
Discrete Controller Synthesis for
Logico-numerical Systems with ReaX

Nicolas Berthier Hervé Marchand

February 4, 2014

Ctrl-A Seminar



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 2/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 3/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs
Boolean Reactive/Synchronous Programs
Logico-numerical Reactive/Synchronous Programs
Discrete Controller Synthesis Problem Statement

State of the Art

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 4/36

Example Finite Reactive/Synchronous Program

Synchronous Circuit

Even Even’
a e q

Q

Automata

E O
a

¬a ¬a
a/e

E’ O’
e

¬e ¬e
e/q

EE’ OE’

EO’OO’

a
¬a

a

¬a

a
¬a

a/q

¬a

Even

Even’ Q=Even‖Even’

Equations

;

{
x ′= (¬x ∧ a)∨ (x ∧¬a) e = x ∧ a ¬x0 ← Even
y ′= (¬y ∧ e)∨ (y ∧¬e) q = y ∧ e ¬y0 ← Even’



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 4/36

Example Finite Reactive/Synchronous Program

Synchronous Circuit

Even Even’
a e q

Q

Automata

E O
a

¬a ¬a
a/e

E’ O’
e

¬e ¬e
e/q

EE’ OE’

EO’OO’

a
¬a

a

¬a

a
¬a

a/q

¬a

Even

Even’ Q=Even‖Even’

Equations

;

{
x ′= (¬x ∧ a)∨ (x ∧¬a) e = x ∧ a ¬x0 ← Even
y ′= (¬y ∧ e)∨ (y ∧¬e) q = y ∧ e ¬y0 ← Even’



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 4/36

Example Finite Reactive/Synchronous Program

Synchronous Circuit

Even Even’
a e q

Q

Automata

E O
a

¬a ¬a
a/e

E’ O’
e

¬e ¬e
e/q

EE’ OE’

EO’OO’

a
¬a

a

¬a

a
¬a

a/q

¬a

Even

Even’ Q=Even‖Even’

Equations

;

{
x ′= (¬x ∧ a)∨ (x ∧¬a) e = x ∧ a ¬x0 ← Even
y ′= (¬y ∧ e)∨ (y ∧¬e) q = y ∧ e ¬y0 ← Even’



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 5/36

Example Finite Reactive/Synchronous Program (cont’d)

Equations {
x ′= (¬x ∧ a)∨ (x ∧¬a) e = x ∧ a ¬x0
y ′= (¬y ∧ e)∨ (y ∧¬e) q = y ∧ e ¬y0

Textual Form (nbac Format)

state x, y: bool; (* State Variables *)
q: bool; (* (Output) *)

input a: bool;
local e: bool; (* Substituted in Expressions Below *)
definition

e = x and a;
transition (* Transition Function , Assigning Every State *)

x’ = (not x and a) or (x and not a); (* ... Variable *)
y’ = (not y and e) or (y and not e);
q’ = y and e;

initial not x and not y; (* Initial State(s) Predicate *)
assertion true; (* Assertion Predicate *)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 6/36

Example Logico-numerical Reactive/Synchronous Program

Example Logico-numerical Task Model

Idle Active

r ∧ c/a

, x := 0

¬(r ∧ c)

s ∨ c

/x := x + 1

¬(s ∨ c)/
a

, x := x +1



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 6/36

Example Logico-numerical Reactive/Synchronous Program

Example Logico-numerical Task Model

Idle Active

r ∧ c/a, x := 0

¬(r ∧ c)

s ∨ c/x := x + 1

¬(s ∨ c)/
a, x := x +1



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 7/36

Expressing Reactive/Synchronous Programs

Definition (Symbolic Transition System — STS)

S = 〈X , I ,T ,A,Θ0〉 where:
I X = 〈x1, . . . , xn〉 ← Vector of State Variables
I I = 〈i1, . . . , im〉 ← Vector of Input Variables
I T = 〈t1, . . . , tn〉, ti : Expression on X ∪ I ← Transition Function
I A : Predicate on X ∪ I ← Assertion
I Θ0 : Predicate on X ← Initial State(s)

Definition (Arithmetic Symbolic Transition System — ASTS)

STS S (= 〈X , I ,T ,A,Θ0〉) where:
I X = Bs ∪ Rs′ ∪ Zs′′ (s + s ′ + s ′′ = n)
I I = Bt ∪ Rt′ ∪ Zt′′ (t + t ′ + t ′′ = m)
I T , A and Θ0 Involve Arithmetic Expressions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 8/36

Reactive/Synchronous Program Invariant

Definition (Invariant Property for an STS)

Given an ASTS S = 〈X , I ,T ,A,Θ0〉, a Predicate Φ over X is an Invariant
of S (Noted S |= Φ) iff:

I “All Executions of S Remain in States Satisfying Φ” i.e.,
∀x0 ∈ DX ← Initial State
∀(ι0, . . . , ιp) ∈ Dp

I ← Sequence of p Vectors of Inputs

Θ0(x0)∧ ∀i ∈ [0, p],A(T (. . .T (x0, ι0). . . , ιi ))

⇒ ∀i ∈ [0, p],Φ(T (. . .T (x0, ι0). . . , ιi ))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 9/36

Discrete Controller Synthesis (DCS) Problem

I Initiated by Ramadge and Wonham 19891 (Formal Languages Setting)

Controller Synthesis Problem for Invariant Enforcement in ASTSs

Given an ASTS S = 〈X , Iuc ] Ic ,T ,A,Θ0〉 and an Invariant Φ over X ,
Compute a Predicate AΦ such that:

S ′ = 〈X , Iuc ] Ic ,T ,AΦ,Θ0〉 |= Φ

I Iuc ← Non-controllable Input Variables
I Ic ← Controllable Input Variables

1Peter J. G. Ramadge and W. Murray Wonham. “The control of discrete event
systems”. In: Proceedings of the IEEE 77.1 (Jan. 1989), pp. 81–98.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 10/36

Discrete Controller Synthesis (DCS) Problem (cont’d)

Example DCS Problem for a Logico-numerical Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (t1 6= t2 ∨ t1 = Idle)

I Enforcing Bounds on xi ’s:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (x1 6 10∧ x2 6 10)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 10/36

Discrete Controller Synthesis (DCS) Problem (cont’d)

Example DCS Problem for a Logico-numerical Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (t1 6= t2 ∨ t1 = Idle)

I Enforcing Bounds on xi ’s:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (x1 6 10∧ x2 6 10)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 10/36

Discrete Controller Synthesis (DCS) Problem (cont’d)

Example DCS Problem for a Logico-numerical Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (t1 6= t2 ∨ t1 = Idle)

I Enforcing Bounds on xi ’s:
Φ(〈t1, t2, x1, x2, a1, a2〉) = (x1 6 10∧ x2 6 10)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 11/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art
For Other Kinds of Models
For Synchronous Languages
For Infinite-State Systems

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 12/36

State of the Art: Actual Tools

I Petrify2

I SynthKro3

I Supremica4

I Uppaal-tiga5

I . . .

2Jordi Cortadella et al. “Petrify: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers”. In: IEICE Transactions on Information and
Systems 80.3 (1997), pp. 315–325.

3Karine Altisen and Stavros Tripakis. “Tools for controller synthesis of timed
systems”. In: Proceedings of the 2nd Workshop on Real-Time Tools (RT-TOOLS’02).
2002, pp. 2002–025.

4Knut Akesson et al. “Supremica: an integrated environment for verification,
synthesis and simulation of discrete event systems”. In: 8th International Workshop on
Discrete Event Systems. IEEE. 2006, pp. 384–385.

5Gerd Behrmann et al. “Uppaal-tiga: Time for playing games!” In: Computer Aided
Verification. Springer. 2007, pp. 121–125.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 13/36

State of the Art: Actual Tools for Synchronous Languages

I Sigali6
I Polynomial Dynamical Systems (Z/3Z)
I Symbolic Computations using Ternary Decision Diagrams
I Finite Systems

I 6. . .

6Hervé Marchand et al. “Synthesis of Discrete-Event Controllers based on the Signal
Environment”. In: Discrete Event Dynamic System: Theory and Applications 10.4 (Oct.
2000), pp. 325–346.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 14/36

State of the Art: Actual Tools for InVnite-State Systems

I Smacs7
I Explicit Control Flow Graph (e.g., X = Locations∪ Zn)

; Boolean State Space Explosion
I Partial Observability of the Variables
I Using Abstract Interpretation Techniques

7Gabriel Kalyon et al. “Symbolic Supervisory Control of Infinite Transition Systems
under Partial Observation using Abstract Interpretation”. In: Discrete Event Dynamic
Systems : Theory and Applications 22.2 (2011), pp. 121–161.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 15/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art

Discrete Controller Synthesis Principles
Infinite Transition Systems
Algorithmic Principle
Finite Case
Infinite Case

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 16/36

InVnite Transition Systems

I Reasoning about State Spaces

Definition (Controllable Infinite Transition System of an ASTS)

One Associates to an ASTS S = 〈X , Iuc ] Ic ,T ,A,Θ0〉 a Controllable
Infinite Transition System [S ] = 〈X , I, TS ,AS ,X0〉 where:

I X = DX ← State Space
I I = U × C

I U = DIuc ← Non-controllable Input Space
I C = DIc ← Controllable Input Space

I TS ⊆ X × I → X ← Transition Function
= λ(x , ι). (tj (x , ι))j∈[1,n]

I AS ⊆ X × I ← Assertion on Environment
= {(x , ι) |A(x , ι) = true}

I X0 ⊆ X ← Initial States
= {x ∈ X |Θ0(x) = true}



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 17/36

Discrete Controller Synthesis: Algorithmic Principle

I Let Bad def
= {x ∈ X |Φ(x) = false} ← States to Avoid

I Computing States IBad “Uncontrollably” Reaching Bad ← Fix-point
I Using Pre-image Function T −1

S : ℘(X )→ ℘(X × U × C)

I Success iff X0 ∩ IBad = ∅
; New Predicate ← Solution to the DCS Problem

Finite Case

I State Variables on Finite Domains (e.g., X = Bn)

; Maximally Permissive Controller

Infinite Case

I Allowing Numerical State Variables (e.g., X = Bn × Zm)
I Undecidability Problem ; “Over-approximating Synthesis”



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 17/36

Discrete Controller Synthesis: Algorithmic Principle

I Let Bad def
= {x ∈ X |Φ(x) = false} ← States to Avoid

I Computing States IBad “Uncontrollably” Reaching Bad ← Fix-point
I Using Pre-image Function T −1

S : ℘(X )→ ℘(X × U × C)

I Success iff X0 ∩ IBad = ∅
; New Predicate ← Solution to the DCS Problem

Finite Case

I State Variables on Finite Domains (e.g., X = Bn)

; Maximally Permissive Controller

Infinite Case

I Allowing Numerical State Variables (e.g., X = Bn × Zm)
I Undecidability Problem ; “Over-approximating Synthesis”



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 18/36

Discrete Controller Synthesis Principle in the Finite Case

X

Bad

IBad = coreachu(Bad) coreachu(B)
def
= lfp(λβ.B ∪ preu(β))

preu(B)
def
=
{
x ∈ X

∣∣∃u ∈ U ,∀c ∈ C, (x , u, c) ∈ T −1
S (B)∩AS

}



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 18/36

Discrete Controller Synthesis Principle in the Finite Case

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

IBad = coreachu(Bad) coreachu(B)
def
= lfp(λβ.B ∪ preu(β))

preu(B)
def
=
{
x ∈ X

∣∣∃u ∈ U ,∀c ∈ C, (x , u, c) ∈ T −1
S (B)∩AS

}



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 18/36

Discrete Controller Synthesis Principle in the Finite Case

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

IBad

IBad = coreachu(Bad) coreachu(B)
def
= lfp(λβ.B ∪ preu(β))

preu(B)
def
=
{
x ∈ X

∣∣∃u ∈ U ,∀c ∈ C, (x , u, c) ∈ T −1
S (B)∩AS

}



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 18/36

Discrete Controller Synthesis Principle in the Finite Case

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

IBad

IBad = coreachu(Bad) coreachu(B)
def
= lfp(λβ.B ∪ preu(β))

preu(B)
def
=
{
x ∈ X

∣∣∃u ∈ U ,∀c ∈ C, (x , u, c) ∈ T −1
S (B)∩AS

}



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 19/36

Discrete Controller Synthesis: Algorithmic Principle

I Let Bad def
= {x ∈ X |Φ(x) = false} ← States to Avoid

I Computing States IBad “Uncontrollably” Reaching Bad ← Fix-point
I Using Pre-image Function T −1

S : ℘(X )→ ℘(X × U × C)

I Success iff X0 ∩ IBad = ∅
; New Predicate ← Solution to the DCS Problem

Finite Case

I State Variables on Finite Domains (e.g., X = Bn)

; Maximally Permissive Controller

Infinite Case

I Allowing Numerical State Variables (e.g., X = Bn × Zm)
I Undecidability Problem ; “Over-approximating Synthesis”



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 19/36

Discrete Controller Synthesis: Algorithmic Principle

I Let Bad def
= {x ∈ X |Φ(x) = false} ← States to Avoid

I Computing States IBad “Uncontrollably” Reaching Bad ← Fix-point
I Using Pre-image Function T −1

S : ℘(X )→ ℘(X × U × C)

I Success iff X0 ∩ IBad = ∅
; New Predicate ← Solution to the DCS Problem

Finite Case

I State Variables on Finite Domains (e.g., X = Bn)
; Maximally Permissive Controller

Infinite Case

I Allowing Numerical State Variables (e.g., X = Bn × Zm)
I Undecidability Problem ; “Over-approximating Synthesis”



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 19/36

Discrete Controller Synthesis: Algorithmic Principle

I Let Bad def
= {x ∈ X |Φ(x) = false} ← States to Avoid

I Computing States IBad “Uncontrollably” Reaching Bad ← Fix-point
I Using Pre-image Function T −1

S : ℘(X )→ ℘(X × U × C)

I Success iff X0 ∩ IBad = ∅
; New Predicate ← Solution to the DCS Problem

Finite Case

I State Variables on Finite Domains (e.g., X = Bn)
; Maximally Permissive Controller

Infinite Case

I Allowing Numerical State Variables (e.g., X = Bn × Zm)
I Undecidability Problem ; “Over-approximating Synthesis”



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 20/36

Abstract Interpretation Principles

〈℘(X ),⊆ 〉 〈Λ,v 〉
γ(`)

`

α(d)d v
⊆

eγ(e)

T −1
S ◦ γ(e)

e ′

T ]−1
S (e)

v

Requirements

I 〈Λ,v,t,u,>,⊥〉, α and γ such that: ℘(X ) −−−→←−−−α
γ

Λ; + T ]−1
S

+ Widening Operator ∇ : Λ× Λ→ Λ ← Forcing Convergence



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 20/36

Abstract Interpretation Principles

〈℘(X ),⊆ 〉 〈Λ,v 〉
γ(`)

`

α(d)d v
⊆

eγ(e)

T −1
S ◦ γ(e)

e ′

T ]−1
S (e)

v

Requirements

I 〈Λ,v,t,u,>,⊥〉, α and γ such that: ℘(X ) −−−→←−−−α
γ

Λ; + T ]−1
S

+ Widening Operator ∇ : Λ× Λ→ Λ ← Forcing Convergence



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 20/36

Abstract Interpretation Principles

〈℘(X ),⊆ 〉 〈Λ,v 〉
γ(`)

`

α(d)d v
⊆

eγ(e)

T −1
S ◦ γ(e)

e ′

T ]−1
S (e)

v

Requirements

I 〈Λ,v,t,u,>,⊥〉, α and γ such that: ℘(X ) −−−→←−−−α
γ

Λ; + T ]−1
S

+ Widening Operator ∇ : Λ× Λ→ Λ ← Forcing Convergence



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 20/36

Abstract Interpretation Principles

〈℘(X ),⊆ 〉 〈Λ,v 〉
γ(`)

`

α(d)d v
⊆

eγ(e)

T −1
S ◦ γ(e)

e ′

T ]−1
S (e)

v

Requirements

I 〈Λ,v,t,u,>,⊥〉, α and γ such that: ℘(X ) −−−→←−−−α
γ

Λ; + T ]−1
S

+ Widening Operator ∇ : Λ× Λ→ Λ ← Forcing Convergence



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 20/36

Abstract Interpretation Principles

〈℘(X ),⊆ 〉 〈Λ,v 〉
γ(`)

`

α(d)d v
⊆

eγ(e)

T −1
S ◦ γ(e)

e ′

T ]−1
S (e)

v

Requirements

I 〈Λ,v,t,u,>,⊥〉, α and γ such that: ℘(X ) −−−→←−−−α
γ

Λ; + T ]−1
S

+ Widening Operator ∇ : Λ× Λ→ Λ ← Forcing Convergence



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 21/36

Over-approximating Discrete Controller Synthesis

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

I ′Bad = γ ◦ coreachu ◦ α(Bad) coreachu(B)
def
= lfp(λβ.Bpre]u(β))

pre]u(B)
def
= ∃]U

(
∀]C
(
T ]−1

S (B)u α(AS)
))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 21/36

Over-approximating Discrete Controller Synthesis

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

IBad

I Computing I ′Bad ⊇ IBad

I ′Bad = γ ◦ coreachu ◦ α(Bad) coreachu(B)
def
= lfp(λβ.Bpre]u(β))

pre]u(B)
def
= ∃]U

(
∀]C
(
T ]−1

S (B)u α(AS)
))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 21/36

Over-approximating Discrete Controller Synthesis

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

IBad

IBad = coreachu(Bad) coreachu(B)
def
= lfp(λβ.B ∪ preu(β))

preu(B)
def
=
{
x ∈ X

∣∣∃u ∈ U ,∀c ∈ C, (x , u, c) ∈ T −1
S (B)∩AS

}

I ′Bad = γ ◦ coreachu ◦ α(Bad) coreachu(B)
def
= lfp(λβ.Bpre]u(β))

pre]u(B)
def
= ∃]U

(
∀]C
(
T ]−1

S (B)u α(AS)
))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 21/36

Over-approximating Discrete Controller Synthesis

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

I ′Bad

I ′Bad = γ ◦ coreach]u ◦ α(Bad) coreach]u(B)
def
= lfp(λβ.B t pre]u(β))

pre]u(B)
def
= ∃]U

(
∀]C
(
T ]−1

S (B)u α(AS)
))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 21/36

Over-approximating Discrete Controller Synthesis

X

Bad

∀u ∈ U
∃c ∈ C

∃u ∈ U
∀c ∈ C

I ′Bad

I ′Bad = γ ◦ coreach∇u ◦ α(Bad) coreach∇u (B)
def
= lfp(λβ.B∇pre]u(β))

pre]u(B)
def
= ∃]U

(
∀]C
(
T ]−1

S (B)u α(AS)
))



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 22/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations
Over-approximating Logico-numerical State Spaces
Further Technical Choices
Implementation Details
Performance Comparison with Sigali
Evaluations of Over-approximating Synthesis

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 23/36

Over-approximating Logico-numerical State Spaces

Over-approximating Numerical Spaces (e.g., X = Zn × Rm)

Numerical Domains Provide α, γ and N such that ℘(Zn × Rm) −−−→←−−−α
γ
N

I Intervals: ∧
i∈[1,n+m](ai 6 vi 6 bi )

I Convex Polyhedra: Conjunction of k Linear Constraints of the Form:(∑
i∈[1,n+m] aivi

)
6 b

Over-approximating Logico-numerical State Spaces (e.g., X = Bn × Zm)

Composing: One Numerical Domain N & One Boolean Domain8

I Product: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

℘(Bn)×N

I Power: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

Bn→ N (= N Bn
)

8Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 23/36

Over-approximating Logico-numerical State Spaces

Over-approximating Numerical Spaces (e.g., X = Zn × Rm)

Numerical Domains Provide α, γ and N such that ℘(Zn × Rm) −−−→←−−−α
γ
N

I Intervals: ∧
i∈[1,n+m](ai 6 vi 6 bi )

I Convex Polyhedra: Conjunction of k Linear Constraints of the Form:(∑
i∈[1,n+m] aivi

)
6 b

Over-approximating Logico-numerical State Spaces (e.g., X = Bn × Zm)

Composing: One Numerical Domain N & One Boolean Domain8

I Product: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

℘(Bn)×N

I Power: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

Bn→ N (= N Bn
)

8Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 23/36

Over-approximating Logico-numerical State Spaces

Over-approximating Numerical Spaces (e.g., X = Zn × Rm)

Numerical Domains Provide α, γ and N such that ℘(Zn × Rm) −−−→←−−−α
γ
N

I Intervals: ∧
i∈[1,n+m](ai 6 vi 6 bi )

I Convex Polyhedra: Conjunction of k Linear Constraints of the Form:(∑
i∈[1,n+m] aivi

)
6 b

Over-approximating Logico-numerical State Spaces (e.g., X = Bn × Zm)

Composing: One Numerical Domain N & One Boolean Domain8

I Product: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

℘(Bn)×N

I Power: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

Bn→ N (= N Bn
)

8Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 23/36

Over-approximating Logico-numerical State Spaces

Over-approximating Numerical Spaces (e.g., X = Zn × Rm)

Numerical Domains Provide α, γ and N such that ℘(Zn × Rm) −−−→←−−−α
γ
N

I Intervals: ∧
i∈[1,n+m](ai 6 vi 6 bi )

I Convex Polyhedra: Conjunction of k Linear Constraints of the Form:(∑
i∈[1,n+m] aivi

)
6 b

Over-approximating Logico-numerical State Spaces (e.g., X = Bn × Zm)

Composing: One Numerical Domain N & One Boolean Domain8

I Product: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

℘(Bn)×N

I Power: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

Bn→ N (= N Bn
)

8Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 23/36

Over-approximating Logico-numerical State Spaces

Over-approximating Numerical Spaces (e.g., X = Zn × Rm)

Numerical Domains Provide α, γ and N such that ℘(Zn × Rm) −−−→←−−−α
γ
N

I Intervals: ∧
i∈[1,n+m](ai 6 vi 6 bi )

I Convex Polyhedra: Conjunction of k Linear Constraints of the Form:(∑
i∈[1,n+m] aivi

)
6 b

Over-approximating Logico-numerical State Spaces (e.g., X = Bn × Zm)

Composing: One Numerical Domain N & One Boolean Domain8

I Product: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

℘(Bn)×N

I Power: ℘(Bn × Zm × Ro) −−−→←−−−α
γ

Bn→ N (= N Bn
)

8Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 24/36

Further Technical Choices

Restricting to C = Bp

I Computing the Universal Quantification in the Concrete Domain

pre]
′

u (B)
def
= ∃]Uα

{
(x , u)

∣∣∣∀c ∈ C, (x , u, c) ∈ γ
(
T ]−1

S (B)u α(AS)
)}

I Permits Triangularization of the Controller9

9Gwenaël Delaval, Hervé Marchand, and Éric Rutten. “Contracts for modular discrete
controller synthesis”. In: Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems. Stockholm, Sweden, 2010, pp. 57–66.



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 25/36

ReaX: Implementation Details

Extension of ReaVer10, Itself Exploiting BddApron11

I Decision Diagrams: CUDD
I Numerical Abstract Domains of APRON; e.g.,

I Intervals
I Convex Polyhedra

I Combining Binary Decision Diagrams with Numerical Abstract
Domains
; Product (Bn ×N ), Power (Bn→ N )

I Pre-processing Features
I Partial Control Flow Graph Generation

; Improving Precision

I BZR Backend

10Peter Schrammel. “Logico-Numerical Verification Methods for Discrete and Hybrid
Systems”. PhD thesis. University of Grenoble, 2012.

11Bertrand Jeannet. BddApron: A logico-numerical abstract domain library. 2009.
url: http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/.

http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/


DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 26/36

Performance Comparison with Sigali

Benchmark

Idle Active

r1 ∧ c1/a1

¬(r1 ∧ c1)

s1
¬s1/a1

Idle Active

r2 ∧ c2/a2

¬(r2 ∧ c2)

s2
¬s2/a2

I X = 〈t1, t2, a1, a2〉 DX = {Idle,Active}2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States

Φ(〈t1, t2, . . . 〉) = (t1 6= t2 ∨ t1 = Idle)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 26/36

Performance Comparison with Sigali

Benchmark

typedef State = enum {Idle , Active };
state t1 , t2: State; (* State Variables *)
input r1 , r2, s1, s2: bool; (* Non -controllable Inputs *)
controllable c1 , c2: bool; (* Controllable Inputs *)
transition

t1 ’ = if t1 = Idle and r1 and c1 then Active else
if t1 = Active and s1 then Idle else t1;

t2 ’ = if t2 = Idle and r2 and c2 then Active else
if t2 = Active and s2 then Idle else t2;

initial t1 = Idle and t2 = Idle;
invariant t1 <> t2 or t1 = Idle; (* To be Enforced (Φ) *)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 27/36

Performance Comparison with Sigali (cont’d)

Comparing Execution Times

10ms

50ms

¼s

1s

5s
15s

60s

5m
¼h

1h

5h

0 10 20 30 40 50 60 70 80 90 100

Sy
nt
he
si
s
T
im

e

Number of Task Automata (n)

Sigali
ReaX



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States

& Bounds on xi ’s
& Relational Constraints on xi ’s

Φ(〈t1, t2, x1, x2. . . 〉) = (t1 6= t2∨t1 = Idle)

∧(x1 6 10∧x2 6 10)∧(x1 6 x2)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States & Bounds on xi ’s

& Relational Constraints on xi ’s

Φ(〈t1, t2, x1, x2. . . 〉) = (t1 6= t2∨t1 = Idle)∧(x1 6 10∧x2 6 10)

∧(x1 6 x2)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

I X = 〈t1, t2, x1, x2, a1, a2〉 DX = {Idle,Active}2× Z2× B2

I Iuc = 〈r1, r2, s1, s2〉, Ic = 〈c1, c2〉 DIuc = B4, DIc = B2

I Enforcing Mutual Exclusion Between Active States & Bounds on xi ’s
& Relational Constraints on xi ’s

Φ(〈t1, t2, x1, x2. . . 〉) = (t1 6= t2∨t1 = Idle)∧(x1 6 10∧x2 6 10)∧(x1 6 x2)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

typedef State = enum {Idle , Active };
state t1 , t2: State; (* State Variables *)

x1 , x2: int;
input r1 , r2, s1, s2: bool; (* Non -controllable Inputs *)
controllable c1 , c2: bool; (* Controllable Inputs *)
transition

t1 ’ = if t1 = Idle and r1 and c1 then Active else
if t1 = Active and (s1 or c1) then Idle else t1;

x1 ’ = if t1 = Idle and r1 and c1 then 0 else
if t1 = Active then x1 + 1 else x1;

t2 ’ = if t2 = Idle and r2 and c2 then Active else
if t2 = Active and (s2 or c2) then Idle else t2;

x2 ’ = if t2 = Idle and r2 and c2 then 0 else
if t2 = Active then x2 + 1 else x2;

initial x1 = 0 and t1 = Idle and x2 = 0 and t2 = Idle;
invariant t1 <> t2 or t1 = Idle; (* To be Enforced (Φ) *)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

typedef State = enum {Idle , Active };
state t1 , t2: State; (* State Variables *)

x1 , x2: int;
input r1 , r2, s1, s2: bool; (* Non -controllable Inputs *)
controllable c1 , c2: bool; (* Controllable Inputs *)
transition

t1 ’ = if t1 = Idle and r1 and c1 then Active else
if t1 = Active and (s1 or c1) then Idle else t1;

x1 ’ = if t1 = Idle and r1 and c1 then 0 else
if t1 = Active then x1 + 1 else x1;

t2 ’ = if t2 = Idle and r2 and c2 then Active else
if t2 = Active and (s2 or c2) then Idle else t2;

x2 ’ = if t2 = Idle and r2 and c2 then 0 else
if t2 = Active then x2 + 1 else x2;

initial x1 = 0 and t1 = Idle and x2 = 0 and t2 = Idle;
invariant t1 <> t2 or t1 = Idle (* To be Enforced (Φ) *)

and x1 <= 10 and x2 <= 10;



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 28/36

Example Logico-numerical DCS Problem

Example Logico-numerical Program & Invariant Properties

typedef State = enum {Idle , Active };
state t1 , t2: State; (* State Variables *)

x1 , x2: int;
input r1 , r2, s1, s2: bool; (* Non -controllable Inputs *)
controllable c1 , c2: bool; (* Controllable Inputs *)
transition

t1 ’ = if t1 = Idle and r1 and c1 then Active else
if t1 = Active and (s1 or c1) then Idle else t1;

x1 ’ = if t1 = Idle and r1 and c1 then 0 else
if t1 = Active then x1 + 1 else x1;

t2 ’ = if t2 = Idle and r2 and c2 then Active else
if t2 = Active and (s2 or c2) then Idle else t2;

x2 ’ = if t2 = Idle and r2 and c2 then 0 else
if t2 = Active then x2 + 1 else x2;

initial x1 = 0 and t1 = Idle and x2 = 0 and t2 = Idle;
invariant t1 <> t2 or t1 = Idle (* To be Enforced (Φ) *)

and x1 <= 10 and x2 <= 10 and x1 <= x2;



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 29/36

Results of Over-approximating Synthesis

Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

Φ(〈t1, t2, x1, x2. . . 〉) = (t1 6= t2 ∨ t1 = Idle)∧ (x1 6 10∧ x2 6 10)

I Power Domain, Intervals & Convex Polyhedra

I ′cBad =


t1 = Idle ∧ t2 = Idle ∧ x1 6 10∧ x2 6 10∨
t1 = Idle ∧ t2 = Active∧ x1 6 10∧ x2 6 9∨
t1 = Active ∧ t2 = Idle∧ x1 6 9∧ x2 6 10





DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 30/36

Results of Over-approximating Synthesis (cont’d)

Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

Φ(〈t1, t2, x1. . . 〉) = (t1 6= t2∨ t1 = Idle)∧ (x1 6 10∧ x2 6 10)∧ (x1 6 x2)

I Power Domain, Intervals

I ′Bad ⊇ {t1 = Idle ∧ t2 = Idle ∧ x1 < 11 ∧ x2 < 10}
⊇ {t1 = Idle ∧ t2 = Idle ∧ x1 = 0 ∧ x2 = 0} = X0



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 30/36

Results of Over-approximating Synthesis (cont’d)

Program

Idle Active

r1 ∧ c1/a1, x1 := 0

¬(r1 ∧ c1)

s1 ∨ c1/x1 := x1 + 1

¬(s1 ∨ c1)/
a1, x1 := x1 + 1

Idle Active

r2 ∧ c2/a2, x2 := 0

¬(r2 ∧ c2)

s2 ∨ c2/x2 := x2 + 1

¬(s2 ∨ c2)/
a2, x2 := x2 + 1

Φ(〈t1, t2, x1. . . 〉) = (t1 6= t2∨ t1 = Idle)∧ (x1 6 10∧ x2 6 10)∧ (x1 6 x2)

I Power Domain, Convex Polyhedra

I ′cBad =


t1 = Idle ∧ t2 = Idle ∧ x1 6 x2 6 10∨
t1 = Idle ∧ t2 = Active∧ x1 6 x2 6 9∨
t1 = Active ∧ t2 = Idle∧ x1 < x2 6 10





DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 31/36

Performance Evaluation

Example Logico-numerical Programs & Invariant Properties

Idle Active

ri ∧ ci/ai , xi := 0

¬(ri ∧ ci )

si ∨ ci/xi := xi + 1

¬(si ∨ ci )/
ai , xi := xi + 1

I X = 〈t1. . . tn, x1. . . xn, a1. . . an〉 DX = {Idle,Active}n × Zn × Bn

I Iuc = 〈r1. . . rn, s1. . . sn〉, Ic = 〈c1. . . cn〉 DIuc = B2n, DIc = Bn

I Enforcing Mutual Exclusion Between Active States & Bounds on xi ’s

& Relational Constraints on xi ’s

Φ(〈t1. . . tn, x1. . . xn, . . . 〉) =⊕
i∈[1,n]

(ti = Active)∧
∧

i∈[1,n]

(xi 6 10)

∧
∧

i∈[1,n[

(xi 6 xi+1)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 32/36

Performance of Over-approximating Synthesis

Performance Results: Mutual Exclusion & Bounds

10ms

50ms

¼s

1s

5s

15s

60s

5m

¼h

1h

5h

1 2 3 4 5 6 7 8

Sy
nt
he
si
s
T
im

e

Number of Automata

Intervals
Convex Polyhedra



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 33/36

Performance Evaluation

Example Logico-numerical Programs & Invariant Properties

Idle Active

ri ∧ ci/ai , xi := 0

¬(ri ∧ ci )

si ∨ ci/xi := xi + 1

¬(si ∨ ci )/
ai , xi := xi + 1

I X = 〈t1. . . tn, x1. . . xn, a1. . . an〉 DX = {Idle,Active}n × Zn × Bn

I Iuc = 〈r1. . . rn, s1. . . sn〉, Ic = 〈c1. . . cn〉 DIuc = B2n, DIc = Bn

I Enforcing Mutual Exclusion Between Active States & Bounds on xi ’s

& Relational Constraints on xi ’s

Φ(〈t1. . . tn, x1. . . xn, . . . 〉) =⊕
i∈[1,n]

(ti = Active)∧
∧

i∈[1,n]

(xi 6 10)

∧
∧

i∈[1,n[

(xi 6 xi+1)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 33/36

Performance Evaluation

Example Logico-numerical Programs & Invariant Properties

Idle Active

ri ∧ ci/ai , xi := 0

¬(ri ∧ ci )

si ∨ ci/xi := xi + 1

¬(si ∨ ci )/
ai , xi := xi + 1

I X = 〈t1. . . tn, x1. . . xn, a1. . . an〉 DX = {Idle,Active}n × Zn × Bn

I Iuc = 〈r1. . . rn, s1. . . sn〉, Ic = 〈c1. . . cn〉 DIuc = B2n, DIc = Bn

I Enforcing Mutual Exclusion Between Active States & Bounds on xi ’s
& Relational Constraints on xi ’s

Φ(〈t1. . . tn, x1. . . xn, . . . 〉) =⊕
i∈[1,n]

(ti = Active)∧
∧

i∈[1,n]

(xi 6 10)∧
∧

i∈[1,n[

(xi 6 xi+1)



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 34/36

Performance of Over-approximating Synthesis (cont’d)

Performance Results: Mutual Exclusion & Bounds & Relational Constraints

10ms

50ms

¼s

1s

5s
15s

60s

5m
¼h

1h

5h

1 2 3 4 5 6 7 8

Sy
nt
he
si
s
T
im

e

Number of Automata

Intervals
Convex Polyhedra



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 35/36

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 36/36

Conclusion & Further Works

ReaX

I Discrete Controller Synthesis for Logico-numerical
Synchronous/Reative Programs

I Efficient Exact Synthesis
I Over-approximating Synthesis with Abstract Interpretation Techniques
I Heptagon/BZR Backend

; Favorably Replaces Sigali

Forthcoming Challenges

I Enforcement of Quantitative Properties
I Improving Precision
I Synthesis Failure Diagnosis
I Avoiding Deadlocks



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 36/36

Conclusion & Further Works

ReaX

I Discrete Controller Synthesis for Logico-numerical
Synchronous/Reative Programs

I Efficient Exact Synthesis
I Over-approximating Synthesis with Abstract Interpretation Techniques
I Heptagon/BZR Backend

; Favorably Replaces Sigali

Forthcoming Challenges

I Enforcement of Quantitative Properties
I Improving Precision
I Synthesis Failure Diagnosis
I Avoiding Deadlocks



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 37/—

Thanks!



DCS for Logico-numerical Programs State of the Art DCS Principles ReaX Conclusions 38/—

Outline

Discrete Controller Synthesis for Logico-numerical Programs

State of the Art

Discrete Controller Synthesis Principles

ReaX: Technical Choices, Implementation & Evaluations

Conclusions



Backup 39/—

Outline

Backup
On the Necessary Convexity of Bad
Producing an Executable Controller
Triangularization of the Controller
Performance Comparison with Sigali for a Realistic Model



Backup 40/—

On the Necessary Convexity of Bad

Example Problem

With Usual Numerical Abstract Domains:

α ({x ∈ Z | x 6 0∧ 10 6 x}) = >

A Solution

I Split Bad into a Disjunction of n Convex Clauses Bad i

I Compute Every I ′Bad i

I Compute the Controller using
⋃

i∈[1,n] I
′
Bad i

; Deadlocks!



Backup 41/—

Producing an Executable Controller

I New Constraint AΦ (⊆ X × U × C)
I Relating States with Allowed Inputs

AΦ = T −1
S (I cBad )∩AΦ

I Controller (KΦ : X × U → ℘(C))
KΦ = λ(x , υ). {ι | (x , υ, ι) ∈ AΦ}

Resulting System

[S ′] = 〈X ,U , λ(σ, υ).TS(σ, υ, choose ◦ KΦ(σ, υ)),AΦ,X0〉

I choose : ℘(C)→ C : Non-Deterministic Choice!



Backup 42/—

Triangularization of the Controller

I Code Generation for λ(σ, υ).choose(KΦ(σ, υ))
I Using Oracles (“Phantom Variables”)

I “Preferred Value” for the Controllable Inputs



Backup 43/—

Performance Comparison with Sigali for a Realistic Model

What About A Realistic Model?

Sigali ReaX
2-tiers 6s 3.2s
4-tiers 105s 12s


	Titlepage
	Discrete Controller Synthesis for Logico-numerical Programs
	Boolean Reactive/Synchronous Programs
	Logico-numerical Reactive/Synchronous Programs
	Discrete Controller Synthesis Problem Statement

	State of the Art
	For Other Kinds of Models
	For Synchronous Languages
	For Infinite-State Systems

	Discrete Controller Synthesis Principles
	Infinite Transition Systems
	Algorithmic Principle
	Finite Case
	Infinite Case

	ReaX: Technical Choices, Implementation & Evaluations
	Over-approximating Logico-numerical State Spaces
	Further Technical Choices
	Implementation Details
	Performance Comparison with Sigali
	Evaluations of Over-approximating Synthesis

	Conclusions
	Thanks
	Appendix
	Backup
	On the Necessary Convexity of Bad
	Producing an Executable Controller
	Triangularization of the Controller
	Performance Comparison with Sigali for a Realistic Model



