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The multi-core (r)evolution Shared Memory

now ubiquitous

Concurrent programming
is complex

[ Multi-cores are 1

Classic approach: Transactional
Locking Memory abstraction

atomic {
withdraw(accl,val);
deposit(acc2,val);

Hard to get right:
+ fine-grained locks
» deadlocks 3
e correctness
Programmer identifies atomic blocks
Runtime implements synchronization



(A very incomplete)
Historical perspective on TM
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Intel’s Haswell CPU targets mainstream computing platforms:
 including desktops, servers, laptops, and tablets

Recently also IBM has integrated HTM supports in its high-end CPUs:
« BG/Q, zEC12, Power8



Transactional Memory:
One abstraction, many implementations

- Software (STM):

- instrumenting read and write accesses
+ PRO: flexibility
« CON: instrumentation overheads

- Hardware (HTM):

- extension of the cache consistency mechanism
+ PRO: no instrumentation overheads
* CON: hw is inherently limited

- Hybrid (HyTM)
- mix of the two worlds that tries to achieve the best of both

. Distributed (DTM)

- natural extension of TM for distributed shared memory
- PRO: fault-tolerance, potential for higher scalability
« CON: synchronization costs are amplified



Software TM

Source program

int 1 =0

atomic {
i++

 Non-negligible instrumentation overheads

- Highly flexible:

instrumentation

to invoke STM

Compiled program

int 1 =0

TM.begin-tx()

int tmp =
TM.read(&1)

tmp++
TM.write(&i, tmp)
TM.end-tx ()

» Avoid inherent restrictions of hardware implementations
» Over 10 years of research on STM
= highly optimized prototypes and designs
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HTM: Intel Transactional Synchronization Extensions (TSX)

CPU 1 CPU 2

xbegin
read x: O /I Set bit read on x cache line
write y =1 // Buffer write in L1 cache

xend // Atomically clean bits and publish
xbegin
: read y: 1
. invalidation snooped write
writey = 2 Al
Memory Bus invalidates tx read
x:0--r Y CPU CPU L1 xabort
Y SN Cache 14 S on 2 Cache A

L2 Cache L2 Cache

L3 Cache




Restrictions of TSX

No progress guarantees:\)[ TSX alone is not enough }

« Atransaction may always abort l

Needs software fall-back:
...due to a number of reasons: | . global lock = standard HTM

» Forbidden instructions ° STM > hybrid TM

« Capacity of caches
* Faults and signals

« Contending transactions, aborting each other
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Distributed Transactional Memory

- Extends the reach of TM abstraction to distributed
applications

- Enhanced scalability, high-availability and fault-tolerance

- Attractive paradigm for the cloud

Cloud ™

A novel programming
paradigm for the Cloud




At the convergence of two areas

Distributed Shared Memory Distributed Databases

Transactions allow to: o
* Natural source of inspiration for DSTMs...

* but DSTMs have unigue requirements,

1. Deal with remote data races
2. Boost performance by batching remote
synchronizations during commit phase

e.g..
e >70% txs are 100x shorter in DSTM

Distributed Transactional Memory
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TM performance tuning

- TM abstraction allows for encapsulating a vast range of
alternative implementation strategies

- no one size fits all solution [SPAA08, PACT14]

- Each implementation comes with various tuning-knobs:
- number of retries in HTM [ICAC14]
- granularity of locks in STM [PPoPP08]

- Parallelism degree:
- how many threads should be concurrently active? [EuroPar14]

- Thread mapping:

- on which cores should the active threads be executed? [JPDC14]



TM tuning: no one size fits all

—
Ll
-

NOrec:4t [ |

1
NOrec:48t [l

1) »n 1F
3 g
¢ 08T Tiny:8t L1 £ 08T Tiny:8t
’c;) 0.6F HTM:8t -?; 0.6 Swiss:32t [
o o)
R - N "
c_g 0.4 c_és 0.4
= 0.2F E02f
o )
Z R, Z 9 _-/
genome red-black tree  labyrinth vacation red-black tree intruder

(a) Throughput/Joule on a single-chip (b) Throughput on a multi-chip 32-
8-core CPU - Machine A core CPU - Machine B

Machine ID Processor / Number of cores / RAM HTM | RAPL
Machine A 1 Intel Haswell Xeon E3-1275 3.5GHz / Yes Yes

4 (8 hyper-threads) / 32 GB
Machine B 4 AMD Opteron 6172 2.1 Ghz /48 /32 GB No No




DTM performance tuning

- Support both scale up and scale out [TAAS14]
- how many machines should my DTM be provisioned with?
- how many threads should be active on each machine?

- Communication latencies play a critical factor

- select the distributed coordination protocol that maximizes efficiency
[DSN13]

- dynamically tune parameters (e.g., batching) of the Group
Communication System to enhance efficiency [ICPE15]

- where should data and code be placed to maximize locality? [ICAC13]

- Cost of exploration can be much higher [Netys13]:

- launching a new VM is not as simple as spawning a new thread:
- latency for VM activation, system reconfiguration, state transfer
- economical cost for VM activation in the cloud



Performance of Distributed TM
Nfiniscon

Committed Transactions/sec

2 3 4 5 6 7 8 9 10

Number of nodes
RG - Small —¢—  RG - Large —8— TPC-C ——

- Heterogeneous, nonlinear scalability trends!



Network RTT Latency (microsec)

DTM : Factors limiting scalability

Commit Probability
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Network latency in Aborted transactions

commit phase because of conflicts
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Based on the following papers

—

D. Didona, P. Romano, S. Peluso, F. Quaglia, Transactional Auto Scaler: Elastic Scaling of In-
Memory Transactional Data Grids, ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 9, 2, 2014, DOI: http://dx.doi.org.10.1145/2620001

D. Didona and Paolo Romano, Performance Modelling of Partially Replicated In-Memory
Transactional Stores, IEEE 22nd International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS'14), September 2014

D. Didona, P. Romano, F. Quaglia, E. Torre, Combining Analytical Modeling and Machine-
Learning to Enhance Robustness of Performance Prediction Models, 6th ACM/SPEC International
Conference on Performance Engineering (ICPE), Feb 2015

D. Didona, P. Romano, Hybrid Machine Learning/Analytical Models for Performance Prediction: a
Tutorial, 6th ACM/SPEC International Conference on Performance Engineering (ICPE), Feb. 2015

D. Didona, P. Romano, Using Analytical Models to Bootstrap Machine Learning Performance
Predictors, IEEE International Conference on Parallel and Distributed Systems (ICPADS),
December 2015



Approaches to Performance Modelling

White Box Black Bo




White box modelling

* Exploit knowledge on internal system dynamics

<> model dynamics analytically or via simulation

(O

O

PROS T

Q_
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* Good accuracy on average

* Minimal or no learning phase

O

CONS

* Simplifying assumptions
=>» low accuracy when these
assumptions do not hold

* Knowledge of system internals
often unavailable



Black box modelling

Training input

|
{X|} | 1 1
— y' = f(x)
Machine Learner +> Statlstlcfa(l I;/Iodel
Training output
{y; = f(x;)} |
Query x'
PROS CONS
High accuracy in areas already * Poor accuracy in non-observed
observed (interpolation) areas (extrapolation)
Do not require knowledge on * Curse of dimensionality

system’s internals > Extensive training phases



Key Observation & Questions

Pros of white-box are cons of black-box & vicev.

\

v

Can we achieve the best of the two worlds?

\

v

How can black and white box modelling be
reconciled ?



Gray box modeling

e Combine WB and BB modeling

* Enhance robustness
— Lower training time thx to WBM

— Incremental learning thx to BBM

* Will present three methodologies:

Divide anm l Bootstrapping

Hybrid ensembling



Gray box modeling

* Will present three methodologies:

Divide anf;cm{ l Bootstrapping

Hybrid ensembling



Divide and conquer

:@/‘Modular approach
— WBM of what is observable/easy to model
— BBM of what is un-observable or too complex

* Reconcile their output in a single function

OHigher accuracy in extrapolation thx to WBM
@Apply BBM only to sub-problem

— Less features, lower training time



Case study: Infinispan

* Distributed in-memory key-value store:

— Nodes maintain elements of a dataset
 Full vs partial replication (# copies per item)

— Transactional --ACI(D)— manipulation of data
* Concurrency control scheme (enforce isolation)
* Replication protocol (disseminate modifications)

‘ﬂﬁﬂlf N Cloud ™

A novel programming
paradigm for the Cloud



DTM optimization in the Cloud

* Important to model network-bound ops but...

O Cloud hides detail about network ®

— No topology info
— No service demand info

— Additional overhead of virtualization layer

@ BBM of network-bound ops performance
— Train ML on the target platform



TAS/PROMPT [TAAS14,Mascots14]

* Analytical modeling (queuing theory based)

— Concurrency control scheme
* E.g., encounter time vs commit time locking

— Replication protocol
* E.g., PBvs 2PC

— Replication scheme
* Partial vs full

— CPU

* Machine Learning
— Network bound op (prepare, remote gets)
— Decision tree regressor



Analytical model in TAS/PROMPT

e Concurrency control scheme (lock-based)
— Alockis a M/G/1 server
— Conflict prob = utilization of the server
* Replication protocol
— multi-master/Two-phase Commit based = one model
— single-master/primary-backup =2 two models
* Replication scheme

— Probability of accessing remote data
— # nodes involved in commit



Machine Learning in TAS/PROMPT

* Decision tree regressor
e Operation-specific models
— Latency during prepare
— Latency to retrieve remote data

* |nput
— Operations rate (prepare, commit, remote get...)

— Size of messages
— # nodes involved in commit



Predicted Tprep(usec)

ML accuracy for network bound ops

€ Seamlessly portable across infrastructures

35000
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20000 f
15000 +
10000 +
5000 r

EC2

5000 10000 15000 20000 25000 30000 35000
Real Tprep(usec)

Predicted Tprep(usec)

4000

3500
3000
2500
2000
1500 r
1000 r

500

500

— Here, private cloud and Amazon EC2

Private Cluster

1000 1500 2000 2500 3000 3500 4000

Real Tprep(usec)



AM and ML coupling

O At training time, all features are monitorable
‘1 At query time they are NOT!

G EXAMPLE
* Current config: 5 nodes, full replication

— Contact all 5 nodes at commit

* Query config: 10 nodes, partial replication
— How many contacted nodes at commit??



Model resolution

f@iAM can provide (estimates of) missing input
* |terative coupling scheme

ML takes some input parameters from AM

AM takes latencies forecast by ML as input parameter



Commit Probability

Commit Probability

Model's accurac
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Comggrison with Pure ML, |
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* YCSB (transactified) workloads while varying
— # operations/tx
— Transactional mix
— Scale
— Replication degree



Comparison with Pure ML, I

4000 .
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500 .

0

Throughput (tx/sec)

2 4 6 8 10 12 14 16 18 20
Number of nodes
real + TAS x pure ML =

ML trained with TPCC-R and queried for TPCC-W
e Pure ML blunders when faced with new workloads



Gray box modeling

* Will present three methodologies:

Divide anm l Bootstrapping

Hybrid ensembling



Bootstrapping

:@/‘Obtain zero-training-time ML via initial AM
1. Initial (synthetic) training set of ML from AM
2. Retrain periodically with “real” samples

, . , Current Machine Gray box
Analytical Boostrapping Machine Gray box . 4
. ) . training set learning model

model training set learning model
: : A % ‘ * % |

) N d

Sampling of | Model construction | ew data <
the Parameter Space : come in

(1) (2)



How many synthetic samples’?

10000
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Important tradeoff
— Higher # -2 lower fitting error over the AM output
— Lower # =2 higher density of real samples in dataset



How to update the synthetic training set?

* Merge: simply add real samples to synthetic set

* Replace only the nearest neighbor (RNN)

* Replace neighbors in a given region (RNR)

— Two variants



Real vs AM function

Real function

AM function




Real vs learnt

* Assuming enough point to perfectly learn AM

O Synthetic sample

ML function




Merge

* Add real samples to synthetic
® Real sample




Merge

* Problem: same/near samples have diff. output




Replace Nearest Neighbor (RNN)

* Remove nearest neighbor




Replace Nearest Neighbor (RNN)

e Preserve distribution...




Replace Nearest Neighbor (RNN)

e ... but may induce alternating outputs




Replace Nearest Region (RNR)

* Add real and remove synth. samples in a radius




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

* Skew samples’ distribution

h




Replace Nearest Region 2 (RNR2)

* Replace all synthetic samples in a radius R




Replace Nearest Region 2 (RNR2)

* Maintain distribution, piecewise approximation




Weighting

* Give more relevance to some samples

O Fit better the model around real samples
— “Trust” real samples more than synthetic ones
— Useful especially in Merge

O Too high can cause over-fitting!

— Learner fails to generalize



Evaluation

e Case studies

— Response time in Total Order Broadcast (TOB)
* building block at the basis of many DTM
e 2-dimensional yet highly nonlinear perf. Function
— Throughput in Distributed TM (Infinispan)

e 7-dimensional performance function



Weighting
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(10K synthetic samples)
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Update function

| Merge 4k RNR2-0.01-® WBM— BBM»¢ |

MAPE

% Training set % Training set
(a) TOB (b) DTP

* |n both considered case studies, simplicity pays off:
— the Merge policy performs analogously to RNR2
— ...but, unlike RNR2, Merge is parameter-free



Batching level

Visualizing the correction

BASE MODEL
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Gray box modeling

* Will present three methodologies:

/\

Divide and conquer Bootstrapping

Hybrid ensembling

— | T

Hybrid boosting Probing

Hybrid KNN



Hybrid Boosting

f@iLearning the error of a model on a function may
be simpler than learning the function itself

* Chain composed by AM + cascade of ML
* ML, trained over residual error of AM

* ML, i>1 trained over residual error of ML, ,



Training and Querying Hyboost

Training
Original
training set

<X, Y,>




Training and Querying Hyboost

Training
Original
training set Residual error of AM
<Xy, Y12 <Xy, Y1~ AM(x,)>
<X, Y,> <X, Y, - AM(x,)>

= AM =)

<Xn' yn> <Xn, Yn - AM(Xn)>




Training and Querying Hyboost

Original
training set

Training

Residual error of AM

<X, Y,>

=

AM

=

<Xy, Y1~ AM(x,)>
<X,, ¥, - AM(x,)>

N

= ML,

<X, Yo — AM(x,)>

Residual error of ML,

Y

<Xy, Y1~ ML (x;)>
<X,, Y, — ML,(x,)>

<X, Y, — ML(x,)>

=



Training and Querying Hyboost

Original
training set

Training

Residual error of AM

<X, Y,>

=)

<Xy, Y- AM(x,)>
<X,, Y, - AM(x,)>

AM =) | -

<X,, Y, —AM(x,)>

ML,

Query

Residual error of ML,

=

<Xy, Y1~ ML (x;)>
<X,, Y, — ML,(x,)>

<X, Y, — ML(x,)>

F(x) = AM(x) + ML, (x)+...+ML_ (x)

Y



Gray box modeling

* Will present three methodologies:

/\

Divide and conquer Bootstrapping

Hybrid ensembling

/\

Hybrid boosting Probing
Hybrid KNN




Hybrid KNN

@ Predict performance of x with model that is
supposed to be the most accurate for it

* Split training set D into D’, D”

* Train ML,...ML, on D’
— ML can differ in nature, parameters, training set...

* For a query sample z
— Pick the K training samples in D"’ closer to z
— Find the model with lowest error on the K samples
— Use such model to predict f(x)



KNN Training and Querying

TRAINING SET

AM




KNN Training and Querying

ML TRAINING | TRAINING

SET ||
KNN TRAINING . .
SET




KNN Training and Querying

QUERYING
ML TRAINING )

SET
KNN TRAINING .. Y= AM
SET

#@%



KNN Training and Querying

QUERYING
ML TRAINING

|
SET |
KNN TRAINING AM
SET

¥ {0 EVALUATE 4 ACCURACYL:

#@%




KNN Training and Querying

QUERYING
ML TRAINING |__

SET |
KNN TRAINING AM
SET
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MODEL




KNN Training and Querying

QUERYING
ML TRAINING

| .
SET |
KNN TRAINING AM
SET

¥ {0 EVALUATE 4" ACCURACYZ:

] NEARESTNEIGHBORS
MgLST

X | > ACCURATE F(X) )
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Gray box modeling

* Will present three methodologies:

/\

Divide and conquer Bootstrapping

Hybrid ensembling

/\

Hybrid boosting Probing
Hybrid KNN




Probing

?Build a ML model as specialized as possible
— Use AM where it is accurate
— Train ML only where AM fails

@Differences w.r.t. KNN

— Training: in KNN, ML is trained on all samples:
* Here, ML trained on samples for which AM is inaccurate

— Querying: In KNN, voting decides on ML vs AM

* Here, binary classifier predicts when the AM is inaccurate



Probing training and querying

Original training set

TRAINING
<Xy, Y12
o e <X2, Y2> o o o
ML training set Classifier training set
<Xn,. yn>

AM




Probing training and querying

Original training set

TRAINING
ML training set i Classifier training set
<Xy, Y>
AM

P erroR <

CUT-OFF?




Probing training and querying

TRAINING Original training set

ML training set Classifier training set

<X;, AM>

CUT-OFF?




Probing training and querying

Original training set

TRAINING
ML training set i Classifier training set
<X,, Y,> <X, Y,” <X;, AM>

i <X,, ML>

CUT-OFF?




Probing training and querying

X

| N S |

“ W -

AM(x) if Classify(x) = AM
QUERYING F(x) =—

ML(x) otherwise

O —



Evaluation

* Sensitivity to meta-parameters
— Hyboost

* Size of the chain
— Hybrid KNN

* Proximity cut-off
— Probing

* Minimum AM’s accuracy cut-off

 Comparison among the techniques



HyBoost

HyBoost 4 WBM — BBM 3¢

% Training Set % Training Set
(a) TOB (b) Infinispan

* Chain composed by AM + Decision Tree

* Longer chains yielded negligible improvements in
the considered case studies



Tuning of hyper-parameters matters

PROB 20 4 BBM 20 ¥ WEM -— PROB 60 @ BBM 60 ==
PROB 40 {1 BBM 40 =¥ PROB 80 &> BBM 80 A

0.0 02 04 06 038 1 0.0 02 04 06 038 1
Cutoff Cutoff
(a) 20% and 40% of training set (b) 60% and 80% of training set

* Comparison

— Pure AM, Pure ML (Cubist, Decision tree regressor) vs
— Probing (AM + Cubist)

* Analogous considerations hold for KNN



No free lunch theorem strikes again

* No one-size-fits-all hybrid model exists

* Tackle choice of best hybrid model via cross-

validation

Bootstrapping B HyBoost KNN

Probing E& WBM [] BBM

MAPE

04F

03F

0.2F

01F

NN\
s
el

20 40 60 80

% Training Set
(a) TOB

MAPE

04F

03F

0.2F
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D
S-S,

20 40 60 80
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(b) DTP




AM error vs optimal technique

* Error distribution of the base AM is key

1 0.9 0.5
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Messages arrival rate Number of nodes

* Hy-boost performed the best for DTM
— Smooth error function is easy to learn

* Not the case for TOB
— Highly localized errors better tackled via probing



Concluding remarks:
TM and Self-tuning

* Transactional memory is an attractive alternative
to lock-based synchronization:

— hides complexity behind intuitive abstraction

— relevance amplified by integration with GCC,
commodity (Intel’s) and HPC (IBM’s) CPUs

* Performance of TM is strongly affected by:

— workload characteristics
— choice of the TM implementation
— plethora of implementation-dependent parameters

e Self-tuning is critical to ensure efficiency!



Concluding remarks:
Which modeling methodology?

@ White and black box models can be effectively
used in synergy

— Increased predictive power via analytical models
— Incremental learning capabilities via black box models
\Q Presented three gray box methodologies:
— Divide and conquer, Bootstrapping, Hybrid ensembling
— Design, implementation and application to (D)TM
1 Careful choice of technique and parameters
& Use standard techniques for hyper-parameters opt.



Open questions

Any other way of hybridizing Black and
White modelling?

Can we further combine them?

* e.g.use abootstrapped model in
an ensemble?

Can we infer the best gray box
technique by analyzing the error
function of the AM model?
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