Energy management of a Wireless Sensor Network at application level

Olesia MOKRENKO – CEA LETI
olesia.mokrenko@cea.fr

Suzanne Lesecq – CEA LETI

Diego Puschini – CEA LETI

Carolina Albea – LAAS
Smart environment

- **Ensure a given service** for a system over a Wireless Sensor Network (WSN)
- **Maximize** the availability of the application (WSN lifespan)
Maximize WSN lifespan

- Node level
- Network level
- Application level
Context 2/2

Application level

Dense deployment

Gateway(s)

Supervisor

User(s)
Dummy scheme

- **All nodes** are active to ensure a given service for an application

Basic scheme

- **A given number of nodes** are active to ensure a given service for an application

No control of WSN at application level

“Basic control” of WSN at application level
Objectives

- **Exploit trade-offs:** find a balance between different **contradictory objectives** that occur at the same time

Example:
- Maximize the performance (Ensure a given service)
- Maximize the WSN lifespan
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of Both Control Strategies

Conclusions
Outline

Context

Model Predictive Control (MPC) Approach

- Problem statement
- WSN: system modeling
- MPC design
 - Control design
 - Benchmark description
 - Simulation results
- Conclusion on the MPC approach
Problem statement, control objectives

- **Wireless sensor network**
 - **Nodes** deployed in a geographical area
 - To ensure a given service
 - **Same functionality** → Redundant information

- **Service** = mission
 - Minimum number of *active* nodes during a given time period

- **Energy consumption**
 - Average energy consumption for node *i* in mode *j* for a given time period

<table>
<thead>
<tr>
<th>Node</th>
<th>Mode M_1</th>
<th>Mode M_2</th>
<th>⋯</th>
<th>Mode M_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b_{11}</td>
<td>b_{12}</td>
<td>⋯</td>
<td>b_{1m}</td>
</tr>
<tr>
<td>2</td>
<td>b_{21}</td>
<td>b_{22}</td>
<td>⋯</td>
<td>b_{2m}</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋯</td>
<td>⋮</td>
</tr>
<tr>
<td>n</td>
<td>b_{n1}</td>
<td>b_{n2}</td>
<td>⋯</td>
<td>b_{nm}</td>
</tr>
</tbody>
</table>

- **Control objectives**
 - Fulfill the mission
 - Maximize the network lifespan
System modeling

- **Node \(i \): energy consumption model**

\[
x_i(k+1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)
\]

\[
y_i(k) = x_i(k) \quad \text{(measurement)}
\]

Maximize lifespan \(\rightarrow \max \sum_{\text{all nodes}} x_i(k+1) \)

- **Whole system model**

\[
x(k) \quad \text{time}
\]

\[
x(k+1) = B \cdot u(k)
\]

Compute \(u(k) \) s.t. \(\min \sum_{\text{all nodes}} B_i \cdot u_i(k) \)

- **Under constraints**

1. Binary control (at time \(k \))

Mode \(M_1 \)	ON	1
Mode \(M_2 \)	OFF	0
\vdots	\vdots	\vdots
Mode \(M_m \)	OFF	0

\[
\begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
= u_i(k)
\]
Node i: energy consumption model

\[x_i(k + 1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k) \]

\[y_i(k) = x_i(k) \] (measurement)

Maximize lifespan $\rightarrow \max \sum_{all \ nodes} x_i(k + 1)$

Under constraints

1. Binary control (at time k)

Mode M_1: ON
Mode M_2: OFF
\[\vdots \]
Mode M_m: OFF

2. Node works in a unique mode at time k

\[\sum_{h=1}^{m} u_{ih} = 1 \]

Whole system model

Compute $u(k)$ s.t.

\[\min \sum_{all \ nodes} B_i \cdot u_i(k) \]
Node i: energy consumption model

\[
x_i(k+1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)
\]

\[y_i(k) = x_i(k) \text{ (measurement)}\]

Maximize lifespan \rightarrow \[
\max \sum_{\text{all nodes}} x_i(k+1)
\]

Whole system model

\[
x(k+1) = x(k) - B \cdot u(k)
\]

Under constraints

1. Binary control (at time k)

Mode M_1
Mode M_2
\vdots
Mode M_m

2. Node works in a unique mode

\[
\sum_{h=1}^{m} u_{ih} = 1
\]

3. Mission definition

For mode M_h: \[
\sum_{i=1}^{n} u_{ih} = d_h
\]
Node i: energy consumption model

\[
x_i(k + 1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)
\]

$y_i(k) = x_i(k)$ (measurement)

Maximize lifespan $\rightarrow \max \sum_{all\ nodes} x_i(k + 1)$

Whole system model

Compute $u(k)$ s.t. $\min \sum_{all\ nodes} B_i \cdot u_i(k)$

Under constraints

1. Binary control (at time k)
 - Mode M_1: ON
 - Mode M_2: OFF
 - Mode M_m: OFF

2. Node works in a unique mode
 \[
 \sum_{h=1}^{m} u_{ih} = 1
 \]

3. Mission definition

4. Bounded capacity of the battery
 \[
 X_i^{\min} \leq x_i \leq X_i^{\max}
 \]
Model Predictive Control

\[u^* = \arg \min_u \left(\sum_{j=0}^{N_p} (X^{max} - x_{k+j|k})^T Q (X^{max} - x_{k+j|k}) + \sum_{j=0}^{N_u-1} u_{k+j|k}^T R u_{k+j|k} \right) \]

Subject to:
\[
\begin{align*}
\mathbf{x}_{k+1+j|k} &= A\mathbf{x}_{k+j|k} + B\mathbf{u}_{k+j|k} + E\mathbf{w}_{k+j|k}, & j = 0,1, \ldots, N_p \\
X^{min} &\leq \mathbf{x}_{k+j|k} \leq X^{max}, & j = 0,1, \ldots, N_p \\
\sum_{i=1}^{n} u_{ih} &= d_h \text{ for each } (k + j|k) \\
\sum_{h=1}^{m} u_{ih} &= 1 \text{ for each } (k + j|k) \\
u_{k+j|k} &\in \{0,1\}^{mn}, j = 0,1, \ldots, N_u - 1
\end{align*}
\]

Weighting matrices chosen depending on the application:
\[
\begin{align*}
Q &\in \mathbb{R}_{\geq 0}^{n \times n} \\
R &\in \mathbb{R}_{> 0}^{mn \times mn}
\end{align*}
\]

→ Mixed Integer Quadratic Programming (MIQP)
Benchmark

- **6 sensor nodes**
- **3 states:**
 - 2 functioning modes
 - Unreachable condition

Mission: 3 active nodes (mode M_1)
- $\alpha = \beta = 3$

Weighting matrices
- $Q = \left(\text{diag}\left(\frac{1}{X_1^{\text{max}}}, \ldots, \frac{1}{X_6^{\text{max}}}\right) \right)^2$
- $R = B_{\text{cons}}' \times B_{\text{cons}}$, where $B_{\text{cons}} = \text{diag}(b_{11}, b_{12}, \ldots, b_{62})$

Nodes characteristics (including harvesting availability) (values from datasheets)

<table>
<thead>
<tr>
<th>Node</th>
<th>Consum. in mode M_1, [mWh]</th>
<th>Consum. in mode M_2, [mWh]</th>
<th>Nom. bat. capacity, X_i^{max}, [mWh]</th>
<th>Harvesting availability E_i, [mWh]</th>
<th>Energy coef. [1]</th>
<th>Harvesting period, per 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36,593</td>
<td>5,846</td>
<td>3885 (type 1)</td>
<td>missing</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>36,482</td>
<td>6,031</td>
<td>3885 (type 1)</td>
<td>missing</td>
<td>0,8</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>34,854</td>
<td>6,105</td>
<td>3885 (type 1)</td>
<td>77,7</td>
<td>0,9</td>
<td>7h-12h</td>
</tr>
<tr>
<td>4</td>
<td>36,482</td>
<td>6,301</td>
<td>3515 (type 2)</td>
<td>missing</td>
<td>0,7</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>36,556</td>
<td>6,105</td>
<td>3515 (type 2)</td>
<td>99,9</td>
<td>1</td>
<td>13h-18h</td>
</tr>
<tr>
<td>6</td>
<td>33,041</td>
<td>5,735</td>
<td>8510 (type 3)</td>
<td>missing</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>
Simulation results without harvesting

Large number of switches

WSN lifespan = 175 hours

> WSN lifespan with basic scheme = 128 hours

Constraint is fulfilled

\[0 < X_i^{\min} \leq x_i \leq X_i^{\max} \]
Simulation results with harvesting

WSN lifespan = 287 hours

Constraint is fulfilled

\[0 < X_{i}^{\min} \leq x_i \leq X_{i}^{\max} \]
Conclusion on the MPC Approach

😊 Lifespan increase up to 27% (without harvesting) and 33% (with harvesting) when compared to basic scheme
😊 Constraints respected
😊 Large number of switches
 => Properly take into account the cost of the switches
😊 Problem solved with MIQP
 => Complexity (extra energy consumption)

😊 MILP problem formulation

Hybrid Dynamic System (HDS) approach
 => Naturally introduces jumps between systems of different structures
 => Cost of switches naturally taken into account
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of Both Control Strategies

Conclusions
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

- Control objectives
- WSN: system modeling
- Hybrid Dynamic System (HDS)
 - Control design, scheduling law
 - Benchmark description
 - Simulation results
- Conclusions on the HDS approach
Same as for the MPC strategy

- Fulfill the mission
- Maximize the WSN lifespan
MPC (discrete time model)

- B_i and E_i are the energy (J, Wh)

\[
x_i(k + 1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)
\]

\[
y_i(k) = x_i(k) \text{ (measure)}
\]
Node i: energy consumption model

- **HDS** (hybrid model)
 - *Flow* (continuous time) dynamics
 - B_i and E_i: power (W)
 \[
 \begin{aligned}
 \dot{x}_i(t) &= -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\
 y_i &= \alpha_i(t) \cdot x_i(t) \\
 \dot{u}_i(t) &= 0^m
 \end{aligned}
 \]
 - *Jump dynamics* (2 nodes swap their role)
 Pairwise jump rule for two nodes i and l
 \[
 \begin{bmatrix}
 x_i^+ \\
 x_l^+
 \end{bmatrix} =
 \begin{bmatrix}
 x_i - (u_i^+)^T \Delta_i u_i \\
 x_l - (u_l^+)^T \Delta_l u_l
 \end{bmatrix} = g_{x}^{il}(x, u)
 \]
 \[
 \begin{bmatrix}
 u_i^+ \\
 u_l^+
 \end{bmatrix} =
 \begin{bmatrix}
 u_l \\
 u_i
 \end{bmatrix} = g_{u}^{il}(x, u)
 \]

 With the **switching consumption matrix** Δ_i
 \[
 \Delta_i =
 \begin{bmatrix}
 0 & \ldots & \delta_{i \rightarrow 1}^m \\
 \vdots & \ddots & \vdots \\
 \delta_{1 \rightarrow m} & \ldots & 0
 \end{bmatrix}
 \]
System modeling (2/2)

- **HDS**
 - *Flow dynamics*

 \[
 \begin{align*}
 \dot{x}_i(t) &= -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\
 y_i &= \alpha_i(t) \cdot x_i(t) \\
 \dot{u}_i(t) &= 0^m
 \end{align*}
 \]
 - measure

- **Jump dynamics**

 \[
 \begin{align*}
 x_i^+ &= x_i - (u_i^+)^T \Delta_i u_i \\
 x_i^+ &= x_i - (u_i^+)^T \Delta_i u_i \\
 u_i^+ &= [u^+_l, u^+_i] g_{u}^l(x, u)
 \end{align*}
 \]

- **Constraints**

 1. **Binary control** (at time \(t \)) \(u_i \in \{0,1\}^m \)
 2. **Node work in a unique mode** at time \(t \)
 3. **Mission definition** for mode \(M_h \) \(\sum_{i=1}^{n} u_i^T e_h = d_h \)
 4. **Bounded capacity** of the battery \(0 < X_i^{\text{min}} \leq x_i \leq X_i^{\text{max}} \)

Compute \(u_i(t) \) such that lifespan maximized

Lifespan:

\[
\max_{\text{all nodes}} \sum_i \frac{x_i + (E_i w_i) X_i^{\text{min}}}{B_i u_i}
\]
HDS

- **Flow dynamics**

\[
\begin{aligned}
 \dot{x}_i(t) &= -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\
 y_i &= \alpha_i(t) \cdot x_i(t) \\
 \dot{u}_i(t) &= 0^m
\end{aligned}
\] - measure

- **Jump dynamics**

\[
\begin{aligned}
 [x_i^+] &= [x_i - (u_i^+)^T \Delta_i u_i] = g^x_i(x,u) \\
 u_i^+ &= u_i
\end{aligned}
\]

Constraints

1. **Binary control** (at time \(t \)) \(u_i \in \{0,1\}^m \)
2. **Node** work in a **unique mode** at time \(t \)
3. **Mission** definition for mode \(M_h \) \(\sum_{i=1}^{n} u_i^T e_h = d_h \)
4. **Bounded capacity** of the battery \(0 < X_i^{\text{min}} \leq x_i \leq X_i^{\text{max}} \)

Compute \(u_i(t) \) such that lifespan maximized

Lifespan:

\[
\max_{\text{all nodes}} \sum_{i} \frac{y_i - X_i^{\text{min}}}{B_i u_i}
\]
Compute $u_i(k)$ => when do nodes i and l need to swap their role?

- Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(x, u) := \min_{k=i,l;k:u_k \neq 0^m} \frac{y_k - X_k^{\min}}{B_k u_k}$$

- First condition to jump (or swap role)
 - Lifespan of the solution is larger after the swap
Design of the scheduling law

- Compute $u_i(k)$ => when do nodes i and l need to swap their role?
- Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(x, u) := \min_{k=i,l; k \neq m} \frac{y_k - X_k^{\min}}{B_k u_k}$$

- First condition to jump (or swap role)
 - Lifespan of the solution is larger after the swap

- Second condition to jump
 - Time of the switch
Compute $u_i(k) \Rightarrow$ when do nodes i and l need to swap their role?

- Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(x,u) := \min_{k=i,l; k \neq 0^m} \frac{y_k - X_k^\text{min}}{B_k u_k}$$

First condition to jump (or swap role)
- Lifespan of the solution is larger after the swap

Second condition to jump
- Time of the switch
Benchmark description

- **Same benchmark as for MPC**
 - 6 sensor nodes
 - 3 states:
 - 2 functioning modes
 - Unreachable condition

- **Mission**: 3 *active* nodes (in mode M_1)
 - $\alpha = \beta = 3$

- **Nodes characteristics (including harvesting availability)**

<table>
<thead>
<tr>
<th>Node</th>
<th>Consum. in mode M_1, [mW]</th>
<th>Consum. in mode M_2, [mW]</th>
<th>Nom. bat. capacity, X_i^{\max}, [mWh]</th>
<th>Harvesting availability E_i, [mW]</th>
<th>Energy coef. [1]</th>
<th>Harvesting period, per 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36,593</td>
<td>5,846</td>
<td>3885 (type 1)</td>
<td>missing</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>36,482</td>
<td>6,031</td>
<td>3885 (type 1)</td>
<td>missing</td>
<td>0,8</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>34,854</td>
<td>6,105</td>
<td>3885 (type 1)</td>
<td>77,7</td>
<td>0,9</td>
<td>7h-12h</td>
</tr>
<tr>
<td>4</td>
<td>36,482</td>
<td>6,301</td>
<td>3515 (type 2)</td>
<td>missing</td>
<td>0,7</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>36,556</td>
<td>6,105</td>
<td>3515 (type 2)</td>
<td>99,9</td>
<td>1</td>
<td>13h-18h</td>
</tr>
<tr>
<td>6</td>
<td>33,041</td>
<td>5,735</td>
<td>8510 (type 3)</td>
<td>missing</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>
Simulation results without harvesting

- **Number of switches is very small**
- **WSN lifespan = 164 hours**
- **WSN lifespan with basic scheme = 128 hours**

Simulation results without harvesting

Node 1
- Mode 1 - Active
- Mode 2 - Standby
- Unreachable state

<table>
<thead>
<tr>
<th>Node</th>
<th>Consum. in mode M_1, [mW]</th>
<th>Consum. in mode M_2, [mW]</th>
<th>Nom. bat. capacity, $X_{i_{max}}$, [mW]</th>
<th>Energy coef. [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36,593</td>
<td>5,846</td>
<td>3885 (type 1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>36,482</td>
<td>6,031</td>
<td>3885 (type 1)</td>
<td>0,8</td>
</tr>
<tr>
<td>3</td>
<td>34,854</td>
<td>6,105</td>
<td>3885 (type 1)</td>
<td>0,9</td>
</tr>
<tr>
<td>4</td>
<td>36,482</td>
<td>6,301</td>
<td>3515 (type 2)</td>
<td>0,7</td>
</tr>
<tr>
<td>5</td>
<td>36,556</td>
<td>6,105</td>
<td>3515 (type 2)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>33,041</td>
<td>5,735</td>
<td>8510 (type 3)</td>
<td>1</td>
</tr>
</tbody>
</table>

Constraint is respected

$0 < X_{i_{min}} \leq x_i \leq X_{i_{max}}$
Simulation results with harvesting

Number of switches is very small

WSN lifespan = 266 hours

> WSN lifespan with basic scheme = 192 hours

Constraint is respected

\[0 < X_i^{\text{min}} \leq x_i \leq X_i^{\text{max}} \]
Conclusion on the HDS approach

- **Lifespan increase** up to 22% (without harvesting) and 28% (with harvesting) when compared to basic scheme
- **Constraints** respected
- Very small number of switches
- Take into account the **cost of the switches** => Promising solution

- Lifespan decrease up to 7% when compared to MPC strategy => Switching cost
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of Both Control Strategies

Conclusions
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results
 - Test-bench description
 - Experimental results for the MPC strategy
 - Experimental results for the HDS strategy
 - Conclusion of the section
Test-bench description (1/3)

Benchmark

- Platform **OpenPicus** (FLYPORT Wi-Fi 802.11G with 16 Bit Processor PIC24FJ256) [1]
- Temperature & humidity sensors (Aosong DHT11) [2]
- Li-polymer rechargeable batteries [3]
- Router Wi-Fi
- Without harvesting systems

Deployed in an “open-space” office

- More information than required at the application level of the WSN

Deployed in the open-space office

Control algorithm written in Python

Middleware LINC:
- Node synchronization
- Data management

Measurement of the remaining energy y_i?
Estimation!
Test-bench description (3/3)

- Characteristics of nodes (from datasheet and lab. measurements)

<table>
<thead>
<tr>
<th>Node</th>
<th>Consum. in mode M_1, [mWh]</th>
<th>Consum. in mode M_2, [mWh]</th>
<th>Nom. bat. capacity, $X_{i_{\text{max}}}$, [mWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36,593</td>
<td>5,846</td>
<td>3885 (type 1)</td>
</tr>
<tr>
<td>2</td>
<td>36,482</td>
<td>6,031</td>
<td>3885 (type 1)</td>
</tr>
<tr>
<td>3</td>
<td>34,854</td>
<td>6,105</td>
<td>3885 (type 1)</td>
</tr>
<tr>
<td>4</td>
<td>36,482</td>
<td>6,301</td>
<td>3515 (type 2)</td>
</tr>
<tr>
<td>5</td>
<td>36,556</td>
<td>6,105</td>
<td>3515 (type 2)</td>
</tr>
<tr>
<td>6</td>
<td>33,041</td>
<td>5,735</td>
<td>3515 (type 2)</td>
</tr>
</tbody>
</table>

- **Dynamic Mission**: 3 (or 1) active nodes (in mode M_1)

 - Experiments start 5 p.m.
 - Radio environment not under control
Experimental results for the MPC strategy

- WSN lifespan = 53 hours
- Number of switches ≈ 100

Initial energy of whole WSN = $14.521 \times 10^3 [mWh]$
Experimental results for the HDS strategy

- WSN lifespan = 46 hours
- Number of switches ≈ 60

Initial energy of whole WSN = \(13.242 \times 10^3\) mWh
Conclusion of the section

😊 Control strategies are validated on a real-life test-bench
 => Mission is fulfilled

😊 Number of switches is similar

😊 Different radio environment for both experiments
Comparisons of Both Control Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>WSN lifespan, [hours]</th>
<th>Initial energy in the whole WSN, [mWh]</th>
<th>Final energy in the whole WSN, [mWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>53 (100%)</td>
<td>14.521 \times 10^3 (100%)</td>
<td>3.032 \times 10^3</td>
</tr>
<tr>
<td>HDS</td>
<td>46 (86.8%)</td>
<td>13.242 \times 10^3 (91.2%)</td>
<td>3.039 \times 10^3</td>
</tr>
</tbody>
</table>

![Graph showing remaining energy over time for MPC and HDS strategies]
Remaining energy evolution

MPC strategy

- **S1**
- **S2**
- **S3**
- **S4**
- **S5**
- **S6**

HDS strategy

- **S1**
- **S2**
- **S3**
- **S4**
- **S5**
- **S6**

Minimum energy level for the battery of type 1

Minimum energy level for the battery of type 2
Outline

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of Both Control Strategies

Conclusions
Conclusions

- Control strategies for WSN energy management are proposed (via MPC and HDS)
 - WSN lifespan extended by >20% when compared to basic scheme

- Implementation on a real test-bench is performed
 - Validation of the control strategies
 - More experiments to be done
Thank you