying white box model is considered to be accurate and, thus, to be reliable, only if it

attains a correspondingly low error. In a dual fashion, as c moves towards higher values, the

accuracy delivered by the Probing-based predictor resembles the underlying base model’s one.

Regarding the specific case studies, the characteristics of the corresponding base predic-

tors and black box models play again a fundamental role to determine the effectiveness of the

166 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) 20% and 40% of training set

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(b) 60% and 80% of training set

Figure 5.13: Sensitivity analysis of Probing w.r.t. the c parameter (DTP)

Probing technique. In the TOB case, in fact, Probing only slightly enhances the accuracy with

respect to the best between the pure white and black approaches at a medium training set (Fig-

ure 5.12a). With lower training set, the classifier cannot distinguish when it is better to rely

on the white or the black box. At higher training sets, the accuracy of the black box model

alone is generally better than its white box counterpart’s (Figure 5.12b). As a result, even if the

accuracy of the white box model is below the desired threshold, it is likely that the black box

learner alone could still reach a higher accuracy, if trained with the proper data-set. Ultimately,

this leads the Probing-based predictor to rely on the white box model even when it should not,

and in removing samples from the black box learner’s training set, thus reducing its accuracy.

The plots in Figure 5.13, instead, reveal slightly different dynamics for what concerns the

DTP case study. On one side, in fact, just like the TOB case, the classifier does not help, or only

marginally helps, in increasing accuracy when there is low amount of training data available

(Figure 5.13a. Conversely, as training data become more abundant, Probing is able to deliver

higher accuracy than the two underlying models alone (Figure 5.13b) this is because, as already

highlighted during the KNN discussion, there is no clear winner between the white and the

black box model. Therefore, provided that the classifier is able to distinguish when to prefer

one over the other, it is possible to take selectively advantage of both with beneficial effects on

accuracy.

No free lunch theorem strikes again	

•  No	
 one-­‐size-­‐fits-­‐all	
 hybrid	
 model	
 exists	

•  Tackle	
 choice	
 of	
 best	
 hybrid	
 model	
 via	
 cross-­‐
valida+on	

5.4. EVALUATION 167

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM

WBM

Bootstrapping

HyBoost

Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM

WBM

Bootstrapping

HyBoost

Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM
WBM

Bootstrapping
HyBoost

Probing
KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80
M

A
P

E
% Training Set

BBM

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM
WBM

Bootstrapping
HyBoost

Probing
KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

WBM
Bootstrapping

HyBoost
Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

(a) TOB

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

(b) DTP

Figure 5.14: Comparing the performance of the 4 proposed gray box techniques.

5.4.6 Comparison among the approaches

This section concludes the experimental evaluation and is dedicated to comparing the accuracy

achieved by the four proposed hybrid ensemble techniques in the two considered case studies.

In particular, the comparison is performed assuming a proper tuning of the internal parameters

of the compared ensemble algorithms. Specifically, the reported data are obtained using 10-fold

cross validation to determine appropriate values for the internal parameters of the compared

ensemble algorithms.

As already hinted in Section 5.4.1.3, identifying the best gray box model and correspond-

ing parameterization given some training data is a problem that falls beyond the scope of the

proposed Hybrid Ensemble techniques: it is, indeed, a common trait shared with pure black box

modeling techniques. Therefore, it can be tackled by means of standard techniques developed

for the selection and tuning of Machine Learning algorithms, such as Bayesian Optimization or

grid/random search (Bergstra et al., 2011).

The following evaluation aims at showing how the characteristics of the target performance

function and of a hybrid predictor affect accuracy in the most favorable case, i.e., excluding

the cases in which a given predictor performs poorly only because of a correspondingly poor

setting of its internal parameters.

Figure 5.14 reports the accuracy attained by the four proposed gray box models, as well as

AM error vs optimal technique	

•  Error	
 distribu+on	
 of	
 the	
 base	
 AM	
 is	
 key	

	

•  Hy-­‐boost	
 performed	
 the	
 best	
 for	
 DTM	

– Smooth	
 error	
 func+on	
 is	
 easy	
 to	
 learn	

•  Not	
 the	
 case	
 for	
 TOB	

– Highly	
 localized	
 errors	
 beoer	
 tackled	
 via	
 probing	

Concluding remarks:
TM and Self-tuning	

•  Transac+onal	
 memory	
 is	
 an	
 aorac+ve	
 alterna+ve	

to	
 lock-­‐based	
 synchroniza+on:	

–  hides	
 complexity	
 behind	
 intui+ve	
 abstrac+on	

–  relevance	
 amplified	
 by	
 integra+on	
 with	
 GCC,	

commodity	
 (Intel’s)	
 and	
 HPC	
 (IBM’s)	
 CPUs	

•  Performance	
 of	
 TM	
 is	
 strongly	
 affected	
 by:	

– workload	
 characteris+cs	

–  choice	
 of	
 the	
 TM	
 implementa+on	

–  plethora	
 of	
 implementa+on-­‐dependent	
 parameters	

•  Self-­‐tuning	
 is	
 cri+cal	
 to	
 ensure	
 efficiency!	

Concluding remarks:
Which modeling methodology?	

•  White	
 and	
 black	
 box	
 models	
 can	
 be	
 effec+vely	

used	
 in	
 synergy	

–  Increased	
 predic+ve	
 power	
 via	
 analy+cal	
 models	

–  Incremental	
 learning	
 capabili+es	
 via	
 black	
 box	
 models	

•  Presented	
 three	
 gray	
 box	
 methodologies:	

– Divide	
 and	
 conquer,	
 Bootstrapping,	
 Hybrid	
 ensembling	

– Design,	
 implementa+on	
 and	
 applica+on	
 to	
 (D)TM	

•  Careful	
 choice	
 of	
 technique	
 and	
 parameters	

– Use	
 standard	
 techniques	
 for	
 hyper-­‐parameters	
 opt.	

Open questions	

•  Any	
 other	
 way	
 of	
 hybridizing	
 Black	
 and	

White	
 modelling?	

•  Can	
 we	
 further	
 combine	
 them?	

•  e.g.	
 use	
 a	
 bootstrapped	
 model	
 in	

an	
 ensemble?	

•  Can	
 we	
 infer	
 the	
 best	
 gray	
 box	

technique	
 by	
 analyzing	
 the	
 error	

func+on	
 of	
 the	
 AM	
 model?	

References
•  [SPAA08] Torvald Riegel, Christof Fetzer, Pascal Felber, Automatic data partitioning in

software transactional memories. SPAA 2008: 152-159
•  [PPoPP08] Pascal Felber, Christof Fetzer, Torvald Riegel, Dynamic performance tuning of word-based

software transactional memory. PPOPP 2008: 237-246
•  [SASO12] D. Didona, D. Carnevale Paolo Romano, S. Galeani, An Extremum Seeking Algorithm for

Message Batching in Total Order Protocols, IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2012), Lyon, France, 10-14 Sept. 2012

•  [Netys13] Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano and Joerg Schenker, Identifying
the Optimal Level of Parallelism in Transactional Memory Systems, The International Conference on
Networked Systems 2013, BEST PAPER AWARD

•  [DSN13] M. Couceiro, P. Ruivo, Paolo Romano, L. Rodrigues, Chasing the Optimum in Replicated In-
memory Transactional Platforms via Protocol Adaptation, The 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2013)

•  [ICAC 13] Joao Paiva, Pedro Ruivo, Paolo Romano and Luis Rodrigues, AutoPlacer: scalable self-tuning
data placement in distributed key-value stores, The 10th International Conference on Autonomic Computing
(ICAC 2013), San Jose, CA, USA, 26-28 June 2013 - BEST PAPER AWARD FINALIST

•  [PACT14] N. Diegues and Paolo Romano and L. Rodrigues, Virtues and Limitations of Commodity
Hardware Transactional Memory, The 23rd International Conference on Parallel Architectures and
Compilation Techniques (PACT 2014), August 2014

•  [JPDC14] M. Castro et al., Adaptive thread mapping strategies for transactional memory applications,
Journal of Parallel and Distributed Computing, Volume 74, Issue 9, September 2014

•  [TAAS14] D. Didona, Paolo Romano, S. Peluso, F. Quaglia, Transactional Auto Scaler: Elastic Scaling of In-
Memory Transactional Data Grids, ACM Transactions on Autonomous and Adaptive Systems (TAAS), 9, 2,
2014

•  [ICPE15] D. Didona, Paolo Romano, F. Quaglia, E. Torre, Combining Analytical Modeling and Machine-
Learning to Enhance Robustness of Performance Prediction Models, 6th ACM/SPEC International
Conference on Performance Engineering (ICPE), Feb 2015

90 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014

THANK	
 YOU	

	

Ques+ons?	

romano@inesc-­‐id.pt	

www.gsd.inesc-­‐id.pt/~romanop	

