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•  Provisioning and optimization of a Distributed TM 
•  Divide and conquer 
•  Bootstrapping 
•  Hybrid ensembling 



Multi-cores are 
now ubiquitous 

The multi-core (r)evolution Shared Memory 
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Concurrent programming 
is complex 

Hard to get right:  
•  fine-grained locks 
•  deadlocks 
•  correctness 

Classic approach: 
Locking 

atomic { 
 withdraw(acc1,val); 
 deposit(acc2,val); 
} 

Transactional 
Memory abstraction 

Programmer identifies atomic blocks 
Runtime implements synchronization 

Transactional Memory System 



(A very incomplete)  
Historical perspective on TM 
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Intel’s Haswell CPU targets mainstream computing platforms: 
•  including desktops, servers, laptops, and tablets 
 
Recently also IBM has integrated HTM supports in its high-end CPUs: 
•  BG/Q, zEC12, Power8 



Transactional Memory: 
One abstraction, many implementations 

•  Software (STM): 
•  instrumenting read and write accesses 

•  PRO: flexibility                
•  CON: instrumentation overheads 

 

•  Hardware (HTM): 
•  extension of the cache consistency mechanism 

•  PRO: no instrumentation overheads 
•  CON: hw is inherently limited 

•  Hybrid (HyTM) 
•  mix of the two worlds that tries to achieve the best of both 

 
•  Distributed (DTM) 

•  natural extension of TM for distributed shared memory 
•  PRO: fault-tolerance, potential for higher scalability 
•  CON: synchronization costs are amplified 
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Software TM 

int i = 0

…

atomic {
    i++
}

int i = 0
…
TM.begin-tx()
int tmp = 
TM.read(&i)
tmp++
TM.write(&i, tmp)
TM.end-tx()

Source program Compiled program 

instrumentation 
 
to invoke STM 

•  Non-negligible instrumentation overheads 

•  Highly flexible: 
•  Avoid inherent restrictions of hardware implementations 

•  Over 10 years of research on STM  
        è highly optimized prototypes and designs 
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HTM: Intel Transactional Synchronization Extensions (TSX) 

CPU
1 

CPU
2 

Memory Bus 

L1 
Cache 

L1 
Cache 

L2 Cache L2 Cache 

L3 Cache 

CPU 1 CPU 2 

xbegin 

TSX: on 

read x: 0 // Set bit read on x cache line 

x: 0 -- r 

write y = 1 // Buffer write in L1 cache 

y: 1 -- w 

xend // Atomically clean bits and publish 

x: 0 
y: 1 

xbegin 
read y: 1 

write y = 2 

xabort 

invalidation snooped write 
invalidates tx read 

…
 

…
 

y: 1 -- r 
x: 0 
y: 2 



Restrictions of TSX 
No progress guarantees: 

•  A transaction may always abort 
 

…due to a number of reasons: 

•  Forbidden instructions 

•  Capacity of caches 

•  Faults and signals 

•  Contending transactions, aborting each other 
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Distributed Transactional Memory 
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• Extends the reach of TM abstraction to distributed 
applications 
 

• Enhanced scalability, high-availability and fault-tolerance 

• Attractive paradigm for the cloud 
 



At the convergence of two areas 
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Transac1ons	  allow	  to:	  
	  

1.  Deal	  with	  remote	  data	  races	  
2.  Boost	  performance	  by	  batching	  remote	  

synchroniza+ons	  during	  commit	  phase	  

•  Natural	  source	  of	  inspira+on	  for	  DSTMs...	  
•  but	  DSTMs	  have	  unique	  requirements,	  

e.g.:	  
•  >70%	  txs	  are	  100x	  shorter	  in	  DSTM	  

Distributed	  Shared	  Memory	   Distributed	  Databases	  

Distributed Transactional Memory 
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TM performance tuning  
•  TM abstraction allows for encapsulating a vast range of 

alternative implementation strategies 
•  no one size fits all solution [SPAA08, PACT14] 

• Each implementation comes with various tuning-knobs: 
•  number of retries in HTM [ICAC14] 
•  granularity of locks in STM [PPoPP08] 

• Parallelism degree: 
•  how many threads should be concurrently active? [EuroPar14] 

•  Thread mapping: 
•  on which cores should the active threads be executed? [JPDC14] 
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TM tuning: no one size fits all 
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ProteusTM: Abstraction Meets Performance in Transactional Memory

Abstract
The Transactional Memory (TM) paradigm promises to

greatly simplify the development of concurrent applications.
This led, over the years, to the creation of a plethora of TM
implementations delivering wide ranges of performance across
workloads. Yet, no universal TM implementation fits each and
every workload. In fact, the best TM in a given workload can
reveal to be disastrous for another one. This forces developers
to face the complex task of tuning TM implementations, which
significantly hampers the wide adoption of TMs.

In this paper, we address the challenge of automatically
identifying the best TM implementation for a given workload.
Our proposed system, ProteusTM, hides behind the TM inter-
face a large library of implementations. Under the hood, it
leverages an innovative, multi-dimensional online optimiza-
tion scheme, combining two popular machine learning tech-
niques: Collaborative Filtering and Bayesian Optimization.

We integrated ProteusTM in GCC and demonstrated its
ability to switch TM implementations and adapt several con-
figuration parameters (e.g., number of threads). We extensively
evaluated ProteusTM, obtaining average performance < 3%
from optimal, and gains up to 100⇥ over static alternatives.

1. Introduction
The advent of multi-cores has brought parallel computing to
the fore-front of software development, fostering research on
paradigms to simplify the development of concurrent applica-
tions. The Transactional Memory (TM) [35] abstraction is a
prominent approach that promotes a simple idiom for synchro-
nizing code: programmers specify only what should be done
atomically (via serializable transactions), leaving to the TM
the responsibility of implementing how to achieve it.

Over time, several works have provided evidence [57, 46,
52] on the effectiveness of TM to simplify the development
and verification of concurrent programs, enhancing code reli-
ability and productivity. Recently, the relevance of TM was
amplified by the standardization of constructs in popular lan-
guages (such as C/C++ [49]), and by the integration of hard-
ware support in processors by Intel and IBM [67, 39].
The abstraction vs performance dilemma. Unfortunately,
TM performance remains a controversial matter [11]: despite
the large body of work in the area, the search for a “univer-
sal” TM with optimal performance across all workloads has
been unsuccessful.Fig. 1 conveys experimental evidence of
the strong sensitivity of TM to the workload characteristics.
We report on the energy efficiency (in Fig. 1a) and through-
put (in Fig. 1b) of various TMs in different architectures and
benchmarks. We normalized the data with respect to the best
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core CPU (Machine B in Table 2).

Figure 1: Performance heterogeneity in TM applications.

performing configuration for the considered workload. Fig. 1
shows that, in two different architectures and metrics, the
optimal TM configuration differs significantly for each work-
load. Furthermore, choosing wrong configurations can cripple
performance by several orders of magnitude. Interestingly,
some TMs used in these experiments were designed to tackle
various workloads [29, 27], but configuring them properly is
non-trivial and they still cannot perform well for all workloads.

The problem is that the efficiency of existing TM imple-
mentations is strongly dependent on the workloads they face.
Performance can be affected by a number of factors, including
program inputs [26], phases of program execution [24], tuning
of the internal parameters of the TM algorithms [25], as well
as architectural aspects of the underlying hardware [12].

Given the vast TM design space, manually identifying opti-
mal configurations, using trial and error on each workload, is a
daunting task. Overall, the complexity associated with tuning
TM contradicts the motivation at its basis, i.e., to simplify
the life of programmers, and represents a roadblock to the
adoption of TM as a mainstream paradigm [42].
Contributions. We propose a new system, ProteusTM1,
which allows developers to still enjoy the simplicity and ease
of usage of the TM abstraction, while sparing them from the
burden of tuning TM implementations to specific workloads.

Under the simple and elegant interface of TM, ProteusTM
hides a large library of TM implementations. At run-time,
ProteusTM relies on an innovative combination of learning
techniques to pursue optimal efficiency via multi-dimensional
adaptation of the TM implementation and its parameters.

At the heart of ProteusTM lie two key components:
• PolyTM is a polymorphic TM library that encapsulates state-
of-the-art results from research in TM, and has the unique
ability to transparently and dynamically adapt across multiple
dimensions: (i) switch between different TM algorithms; (ii)
reconfigure the internal parameters of a TM; (iii) adapt the
number of threads concurrently generating transactions.
• RecTM is in charge of determining the optimal TM config-

1Proteus is a Greek god who can foretell the future and adapt his shape.

Benchmark Lines of Code Atomic Blocks Description
STAMP [9] 28803 35 Suite of 8 heterogeneous benchmarks with a variety of workloads (genomics, graphs, databases).
Data Structures 3702 12 Concurrent Red-Black Tree, Skip-List, Linked-List and Hash-Map with workloads varying contention and update ratio.
STMBench7 [32] 8623 45 Based on OO7 [10] with many heterogeneous transactions over a large and complex graph of objects.
TPC-C [63] 6690 5 OLTP workload with in-memory storage adapted to use one atomic block encompassing each transaction.
Memcached [58] 12693 120 Caching service with many short transactions that are used to read and update the cache coherently.

Table 1: TM applications used in our evaluation. These 15 benchmarks span a wide variety of workloads and characteristics.

Machine ID Processor / Number of cores / RAM HTM RAPL
Machine A 1 Intel Haswell Xeon E3-1275 3.5GHz /

4 (8 hyper-threads) / 32 GB
Yes Yes

Machine B 4 AMD Opteron 6172 2.1 Ghz / 48 / 32 GB No No

Table 2: Machines used in our experimental test-bed.

More in detail, the Controller builds a bagging ensemble [7]
of k CF learners, each trained on a random subset of the
training set. Then, it computes µx as the average of the values
output by the single predictors, and s2

x as their variance. In
ProteusTM, we use 10 bagged models; we highlight that the
cost of employing them instead of a single one is negligible,
mainly because they are only queried during profiling phases.
Stopping Criterion. As discussed, SMBO requires the defi-
nition of a predicate to stop exploring new configurations.

Our Controller uses a stopping criterion that seeks a bal-
ance between exploration and exploitation by relying on the
notion of EI: it uses the estimated likelihood that additional
explorations may lead to better configurations. More precisely,
the exploration is terminated after k steps when: (i) the EI
decreased in the last 2 iterations; (ii) the EI for the k-th ex-
ploration was marginal, i.e., lower than e with respect to the
current best sampled KPI; (iii) the relative performance im-
provement achieved in the k�1-th iteration did not exceed e .
In §6.3, we evaluate the effectiveness of this policy.

5.3. Monitor: Lightweight Behavior Change Detection

The Monitor periodically gathers KPIs from PolyTM. These
are used for two tasks: (i) while profiling a new workload, they
are fed to the Controller, providing feedback about the quality
of the current configuration; (ii) at steady-state, they are used
to detect a workload change. The Monitor implements the
Adaptive CUSUM algorithm to detect, in a lightweight and
robust way, deviations of the current KPI from the mean value
observed in recent time windows [2]. This allows the Monitor
to detect both abrupt and smooth changes and to promptly
trigger a new profiling phase in our Controller. Note that
environmental changes (e.g., inter-process contention or VM
migration) are indistinguishable from workload changes from
the perspective of our behavior change detection.

6. Evaluation
This section provides an extensive validation of our contribu-
tions. We introduce, in §6.1 the test-bed, applications, and
accuracy metrics used. In §6.2 we assess the overhead in-
curred by PolyTM to provide self-tuning capabilities. In §6.3,
we evaluate the effectiveness of RecTM’s components sepa-
rately. Finally, in §6.4 we evaluate the ability of ProteusTM to
perform online optimization of dynamic workloads.

Machine
ID

TM Backend # threads HTM Abort
Budget

HTM Capacity
Abort Policy

Machine A STMs and
TSX [67]

1,2,3,4,
5,6,7,8

1,2,4,
8,16,20

Set budget to 0;
decrease budget
by 1; halve budget

Machine B STMs 1,2,4,6,
8,16,32,48

N/A N/A

Table 3: Parameters tuned by ProteusTM. STMs are
TinySTM [29], SwissTM [27], NORec [15] and TL2 [22].

6.1. Experimental Test-Bed

We deployed ProteusTM in two machines with different char-
acteristics (described in Table 2) and used a wide variety of
TM applications (summarized in Table 1). We considered over
300 workloads, which are representative of heterogeneous ap-
plications, from highly to poorly scalable, from HTM to STM
friendly [26]. Moreover, we tested three KPIs: execution time,
throughput and EDP (Energy Delay Product, a popular energy
efficiency metric [36]). We measure energy consumption via
RAPL [17] (available on Machine A).

Our system optimizes the KPI by tuning the four dimensions
listed in Table 33. Overall, we consider a total of 130 TM
configurations for Machine A and 32 for Machine B.
Evaluation metrics. We evaluate the performance of Pro-
teusTM along 2 accuracy metrics: Mean Average Percentage
Error (MAPE) and Mean Distance From Optimum (MDFO).

Noting ru,i the real value of the target KPI for workload u
when running with i as configuration, bru,i the corresponding
prediction of the Recommender, and S the set of testing hu, ii
pairs, MAPE is defined as: Âhu,ii2S |ru,i �bru,i|/ru,i.

Noting with i⇤u the optimal configuration for workload u and
with bi⇤u the best configuration identified by the Recommender,
the MDFO for u is computed as: Âhu,·i2S |ru,i⇤u � ru,bi⇤u

|/ru,i⇤u .
MAPE reflects how well the CF learner predicts perfor-

mance for an application. In contrast, MDFO captures the
quality of final recommendations output by the Recommender.

6.2. Overhead Analysis and Reconfiguration Latency

We now assess the overhead of PolyTM, i.e., the inherent
steady-state cost of supporting adaptation. We compare
the performance of a bare TM implementation T with that
achieved by PolyTM using T without triggering adaptation.

Table 4 summarizes the results averaged across all bench-
marks. The contention management for HTM is set to decrease
linearly the retries starting from 5 (a common setting [67, 41]).
We also show the overhead of the optimized code path, em-

3 ProteusTM also includes HybridTMs: we omit them as, in our workloads,
HybridTMs never outperformed STMs/HTMs (similarly to recent work [26]).
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DTM performance tuning 
•  Support both scale up and scale out [TAAS14] 

•  how many machines should my DTM be provisioned with? 
•  how many threads should be active on each machine? 

•  Communication latencies play a critical factor 
•  select the distributed coordination protocol that maximizes efficiency 

[DSN13] 
•  dynamically tune parameters (e.g., batching) of the Group 

Communication System to enhance efficiency [ICPE15] 
•  where should data and code be placed to maximize locality? [ICAC13] 

•  Cost of exploration can be much higher [Netys13]: 
•  launching a new VM is not as simple as spawning a new thread: 

•  latency for VM activation, system reconfiguration, state transfer  
•  economical cost for VM activation in the cloud 

16 Automatic Tuning of the Parallelism Degree in Hardware Transactional Memory – EuroPar 2014 



Performance of Distributed TM 

• Heterogeneous, nonlinear scalability trends! 

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2  3  4  5  6  7  8  9  10

C
o
m

m
itt

e
d
 T

ra
n
sa

ct
io

n
s/

se
c

Number of nodes

RG - Small RG - Large TPC-C



DTM : Factors limiting scalability	  

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8  9  10

C
o
m

m
it
 P

ro
b
a
b
ili

ty

Number of nodes

RG - Small RG - Large TPC-C

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 2  3  4  5  6  7  8  9  10

N
e
tw

o
rk

 R
T

T
 L

a
te

n
cy

 (
m

ic
ro

se
c)

Number of nodes

RG - Small RG - Large TPC-C 	  

Aborted	  transac+ons	  
because	  of	  conflicts	  

	   	  	  
	  	  

	  

	  
Network	  latency	  in	  
commit	  phase	  

	   	  	  
	  	  



Roadmap 
• Background on Transactional Memory 

•  alternative implementations 

•  TM performance tuning 

• Gray box based self-tuning 
•  Provisioning and optimization of a Distributed TM 
•  Divide and conquer 
•  Bootstrapping 
•  Hybrid ensembling 



Based on the following papers 

 
1.  D. Didona, P. Romano, S. Peluso, F. Quaglia, Transactional Auto Scaler: Elastic Scaling of In-

Memory Transactional Data Grids, ACM Transactions on Autonomous and Adaptive Systems 
(TAAS), 9, 2, 2014, DOI: http://dx.doi.org.10.1145/2620001 

2.  D. Didona and Paolo Romano, Performance Modelling of Partially Replicated In-Memory 
Transactional Stores, IEEE 22nd International Symposium on Modeling, Analysis and Simulation 
of Computer and Telecommunication Systems (MASCOTS'14), September 2014 

3.  D. Didona, P. Romano, F. Quaglia, E. Torre, Combining Analytical Modeling and Machine-
Learning to Enhance Robustness of Performance Prediction Models, 6th ACM/SPEC International 
Conference on Performance Engineering (ICPE), Feb 2015 

4.  D. Didona, P. Romano, Hybrid Machine Learning/Analytical Models for Performance Prediction: a 
Tutorial, 6th ACM/SPEC International Conference on Performance Engineering (ICPE), Feb. 2015 

5.  D. Didona, P. Romano, Using Analytical Models to Bootstrap Machine Learning Performance 
Predictors, IEEE International Conference on Parallel and Distributed Systems (ICPADS), 
December 2015 

 



Approaches to Performance Modelling

White Box Black Box



White box modelling

•  Exploit knowledge on internal system dynamics

² model dynamics analytically or via simulation

PROS

•  Good accuracy on average ���

•  Minimal or no learning phase

CONS

•  Simplifying assumptions ���
è low accuracy when these 
assumptions do not hold

•  Knowledge of system internals 
often unavailable

Related Work

Queuing Theory

Goal

Model a server as a queue

(arrival rate, service demands)! KPIs

• High predictive
power

• Several metrics

• Explicit modeling

• Assumptions,
approximations

Diego Didona (2013) 12 / 30



Related Work

Machine Learning

Goal

Observe x = (x1...xn), y = (y1...yn)

Infer f : y = f (x)

y' = f(x')
Machine Learner

Training input
{xi} Statistical Model

y=f'(x)

Query x'

Training output
{yi = f(xi)}

• No explicit
modeling

• High accuracy in
interpolation

• Poor accuracy in
extrapolation

• Training time

Diego Didona (2013) 14 / 30

Black box modelling

PROS

•  High accuracy in areas already 
observed (interpolation)

���

•  Do not require knowledge on 
system’s internals

CONS

•  Poor accuracy in non-observed 
areas (extrapolation)

•  Curse of dimensionality
Ø  Extensive training phases



Key Observation & Questions

Pros of white-box are cons of black-box & vicev. 

Can we achieve the best of the two worlds?

How can black and white box modelling be 
reconciled ?



Gray box modeling	  

•  Combine	  WB	  and	  BB	  modeling	  

•  Enhance	  robustness	  
–  Lower	  	  training	  +me	  thx	  to	  WBM	  
–  Incremental	  learning	  thx	  to	  BBM	  

	  	  
•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  



Gray box modeling	  

•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  



Divide and conquer	  

•  Modular	  approach	  
– WBM	  of	  what	  is	  observable/easy	  to	  model	  
– BBM	  of	  what	  is	  un-‐observable	  or	  too	  complex	  

•  Reconcile	  their	  output	  in	  a	  single	  func+on	  

•  Higher	  accuracy	  in	  extrapola+on	  thx	  to	  WBM	  
•  Apply	  BBM	  only	  to	  sub-‐problem	  

– Less	  features,	  lower	  training	  +me	  



Case study: Infinispan	  

•  Distributed	  in-‐memory	  key-‐value	  store:	  
– Nodes	  maintain	  elements	  of	  a	  dataset	  

•  Full	  vs	  par+al	  replica+on	  (#	  copies	  per	  item)	  

– Transac+onal	  -‐-‐ACI(D)–	  manipula+on	  of	  data	  
•  Concurrency	  control	  scheme	  (enforce	  isola+on)	  
•  Replica+on	  protocol	  (disseminate	  modifica+ons)	  



DTM optimization in the Cloud	  

•  Important	  to	  model	  network-‐bound	  ops	  but…	  
•  Cloud	  hides	  detail	  about	  network	  L	  

– No	  topology	  info	  
– No	  service	  demand	  info	  
– Addi+onal	  overhead	  of	  virtualiza+on	  layer	  

•  BBM	  of	  network-‐bound	  ops	  performance	  
– Train	  ML	  on	  the	  target	  pla_orm	  



TAS/PROMPT [TAAS14,Mascots14]	  

•  Analy+cal	  modeling	  (queuing	  theory	  based)	  
–  Concurrency	  control	  scheme	  	  

•  E.g.,	  encounter	  +me	  vs	  commit	  +me	  locking	  
–  Replica+on	  protocol	  	  

•  E.g.,	  PB	  vs	  2PC	  
–  Replica+on	  scheme	  	  

•  Par+al	  vs	  full	  
–  CPU	  

•  Machine	  Learning	  
–  Network	  bound	  op	  (prepare,	  remote	  gets)	  
–  Decision	  tree	  regressor	  



Analytical model in TAS/PROMPT	  

•  Concurrency	  control	  scheme	  (lock-‐based)	  
– A	  lock	  is	  a	  M/G/1	  server	  
–  Conflict	  prob	  =	  u+liza+on	  of	  the	  server	  

•  Replica+on	  protocol	  
– mul+-‐master/Two-‐phase	  Commit	  based	  à	  one	  model	  
–  single-‐master/primary-‐backup	  à	  two	  models	  

•  Replica+on	  scheme	  
–  Probability	  of	  accessing	  remote	  data	  
–  #	  nodes	  involved	  in	  commit	  



Machine Learning in TAS/PROMPT	  

•  Decision	  tree	  regressor	  
•  Opera+on-‐specific	  models	  

– Latency	  during	  prepare	  
– Latency	  to	  retrieve	  remote	  data	  

•  Input	  
– Opera+ons	  rate	  (prepare,	  commit,	  remote	  get…)	  
– Size	  of	  messages	  
– #	  nodes	  involved	  in	  commit	  



ML accuracy for network bound ops	  
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Private Cluster

•  Seamlessly	  portable	  across	  infrastructures	  	  
– Here,	  private	  cloud	  and	  Amazon	  EC2	  



AM and ML coupling	  

•  At	  training	  +me,	  all	  features	  are	  monitorable	  
•  At	  query	  +me	  they	  are	  NOT!	  
	   	   	   	   	   	  	  	  	  	  

EXAMPLE	  
•  Current	  config:	  5	  nodes,	  full	  replica+on	  	  

– Contact	  all	  5	  nodes	  at	  commit	  

•  Query	  config:	  10	  nodes,	  par+al	  replica+on	  
– How	  many	  contacted	  nodes	  at	  commit??	  



•  AM	  can	  provide	  (es+mates	  of)	  missing	  input	  
•  Itera+ve	  coupling	  scheme 	   	   	  	   	  	  	  	  	  	  
	  
	  	  ML	  takes	  some	  input	  parameters	  from	  AM	  

	  
AM	  takes	  latencies	  forecast	  by	  ML	  as	  input	  parameter	  

Model resolution	  



Model’s accuracy	  
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Comparison with Pure ML, I	  

•  YCSB	  (transac+fied)	  workloads	  while	  varying	  	  
–  #	  opera+ons/tx	  
–  Transac+onal	  mix	  	  
–  Scale	  
–  Replica+on	  degree	  
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Comparison with Pure ML, II	  

•  ML	  trained	  with	  TPCC-‐R	  and	  queried	  for	  TPCC-‐W	  
•  Pure	  ML	  blunders	  when	  faced	  with	  new	  workloads	  
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Gray box modeling	  

•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  



Bootstrapping	  

•  Obtain	  zero-‐training-‐+me	  ML	  via	  ini+al	  AM	  
1.  Ini+al	  (synthe+c)	  training	  set	  of	  ML	  from	  AM	  
2.  Retrain	  periodically	  with	  “real”	  samples	  

Analytical !
model!

Boostrapping"
training set!

Machine 
learning!
!

Gray box "
model!

Sampling of"
the Parameter Space!

Model construction!

Current 
training set!

Machine 
learning!

Gray box "
model!

New data"
come in!

(1)	   (2)	  



How many synthetic samples?	  
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•  Important	  tradeoff	  
–  Higher	  #	  à	  lower	  fimng	  error	  over	  the	  AM	  output	  
–  Lower	  #	  à	  higher	  density	  of	  real	  samples	  in	  dataset	  



How to update the synthetic training set?	  

•  Merge:	  simply	  add	  real	  samples	  to	  synthe+c	  set	  

•  Replace	  only	  the	  nearest	  neighbor	  (RNN)	  

•  Replace	  neighbors	  in	  a	  given	  region	  (RNR)	  
– Two	  variants	  



Real vs AM function	  

Real	  func+on	  
	  
AM	  func+on	  



•  Assuming	  enough	  point	  to	  perfectly	  learn	  AM	  

Real vs learnt	  

Synthe+c	  sample	  

ML	  func+on	  



•  Add	  real	  samples	  to	  synthe+c	  

Merge	  

Real	  sample	  



•  Problem:	  same/near	  samples	  have	  diff.	  output	  

Merge	  



•  Remove	  nearest	  neighbor	  

Replace Nearest Neighbor (RNN)	  



•  Preserve	  distribu+on…	  

Replace Nearest Neighbor (RNN)	  



•  …	  but	  may	  induce	  alterna+ng	  outputs	  

Replace Nearest Neighbor (RNN)	  



•  Add	  real	  and	  remove	  synth.	  samples	  in	  a	  radius	  	  

Replace Nearest Region (RNR)	  



•  R	  =	  radius	  defining	  neighborhood	  

Replace Nearest Region (RNR)	  

R	  



•  R	  =	  radius	  defining	  neighborhood	  

Replace Nearest Region (RNR)	  

R	  



•  Skew	  samples’	  distribu+on	  

Replace Nearest Region (RNR)	  



•  Replace	  all	  synthe+c	  samples	  in	  a	  radius	  R	  

Replace Nearest Region 2 (RNR2)	  

R	  



Replace Nearest Region 2 (RNR2)	  

•  Maintain	  distribu+on,	  piecewise	  approxima+on	  



Weighting	  

•  Give	  more	  relevance	  to	  some	  samples	  

•  Fit	  beoer	  the	  model	  around	  real	  samples	  
– “Trust”	  real	  samples	  more	  than	  synthe+c	  ones	  
– Useful	  especially	  in	  Merge	  

•  Too	  high	  can	  cause	  over-‐fimng!	  
– Learner	  fails	  to	  generalize	  	  



Evaluation	  

•  Case	  studies	  
– Response	  +me	  in	  Total	  Order	  Broadcast	  (TOB)	  

•  building	  block	  at	  the	  basis	  of	  many	  DTM	  	  
•  2-‐dimensional	  yet	  highly	  nonlinear	  perf.	  Func+on	  

– Throughput	  in	  Distributed	  TM	  (Infinispan)	  
•  7-‐dimensional	  performance	  func+on	  



Weighting	  

TOB	  	  
(10K	  synthe+c	  samples)	  
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Figure 5.5: Impact of the weight parameter for the Merge updating policy, using 1K and 10K
synthetic samples.

accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.
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accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.

DTM	  
(10K	  synthe+c	  samples)	  



Update function	  

•  In	  both	  considered	  case	  studies,	  simplicity	  pays	  off:	  
–  the	  Merge	  policy	  performs	  analogously	  to	  RNR2	  
–  …but,	  unlike	  RNR2,	  Merge	  is	  parameter-‐free	  
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Figure 5.7: Comparison between Merge and Replace-based Bootstrapping

The plot in Figure 5.7 clearly highlights the advantages that the Bootstrapping technique can

provide, eventually outperforming both the base model and the reference ML-based predictor.

It also shows that, in the considered case studies, and for the considered parameters’ values,

there is no clear winner between the two updating variants. In fact, the conducted evaluation

suggests —maybe surprisingly— that the weighting parameter results to be the one that affects

accuracy the most, up to the point that its careful tuning allows the Merge updating policy to

perform similarly to the —relatively more complex— RNR2.

5.4.2.3 Bootstrapping in extrapolation

So far, the Bootstrapping technique has been evaluated by drawing the additional training set Dt

for the black box learner uniformly at random from a real data set D, and assessing its accuracy

over D\Dt . This means that the learned performance function has been corrected by benefiting

from an unbiased sampling of the whole space over which its accuracy is then assessed. This

section serves the purpose of assessing the Bootstrapping technique’s robustness against biased

sampling strategies: even if provided only with a set R of real samples corresponding to narrow

regions of the parameters’ space, the bootstrapped learner still inherits the predictive power of

the base base predictor when working in extrapolation with respect to R.

A realistic use case for such a scenario would be if the real samples were not to be collected



Visualizing the correction	  
BASE	  MODEL	   PURE	  ML	  (70%	  TS)	  

BOOTSTRAPPED	  ML	  (70%	  TS)	  



Gray box modeling	  

•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  

	  	  	  	  	  Hybrid	  KNN	  

Hybrid	  boos+ng	   Probing	  



Hybrid Boosting	  

•  Learning	  the	  error	  of	  a	  model	  on	  a	  func+on	  may	  
be	  simpler	  than	  learning	  the	  func+on	  itself	  

	  
•  Chain	  composed	  by	  AM	  +	  cascade	  of	  ML	  

•  ML1	  trained	  over	  residual	  error	  of	  AM	  

•  MLi,	  i>1	  	  trained	  over	  residual	  error	  of	  MLi-‐1	  



Training	  and Querying Hyboost 
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Training	  and Querying Hyboost	  
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Training	  and Querying Hyboost	  
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Gray box modeling	  

•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  

	  	  	  	  	  Hybrid	  KNN	  

Hybrid	  boos+ng	   Probing	  



Hybrid KNN	  
•  Predict	  performance	  of	  x	  with	  model	  that	  is	  
supposed	  to	  be	  the	  most	  accurate	  for	  it	  

•  Split	  training	  set	  D	  into	  D’,	  D’’	  

•  Train	  ML1…MLN	  on	  D’	  
– ML	  can	  differ	  in	  nature,	  parameters,	  training	  set…	  

•  For	  a	  query	  sample	  z	  
–  Pick	  the	  K	  training	  samples	  in	  D’’	  closer	  to	  z	  
–  Find	  the	  model	  with	  lowest	  error	  on	  the	  K	  samples	  
– Use	  such	  model	  to	  predict	  f(x)	  



KNN Training and Querying	  
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Gray box modeling	  

•  Will	  present	  three	  methodologies:	  

Hybrid	  ensembling	  

Divide	  and	  conquer	   Bootstrapping	  

	  	  	  	  	  Hybrid	  KNN	  

Hybrid	  boos+ng	   Probing	  



Probing	  
•  Build	  a	  ML	  model	  as	  specialized	  as	  possible	  	  

– Use	  AM	  where	  it	  is	  accurate	  
– Train	  ML	  only	  where	  AM	  fails	  

•  Differences	  w.r.t.	  KNN	  
– Training:	  in	  KNN,	  ML	  is	  trained	  on	  all	  samples:	  

•  Here,	  ML	  trained	  on	  samples	  for	  which	  AM	  is	  inaccurate	  

– Querying:	  In	  KNN,	  vo+ng	  decides	  on	  ML	  vs	  AM	  
•  Here,	  binary	  classifier	  predicts	  when	  the	  AM	  is	  inaccurate	  



Probing training and querying	  
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Probing training and querying	  
	  	  	  Original	  	  training	  set	  

AM	  

ML	  training	  set	   Classifier	  training	  set	  
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Probing training and querying	  

ML	  

QUERYING	  

CLASSIFIER	   AM	  

x	  

F(x)	  =	  	  
AM(x)	  	  	  	  if	  	  Classify(x)	  =	  AM	  
	  
ML(x)	  	  	  	  	  otherwise	  



Evaluation	  

•  Sensi+vity	  to	  meta-‐parameters	  
– Hyboost	  

•  Size	  of	  the	  chain	  
– Hybrid	  KNN	  

•  Proximity	  cut-‐off	  
– Probing	  

•  Minimum	  AM’s	  accuracy	  cut-‐off	  

•  Comparison	  among	  the	  techniques	  



HyBoost	  

•  Chain	  composed	  by	  AM	  +	  Decision	  Tree	  
•  Longer	  chains	  yielded	  negligible	  improvements	  in	  
the	  considered	  case	  studies	  
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Figure 5.9: Evaluating the accuracy of HyBoost.

region.

Figure 5.8c, instead, shows the accuracy achieved by a bootstrapped learner trained over a

combination of synthetic samples and the same set of real samples used in the previous case.

Clearly, the accuracy in the right part of the plot is similar to the one in Figure 5.8b; the left part,

instead, which corresponds to the performance queries in extrapolation, portrays a significant

enhancement in accuracy. These improved predictive capabilities in extrapolation stem from the

availability of a synthetic training set provided by the embedded base model. This claim can be

verified by analyzing Figure 5.8a, which reports the accuracy of a Cubist learner trained only

over synthetic data samples: it is easy to see that the left side of the plot is very similar to the

left side of the plot in Figure 5.8b, demonstrating how a bootstrapped learner is able to leverage

the knowledge provided by the base model about the performance of the target application in

unexplored regions of the parameters’ space.

5.4.3 Hybrid Boosting

The conducted evaluation study on the HyBoost technique, described in this section, only fo-

cuses on analyzing the effectiveness of this technique depending on the characteristics of the

white and black box models for two considered case studies. The only tuning parameter of

this technique, in fact, would be the size and the composition of the chain, i.e., the number of

Infinispan	  



Tuning of hyper-parameters matters	  

•  Comparison	  
– Pure	  AM,	  Pure	  ML	  (Cubist,	  Decision	  tree	  regressor)	  vs	  
– Probing	  (AM	  +	  Cubist)	  

•  Analogous	  considera+ons	  hold	  for	  KNN	  
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Figure 5.12: Sensitivity analysis of Probing w.r.t. the c parameter (TOB)

prediction as accurate. The classification algorithm employed to train the classifier responsible

for estimating the best model for a given query is the Weka implementation of the C.45 Decision

Tree (Quinlan, 1993b).

Figure 5.12 and Figure 5.13 report the results of such sensitivity analysis. The first phe-

nomenon that comes evident for both the case studies is that the accuracy does not vary, as a

function of c, as smoothly as in the KNN case, which is the other considered Selection-based

Hybrid Ensemble technique that relies on a cutoff parameter. This is because c directly affects

both the training set of the classifier used and of the black box performance predictor. The

resulting behavior of these two components affects in an intertwined and complex fashion that

ultimately results in the portrayed accuracy trends.

Also, as expectable, for both case studies, the lower the employed cut-off value the more

the accuracy is similar to the one attained by the black box model. This happens because the

underlying white box model is considered to be accurate and, thus, to be reliable, only if it

attains a correspondingly low error. In a dual fashion, as c moves towards higher values, the

accuracy delivered by the Probing-based predictor resembles the underlying base model’s one.

Regarding the specific case studies, the characteristics of the corresponding base predic-

tors and black box models play again a fundamental role to determine the effectiveness of the
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Figure 5.13: Sensitivity analysis of Probing w.r.t. the c parameter (DTP)

Probing technique. In the TOB case, in fact, Probing only slightly enhances the accuracy with

respect to the best between the pure white and black approaches at a medium training set (Fig-

ure 5.12a). With lower training set, the classifier cannot distinguish when it is better to rely

on the white or the black box. At higher training sets, the accuracy of the black box model

alone is generally better than its white box counterpart’s (Figure 5.12b). As a result, even if the

accuracy of the white box model is below the desired threshold, it is likely that the black box

learner alone could still reach a higher accuracy, if trained with the proper data-set. Ultimately,

this leads the Probing-based predictor to rely on the white box model even when it should not,

and in removing samples from the black box learner’s training set, thus reducing its accuracy.

The plots in Figure 5.13, instead, reveal slightly different dynamics for what concerns the

DTP case study. On one side, in fact, just like the TOB case, the classifier does not help, or only

marginally helps, in increasing accuracy when there is low amount of training data available

(Figure 5.13a. Conversely, as training data become more abundant, Probing is able to deliver

higher accuracy than the two underlying models alone (Figure 5.13b) this is because, as already

highlighted during the KNN discussion, there is no clear winner between the white and the

black box model. Therefore, provided that the classifier is able to distinguish when to prefer

one over the other, it is possible to take selectively advantage of both with beneficial effects on

accuracy.



No free lunch theorem strikes again	  

•  No	  one-‐size-‐fits-‐all	  hybrid	  model	  exists	  
•  Tackle	  choice	  of	  best	  hybrid	  model	  via	  cross-‐
valida+on	  
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Figure 5.14: Comparing the performance of the 4 proposed gray box techniques.

5.4.6 Comparison among the approaches

This section concludes the experimental evaluation and is dedicated to comparing the accuracy

achieved by the four proposed hybrid ensemble techniques in the two considered case studies.

In particular, the comparison is performed assuming a proper tuning of the internal parameters

of the compared ensemble algorithms. Specifically, the reported data are obtained using 10-fold

cross validation to determine appropriate values for the internal parameters of the compared

ensemble algorithms.

As already hinted in Section 5.4.1.3, identifying the best gray box model and correspond-

ing parameterization given some training data is a problem that falls beyond the scope of the

proposed Hybrid Ensemble techniques: it is, indeed, a common trait shared with pure black box

modeling techniques. Therefore, it can be tackled by means of standard techniques developed

for the selection and tuning of Machine Learning algorithms, such as Bayesian Optimization or

grid/random search (Bergstra et al., 2011).

The following evaluation aims at showing how the characteristics of the target performance

function and of a hybrid predictor affect accuracy in the most favorable case, i.e., excluding

the cases in which a given predictor performs poorly only because of a correspondingly poor

setting of its internal parameters.

Figure 5.14 reports the accuracy attained by the four proposed gray box models, as well as



AM error vs optimal technique	  
•  Error	  distribu+on	  of	  the	  base	  AM	  is	  key	  
	  

•  Hy-‐boost	  performed	  the	  best	  for	  DTM	  
– Smooth	  error	  func+on	  is	  easy	  to	  learn	  

•  Not	  the	  case	  for	  TOB	  
– Highly	  localized	  errors	  beoer	  tackled	  via	  probing	  



Concluding remarks: 
TM and Self-tuning	  

•  Transac+onal	  memory	  is	  an	  aorac+ve	  alterna+ve	  
to	  lock-‐based	  synchroniza+on:	  
–  hides	  complexity	  behind	  intui+ve	  abstrac+on	  
–  relevance	  amplified	  by	  integra+on	  with	  GCC,	  
commodity	  (Intel’s)	  and	  HPC	  (IBM’s)	  CPUs	  

•  Performance	  of	  TM	  is	  strongly	  affected	  by:	  
– workload	  characteris+cs	  
–  choice	  of	  the	  TM	  implementa+on	  
–  plethora	  of	  implementa+on-‐dependent	  parameters	  

•  Self-‐tuning	  is	  cri+cal	  to	  ensure	  efficiency!	  



Concluding remarks: 
Which modeling methodology?	  

•  White	  and	  black	  box	  models	  can	  be	  effec+vely	  
used	  in	  synergy	  
–  Increased	  predic+ve	  power	  via	  analy+cal	  models	  
–  Incremental	  learning	  capabili+es	  via	  black	  box	  models	  

•  Presented	  three	  gray	  box	  methodologies:	  
– Divide	  and	  conquer,	  Bootstrapping,	  Hybrid	  ensembling	  
– Design,	  implementa+on	  and	  applica+on	  to	  (D)TM	  

•  Careful	  choice	  of	  technique	  and	  parameters	  
– Use	  standard	  techniques	  for	  hyper-‐parameters	  opt.	  



Open questions	  

•  Any	  other	  way	  of	  hybridizing	  Black	  and	  
White	  modelling?	  

•  Can	  we	  further	  combine	  them?	  
•  e.g.	  use	  a	  bootstrapped	  model	  in	  

an	  ensemble?	  
•  Can	  we	  infer	  the	  best	  gray	  box	  

technique	  by	  analyzing	  the	  error	  
func+on	  of	  the	  AM	  model?	  
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