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Context / Goal: Modeling from observations
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Use case = complex system

— Example : a forest

» Predictions

— From data
— Principled construction

Parameters

FILIVEE:

— Interpretable (= characteristic scales)

— Few meta-p

— No access to all micro. parameters

— No known global states / equations

— Macro. data can be measured

arameters

Inferred
— Effective state variables

— Dynamics at given scales
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Known generative model

Ensemble of observations
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Causal state = {all pasts: same P(future | past)}

Same Causecs, Same Consequences



Known generative model

Ensemble of observations
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Intrinsic properties

possible future same distribution
sequences of futures

- past 1 ; 5 past 2 ; §

analysis

inference E

Causal state = {all pasts: same P(future | past)}

— States do not depend on the frame of reference  (distribution shapes change but not the equiv. classes)
= intrinsic property of the physical process

— No new observation can distinguish two past sequences in the same causal state

= finest building blocks for modeling (computational mechanics [Crutchfield, 1988])

— No dependency left on histories
= Markovian dynamics (any process = Markov process [Knight, 1975])




Effective state variables, recovering laws of motion
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Causal states = points in phase space
— Unique trajectory = future
— No dependency on the past



Effective state variables, recove

Dissipative pendulum ;-

Causal states = points in phase space
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Effective state variables

Causal states are independent from referential

— Build one from data = other state variables

— Equivalently valid law of motion



Effective state variables, recove
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Effective state variables

Causal states = points in phase space Causal states are independent from referential

— Unique trajectory = future — Build one from data = other state variables

— No dependency on the past — Equivalently valid law of motion

Reconstruction from measured data

— Model interpretation = effective state variables 4+ evolution at that data scale

— Capturing effective physical law = may generalize better out of observed samples




Case study on real data: monthly sunspots observations
Nomber / month Data : SILSO
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Sunspots — Structure in effective state space

Inferred state variables
— 11-years cycle (x and y)
— Amplitude

modulations (z)

Trajectories on a
structure resembling
an attractor embedding




Predictions on the structure

Sunspots —

Solar maxima
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in the data space

Sunspots — Predictions
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Robustness to measurement noise

Noisy Lorenz system (SDE) Measurements M (%) Estimated Causal States
du = —a (u — v) dt + ndW |
dv = (bu — v — uw) dt + ndW
dw = (—cw + uv) dt + ndW

(a,b,¢) = (10,28,8/3)

Data

— Simulation: V(%) = |u, v, w|(t)

_ Addition of Gaussian noise, var. o2

— Mesurements: M (t) =V (t)+G(c?)

Causal states

— Adding noise does not change equiv.
classes = robust to measurement noise!

— Intrinsic noise: SDE details preserved




Finite state machines, HMM

Observables = strings € {A,B}*

QE, Example : Even process
17 A, p=0.5 B, p=0.5
> A ’ s=...BAABBAAAABBBAAB...
7y
— f ) Nt/
c even numbers of As
B \_j
A, p=1
Ll_ ’

Minimal edge-emitting & unifilar HMM = States are causal states NOT a state-emitting HMM

@ Generate A, p= 097®
' @ B, p=0.5

Ensemble of observations A, p=0. 5

past — future Cluster A, p= 003 B p=0.33
@ ’A p=0.67

.BAABBAAABAAA... Infer
Finite length artifact

Density

.AABAAAABBAAB.. SE— !
~ABAABBBBAABB... [Brodu 2022] Only one state variable (sequences of all A)

Inferred from data



Formal system

Inferred from data

Generic HMM, IFS

Generic HMM = Iterated Function System

oo Causal states

[Jurgens 2021] | log p(s)
Symbols 7 A B [Marzen
ymbols @.6{ ,B,C} | fay \[Dacze
Snt1 = f"(sn) with p(i]s)

Observables = strings € {A,B,C}*

/\.Sz
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Jump dynamics Theoretical limit density
8348 &
Generate o sNalrlan}f:g o
& 0.
% 10~
Ensemble of observations = 3313 . 16 -
©
past — future >
o)
.BACBBCACBCAB..  Using 25k samples et p & 10 -
-.ACABBCBACCAA.. 4503
..CBACBAACBABC... [Brodu 2022] o

state variable e;



From causal states to state variables - 3. Cooking recipe

Step 1: A functional space for representing conditional distributions

Step 2: Geometric structure of the causal states set

Step 3: Parametrize that set structure = coordinates = eflective variables



A functional space for representing conditional distributions

Space H' of functions )V — R
Mbﬂity distributions of Y \

Conditional distributions P(Y|X =2 € X))

S1
i 83/

Causal state = {same P(future | past)} = whole class mapped to the same point

Some possibilities : explicit functional basis, neural networks, information geometry...

[Brodu 2022]

Easier and convenient : Reproducing Kernel Hilbert Spaces (RKHS) |
[Loomis 2023}



RKHS embedding of distributions - Some intuition

Density estimation

p(y') = % Zz k(vi,y')

kernel
centered

on yz

sample values

Yq



RKHS embedding of distributions - Some intuition

Density estimation Geometric view = barycenter

p(y') = % Zz k(vi,y')

kernel
centered

On ¥/;

sample values

Yq



RKHS embedding of distributions - Some intuition

Density estimation Geometric view = barycenter

p(y') = % Zz k(vi,y')

kernel
centered

on ?/7,

sample values

Yq

Conditional distribution = weighted average [Gretton_al_12]

Conditional density estimation
p(Y|X =x) =) ai(x)k(yi, )

v; () = proximity with x;, using k'(x;, -)

sample values = pairs (z;, V; )




Working with real data: combining kernels

Reproducing kernel property  [Aronszajn 1950]

" k generalizes the 8 function (f,0.);. = [ fo.dx’ = f(x)
k(z,0), fly = () Inner product : k is positive symmetric definite

Many known kernels, many data types (scalars, vectors, graphs, strings...)

Kernels can be combined, scaled = Consistently merge heterogenous data sources

E.g., T = temperature, P = precipitations, E = evapotranspiration

H=H1 ®Ho EV(v,0") = K1t ) K (p,p") k" (e, €’)

H = 7‘[1 D HQ kseq — ;:71-/—() wTk (xt—7'7 )

Kernels act on dimentionless data = A scale 1s needed for each source

/ / 2
#(5.%) = e (- |5 - %)

v
A




(Geometric structure of the causal states set

Hypothesis: system described by States lying on a reduced dimension set M < N
M state parameters

= causal states set dimension

at most M (manifold, fractal...) < x pY|X =ua;)

— 'Irajectory

Physical property: does not
depend on data size N




Steps 3: Coordinates = Effective state variables

Hypothesis: system described by States lying on a reduced dimension set M < N
M state parameters

= causal states set dimension

at most M (manifold, fractal...) < x pY|X =ua;)

— 'Irajectory

Physical property: does not
depend on data size N

[Brodu 2022 + in prep.]

Choice of basis = Generalized Fourier modes of minimally embedding manifold
— Causal states = distributions over future = Additional modes refine predictive info

— Estimated with diffusion maps = M inferred from an eigenspectrum decay profile

[Coitman 2006, Berry 2020]



Data i
— Experimental field, Grignon

— Temperature, soil humidity,
sun 1llumination, évapo-
transpiration, precipitations

f 1
| |
!

— ICOS data (flux tower + 1n situ sensors),
11 years of daily observations

Dynamics

— Variables 1, 2 = seasonal cycle. Var. 4 (visible) :
different trajectories in 20035, 2008, 2011

— Culture of corn then = plant response 1s #

— Impossible to distinguish visually on raw data
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[Soon on Arxiv] colors = days of the year



Molecular dynamics of n-butane [Soon on Arxiv]

n-butane
J molecule .’ .
(wikipedia)
-‘ (C'
IllplltS Data : Stefan Klus \ .

Gauche \ Gauche

— Positions x,y,z of atoms

sampled every 200 fs ®

— Local frame of reference " - b
| €

Dynamics .’ N

Average atom positions in each cluster

— Clusters = meta-stable
conformations

— Sub-clusters = hydrogen
position (chemically

equivalent, distinct in data) ‘)"

— Slow clusters + fast transitions

| ' _
= discrete dynamics at large At Dihedral angle .

360 180 120 60

‘Eclipsed A




Reserva Nacional Pacaya Samiria

aaaaa

Data SIO, NOAA, U.S. Navy, NGA, GEBCO
Image Landsat / Copernicus
Data LDEO-Columbia, NSF, NOAA

Modeling ENSO
; Data

— 50 years of measurements, very high quality

VALE DO JAVARI

g~ — 49 watersheds, Peruvian coast
— Pacific Ocean : 4 indices of sea surface temperature
— Per watershed: precipitations, runoff, evapotranspiration,

temperature

RESERVA INDIGENA MASHCO PIRG

Project with: Luc Bourrel (France), Pedro Rau (Peru)

RESERVA TERRITORIAL MA

Conditions La Nina Conditions El Nino
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Thermocline

Images :
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Modeling ENSO: preliminary results

Inferred state variables
— Seasonal cycle

. . . kT
— General amplitude of the oscillation —
R
: : : o=
— Much more than 3 dimensions... difficult = =
to visualize < —

Anomaly detection
— Nino extremes of 1997, 1982, 2016
— 2016 weaker < closer to the regular structure

— Conditions Nifa a the center of the structure
— Deviations of trajectories monthes before

Work in progress - plans
— Trying various predictive models

— Regionalization : inference of local models
for each hydroclimatically consistent region



Effective stochastic model: Work in progress

Diversity of cases to model:

— ODE / SDE.: Causal states = 1-to-1 mapping with state space

— Finite states, edge-emitting unifilar HMM m@

— General HMM, IFS, infinite states

Data-based reconstruction could be anything in between!

— Propose an encoding of causal states St = (e%, e?,...,eM )

— Fit the transition dynamics with that encoding
Sgi1 — S ~ P(As,a | s;) withdensity p(As,a)=f (e%, ez, . .., 6{”)
ds = a(s)dt 4+ b(s)dW if dJ(s) =0 otherwise s’ ~ P(s|s)

— Work 1n progress: many ML tools and possibilities



Quantifying the diffusion of information

Measured data Predictions
d Converging in
the limit to the
‘ﬂ A A data mean

V\/ A
Initial information

o latest mesurements)
Initial causal state N g e N > (
or distribution Q Qo Qo] Q7 Q77> Qoo completely lost

T = transfer operator SDE < Diffusion : L1mit distribution
distribution of states of the SDE




Conclusion: Causal inference / Global modeling

Goals
Modeling Understanding
— Complex Systems — Principled construction
— Machine learning approach (# neural nets) — Generalizes ODE / SDE
— Modeling the dynamics at the scale of data — Effective state variables + dynamics
Inputs
Heterogeneous data Few parameters, interpretable
— Temporal data (spatial extension possible) — Length of the past / future causal dependencies
— (quasi-)arbitrary, (non-numerical possible) — Characteristic scales of each data source
— Multiple sources combined properly (RKHS) — A few more 1nternal meta-parameters (kernel)
Outputs Application example: Anomaly detection

Effective state variables

— Condense predictive info. at data scale NI ISR anferregl
. . . ’ 201208 namics
— Link with known mechanisms? % Y
Predictive model . o7
Anomalies—

— Dynamics in reduced dimensions
— Work 1n progress...



