DE LA RECHERCHE À L'INDUSTRIE

Energy management of a Wireless Sensor Network at application level

Olesia MOKRENKO – CEA LETI

olesia.mokrenko@cea.fr

Suzanne Lesecq – CEA LETI

Diego Puschini – CEA LETI

Carolina Albea – LAAS

www.cea.fr

Smart environment

- Ensure a given service for a system over a Wireless Sensor Network (WSN)
- Maximize the availability of the application (WSN lifespan)

Maximize WSN lifespan

- Node level
- Network level
- Application level

- [1] I.F. Akyildiz and all. A survey on sensor networks. 2002
- [2] J. Polastre and all. Telos: Enabling Ultra-Low Power Wireless Research. 2005
- [3] M. Magno and all. Smart power unit with ultra low power radio trigger capabilities for wireless sensor networks. 2012

- [1] G. Anastasi and all. Energy conservation in wireless sensor networks: A survey. 2009
- [2] N.A. Pantazin and all. A survey on power control issues In wireless sensor networks. 2007
- [3] N. Cardoso de Castro. Energy-aware control and communication co-design in wireless networked control systems. 2006
- [4] D.E. Quevedo and all. A predictive power control scheme for energy efficient state estimation via wireless sensor networks. 2008

Dummy & Basic schemes

- Dummy scheme
 - **All nodes** are active to ensure a given service for an application

- Basic scheme
 - A given number of nodes are active to ensure a given service for an application

Objectives

- Exploit trade-offs: find a balance between different contradictory objectives that occur at the same time
- Example:
 - Maximize the performance (Ensure a given service)
 - Maximize the WSN lifespan

Context

Model Predictive Control (MPC) Approach

- Problem statement
- WSN: system modeling
- MPC design
 - Control design
 - Benchmark description
 - Simulation results
- Conclusion on the MPC approach

Problem statement, control objectives

Wireless sensor network

- Nodes deployed in a geographical area
- To ensure a given service
- Same functionality → Redundant information

Service = mission

 Minimum number of active nodes during a given time period

Energy consumption

Average energy consumption for node
 i in mode j for a given time period

Node	Mode M_1	Mode M_2		Mode M_m
1	b_{11}	b_{12}	•••	b_{1m}
2	b_{21}	b_{22}		b_{2m}
÷	÷	:	٠.	ŧ.
n	b_{n1}	b_{n2}	•••	b_{nm}

Control objectives

■ Node *i*: energy consumption model

Maximize lifespan
$$\rightarrow \max \sum_{all \ nodes} x_i(k+1)$$

Under constraints

1. Binary control (at time
$$k$$
)

Mode M_1 ON OFF

Mode M_2 OFF

 \vdots \vdots \vdots 0 $=$ $u_i(k)$

Mode M_m OFF

Whole system model

Compute
$$u(k)$$
 s.t. $\min \sum_{\text{all nodes}} B_i \cdot u_i(k)$

Node *i*: energy consumption model

$$= - +$$

$$x_i(k+1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)$$

$$y_i(k) = x_i(k) \text{ (measurement)}$$

Maximize lifespan
$$\rightarrow \max \sum_{\text{all nodes}} x_i(k+1)$$

Whole system model

Compute
$$u(k)$$
 s.t. $\min_{all\ nodes} B_i \cdot u_i(k)$

Under constraints

Node *i*: energy consumption model

Maximize lifespan
$$\rightarrow \max \sum_{\text{all nodes}} x_i(k+1)$$

Whole system model

Compute
$$u(k)$$
 s.t. $\min \sum_{all \ nodes} B_i \cdot u_i(k)$

Under constraints

Node *i*: energy consumption model

$$= - +$$

$$x_i(k+1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)$$

$$y_i(k) = x_i(k) \text{ (measurement)}$$

Maximize lifespan
$$\rightarrow \max_{\text{all nodes}} x_i(k+1)$$

Whole system model

Compute
$$u(k)$$
 s.t. $\min \sum_{all \ nodes} B_i \cdot u_i(k)$

Under constraints

Control design

Model Predictive Control

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} \left(\sum_{j=0}^{N_p} \left(\mathbf{X}^{max} - \mathbf{x}_{k+j|k} \right)^T Q \left(\mathbf{X}^{max} - \mathbf{x}_{k+j|k} \right) + \sum_{j=0}^{N_u - 1} \mathbf{u}_{k+j|k}^T R \mathbf{u}_{k+j|k} \right)$$

Subject to:

$$\begin{cases} x_{k+1+j|k} = Ax_{k+j|k} + Bu_{k+j|k} + Ew_{k+j|k}, & j = 0,1,...,N_p \\ X^{min} \le x_{k+j|k} \le X^{max}, & j = 0,1,...,N_p \end{cases}$$

$$\sum_{i=1}^{n} u_{ih} = d_h \text{ for each } (k+j|k)$$

$$\sum_{h=1}^{m} u_{ih} = 1 \text{ for each } (k+j|k)$$

$$u_{k+j|k} \in \{0,1\}^{mn}, j = 0,1,...,N_u - 1$$

Weighting matrices chosen depending on the application:
$$\begin{cases} Q \in \mathbb{R}^{n \times n}_{\geq 0} \\ R \in \mathbb{R}^{mn \times mn} \end{cases}$$

$$\begin{cases} Q \in \mathbb{R}_{\geq 0}^{n \times n} \\ R \in \mathbb{R}_{> 0}^{mn \times mn} \end{cases}$$

→ Mixed Integer Quadratic Programming (MIQP)

Benchmark description

Benchmark

- 6 sensor nodes
- **3** states:
 - 2 functioning modes
 - Unreachable condition

Mission: 3 *active* nodes (mode M_1)

Weighting matrices

$$Q = \left(\operatorname{diag}(\frac{1}{X_1^{max}}, \dots, \frac{1}{X_6^{max}})\right)^2$$

•
$$R = B'_{cons} * B_{cons}$$
, where $B_{cons} = \text{diag}(b_{11}, b_{12}, ..., b_{62})$

 Nodes characteristics (including harvesting availability) (values from datasheets)

Node	Consum. in mode M_1 , $[{m mW}{m h}]$	Consum. in mode $M_2, [m{mWh}]$	Nom. bat. capacity, X_i^{max} , $[m{mWh}]$	Harvesting availability E_i , $[mWh]$	Energy coef. [1]	Harvesting period, per 24 hours
1	36,593	5,846	3885 (type 1)	missing	1	
2	36,482	6,031	3885 (type 1)	missing	0,8	
3	34,854	6,105	3885 (type 1)	77,7	0,9	7h-12h
4	36,482	6,301	3515 (type 2)	missing	0,7	
5	36,556	6,105	3515 (type 2)	99,9	1	13h-18h
6	33,041	5,735	8510 (type 3)	missing	1	

Simulation results without harvesting

Constraint is fulfilled

$$0 < X_i^{min} \le x_i \le X_i^{max}$$

Simulation results with harvesting

Constraint is fulfilled X_{i}^{max} X_{i}^{min} $0 < X_{i}^{min} \le x_{i} \le X_{i}^{max}$

Conclusion on the MPC Approach

- **Lifespan increase** up to 27% (without harvesting) and 33% (with harvesting) when compared to basic scheme
- Constraints respected
- Large number of switches
 - => Properly take into account the cost of the switches
- Problem solved with MIQP
 - => Complexity (extra energy consumption)
- MILP problem formulation

Hybrid Dynamic System (HDS) approach

- => Naturally introduces jumps between systems of different structures
- => Cost of switches naturally taken into account

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

- Control objectives
- WSN: system modeling
- Hybrid Dynamic System (HDS)
 - Control design , scheduling law
 - Benchmark description
 - Simulation results
- Conclusions on the HDS approach

Control objectives

Same as for the MPC strategy

System modeling (1/2)

- MPC (discrete time model)
 - B_i and E_i are the energy (J, Wh)

$$x_i(k+1) = x_i(k) - B_i \cdot u_i(k) + E_i \cdot w_i(k)$$

$$y_i(k) = x_i(k)$$
 (measure)

System modeling (1/2)

- Node i: energy consumption model
 - HDS (hybrid model)
 - Flow (continuous time) dynamics
 - B_i and E_i : power (W) $\begin{cases} \dot{x}_i(t) = -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\ y_i = \alpha_i(t) \cdot x_i(t) \\ \dot{u}_i(t) = \mathbf{0}^m \end{cases}$
 - Jump dynamics (2 nodes swap their role)

Pairwise jump rule for two nodes i and l

$$\begin{bmatrix} x_i^+ \\ x_l^+ \end{bmatrix} = \begin{bmatrix} x_i - (u_i^+)^T \Delta_i u_i \\ x_l - (u_l^+)^T \Delta_l u_l \end{bmatrix} = g_x^{il}(x, u)$$
$$\begin{bmatrix} u_i^+ \\ u_l^+ \end{bmatrix} = \begin{bmatrix} u_l \\ u_i \end{bmatrix} = g_u^{il}(x, u)$$

With the switching consumption matrix Δ_i

$$\Delta_i = \begin{bmatrix} 0 & \cdots & \delta_i^{m \to 1} \\ \vdots & \ddots & \vdots \\ \delta_i^{1 \to m} & \cdots & 0 \end{bmatrix}$$

System modeling (2/2)

HDS

Flow dynamics

$$\begin{cases} \dot{x}_i(t) = -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\ y_i = \alpha_i(t) \cdot x_i(t) & -\text{measure} \\ \dot{u}_i(t) = \mathbf{0}^m \end{cases}$$

Jump dynamics

$$\begin{bmatrix} x_i^+ \\ x_l^+ \end{bmatrix} = \begin{bmatrix} x_i - (u_i^+)^T \Delta_i u_i \\ x_l - (u_l^+)^T \Delta_l u_l \end{bmatrix} = g_x^{il}(x, u)$$
$$\begin{bmatrix} u_i^+ \\ u_l^+ \end{bmatrix} = \begin{bmatrix} u_l \\ u_i \end{bmatrix} = g_u^{il}(x, u)$$

Constraints

- **1. Binary control** (at time t) $u_i \in \{0,1\}^m$
- **2. Node** work in a **unique mode** at time t
- **3. Mission** definition for mode $M_h \sum_{i=1}^n u_i^T e_h = d_h$
- **4. Bounded capacity** of the battery $0 < X_i^{min} \le x_i \le X_i^{max}$

Compute $u_i(t)$ such that lifespan maximized

Lifespan:
$$\max \sum_{all\ nodes} \frac{x_i + E_i w_i - X_i^{min}}{B_i u_i}$$

System modeling (2/2)

HDS

Flow dynamics

$$\begin{cases} \dot{x}_i(t) = -B_i \cdot u_i(t) + E_i \cdot w_i(t) \\ y_i = \alpha_i(t) \cdot x_i(t) & -\text{measure} \\ \dot{u}_i(t) = \mathbf{0}^m \end{cases}$$

Jump dynamics

$$\begin{bmatrix} x_i^+ \\ x_l^+ \end{bmatrix} = \begin{bmatrix} x_i - (u_i^+)^T \Delta_i u_i \\ x_l - (u_l^+)^T \Delta_l u_l \end{bmatrix} = g_x^{il}(x, u)$$
$$\begin{bmatrix} u_i^+ \\ u_l^+ \end{bmatrix} = \begin{bmatrix} u_l \\ u_i \end{bmatrix} = g_u^{il}(x, u)$$

Constraints

- **1. Binary control** (at time t) $u_i \in \{0,1\}^m$
- **2. Node** work in a **unique mode** at time t
- **3. Mission** definition for mode $M_h \sum_{i=1}^n u_i^T e_h = d_h$
- **4. Bounded capacity** of the battery $0 < X_i^{min} \le x_i \le X_i^{max}$

Compute $u_i(t)$ such that lifespan maximized

Lifespan:
$$\max \sum_{all \ modes} \frac{y_i - X_i^{min}}{B_i u_i}$$

Design of the scheduling law

- Compute $u_i(k) =>$ when do nodes i and l need to swap their role?
 - Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(\boldsymbol{x}, \boldsymbol{u}) \coloneqq \min_{k=i,l;k:u_k \neq \boldsymbol{0}^m} \frac{y_k - X_k^{min}}{B_k u_k}$$

- First condition to jump (or swap role)
 - Lifespan of the solution is larger after the swap

Design of the scheduling law

- Compute $u_i(k) =>$ when do nodes i and l need to swap their role?
 - Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(\boldsymbol{x}, \boldsymbol{u}) \coloneqq \min_{k=i,l;k:u_k \neq \boldsymbol{0}^m} \frac{y_k - X_k^{min}}{B_k u_k}$$

- First condition to jump (or swap role)
 - Lifespan of the solution is larger after the swap

- Second condition to jump
 - Time of the switch

Design of the scheduling law

- Compute $u_i(k) =>$ when do nodes i and l need to swap their role?
 - Lifespan of the solution (WSN lifespan) expressed by a cost function

$$J_{il}(\boldsymbol{x}, \boldsymbol{u}) \coloneqq \min_{k=i,l;k:u_k \neq \boldsymbol{0}^m} \frac{y_k - X_k^{min}}{B_k u_k}$$

- First condition to jump (or swap role)
 - Lifespan of the solution is larger after the swap

- Second condition to jump
 - Time of the switch

Benchmark description

Same benchmark as for MPC

- 6 sensor nodes
- **3** states:
 - 2 functioning modes
 - Unreachable condition

Mission: 3 *active* nodes (in mode M_1)

Nodes characteristics (including harvesting availability)

Node	Consum. in mode M_1 , $[m{mW}]$	Consum. in mode M_2 , $[m{m}m{W}]$	Nom. bat. capacity, X_i^{max} , $[m{mWh}]$	Harvesting availability E_i , $[mW]$	Energy coef. [1]	Harvesting period, per 24 hours
1	36,593	5,846	3885 (type 1)	missing	1	
2	36,482	6,031	3885 (type 1)	missing	0,8	
3	34,854	6,105	3885 (type 1)	77,7	0,9	7h-12h
4	36,482	6,301	3515 (type 2)	missing	0,7	
5	36,556	6,105	3515 (type 2)	99,9	1	13h-18h
6	33,041	5,735	8510 (type 3)	missing	1	

Simulation results without harvesting

No- de	Consum. in mode M_1 , $[m{m}m{W}]$	Consum. in mode M_2 , $[m{m}m{W}]$	Nom. bat. capacity, X_i^{max} , $[m{mW}]$	Energy coef. [1]
1	36,593	5,846	3885 (type 1)	1
2	36,482	6,031	3885 (type 1)	0,8
3	34,854	6,105	3885 (type 1)	0,9
4	36,482	6,301	3515 (type 2)	0,7
5	36,556	6,105	3515 (type 2)	1
6	33,041	5,735	8510 (type 3)	1

Number of switches is very small

WSN lifespan = 164 hours

>

WSN lifespan with basic scheme = 128 hours

Simulation results with harvesting

Number of switches is very small

= 266 hours

>

WSN lifespan with basic scheme = 192 hours

Conclusion on the HDS approach

- Lifespan increase up to 22% (without harvesting) and 28% (with harvesting) when compared to basic scheme
- Constraints respected
- Very small number of switches
- Take into account the cost of the switches=> Promising solution

Lifespan decrease up to 7% when compared to MPC strategy=> Switching cost

Context

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

- Test-bench description
- Experimental results for the MPC strategy
- Experimental results for the HDS strategy
- Conclusion of the section

Test-bench description (1/3)

Benchmark

- Platform OpenPicus (FLYPORT Wi-Fi 802.11G with 16 Bit Processor PIC24FJ256) [1]
- Temperature & humidity sensors (Aosong DHT11) [2]
- Li-polymer rechargeable batteries [3]
- Router Wi-Fi
- Without harvesting systems

Deployed in an "open-space" office

More information than required at the application level of the WSN

[1] http://www.openpicus.com/

[2] http://www.aosong.com/en/products/details.asp?id=109

[3] www.farnell.com/datasheets/1666650.pdf and 1666648.pdf

Test-bench description (2/3)

Deployed in the open-space office

Test-bench description (3/3)

Characteristics of nodes (from datasheet and lab. measurements)

No- de	Consum. in mode M_1 , $[m{mWh}]$	Consum. in mode $\it M_{\it 2}$, $\it [mWh]$	Nom. bat. capacity, X_i^{max} , $[m{mWh}]$
1	36,593	5,846	3885 (type 1)
2	36,482	6,031	3885 (type 1)
3	34,854	6,105	3885 (type 1)
4	36,482	6,301	3515 (type 2)
5	36,556	6,105	3515 (type 2)
6	33,041	5,735	3515 (type 2)

Dynamic Mission: 3 (or 1) *active* nodes (in mode M_1)

- Experiments start 5 p.m.
- Radio environment not under control

Experimental results for the MPC strategy

Experimental results for the HDS strategy

- WSN lifespan
 - = 46 hours
- Number of switches
 - ≈ 60

Conclusion of the section

Control strategies are validated on a real-life test-bench=> Mission is fulfilled

Number of switches is similar

Different radio environment for both experiments

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of both Control Strategies

Conclusions

Comparisons of Both Control Strategies

Strategy	WSN lifespan, [hours]	Initial energy in the whole WSN, [mWh]	Final energy in the whole WSN, [mWh]
MPC	53 (100%)	$14.521 * 10^3 (100\%)$	$3.032 * 10^3$
HDS	46 (86,8%)	$13.242 * 10^3 (91,2\%)$	$3.039 * 10^3$

Remaining energy evolution

Model Predictive Control Approach

Hybrid Dynamic System Approach

Implementation on a Test-Bench and Results

Comparisons of Both Control Strategies

Conclusions

Conclusions

- Control strategies for WSN energy management are proposed (via MPC and HDS)
 - WSN lifespan extended by >20% when compared to basic scheme
- Implementation on a real test-bench is performed
 - Validation of the control strategies
 - More experiments to be done

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex

