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Context / Goal: Modeling from observations

Model Observations Predictions

Intro

Ensemble of
 past → future

?

Use case = complex system

– Example : a forest

– No known global states / equations

– No access to all micro. parameters

– Macro. data can be measured

Inferred

– Effective state variables

– Dynamics at given scales

– Principled construction

– From data

Parameters

– Few meta-parameters

– Interpretable  (= characteristic scales)



Modeling panorama(very incomplete)Intro

First principles

Model of data 
dynamics

Neural
Networks

fitting

trainingBayes rule
inference

regression

ML guided
by physics

evolution equations

micro-states

∞ Markov order, ∞ states

observable
= function

data 
assimilation

micro / hidden
dynamics

Discrete elements

Hidden 
Markov 
Models

Koopman operator

Make dynamics linear

Make dynamics Markovian

Causal states

Data simulations
(ODE, PDE, SDE…)

(Active matter, mechanics…)

(auto-regressive, 
moving average…)

Time series analysis

(Sindy, SVR, …)

Function dictionary

Hidden / latent variables

Statistics

(Gaussian Mixture…)

Parametric models



Notion of causal statesTheory

Known generative model
possible future
sequences

same distribution
of futures

past 1 past 2

Causal state = {all pasts: same P(future | past)}

Ensemble of observations
analysis

inference

Same causes, same consequences

past → future



Theory Intrinsic properties

– States do not depend on the frame of reference

   ⇒ intrinsic property of the physical process

(distribution shapes change but not the equiv. classes)

(any process ⇒ Markov process [Knight, 1975])

– No new observation can distinguish two past sequences in the same causal state

   ⇒ finest building blocks for modeling

– No dependency left on histories

   ⇒ Markovian dynamics

(computational mechanics [Crutchfield, 1988])

Known generative model same distribution
of futures

past 1 past 2

Causal state = {all pasts: same P(future | past)}

Ensemble of observations
analysis

inference

past → future

possible future
sequences



State space: ,

Theory Effective state variables, recovering laws of motion

x

y

Dissipative pendulum

– No dependency on the past

– Unique trajectory = future

Causal states = points in phase space
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Theory Effective state variables, recovering laws of motion

x

y

Dissipative pendulum

Effective state variables

– Equivalently valid law of motion– No dependency on the past

– Unique trajectory = future

Causal states = points in phase space

– Build one from data ⇒ other state variables

Causal states are independent from referential

State space: ,
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Theory Effective state variables, recovering laws of motion

x

y

Dissipative pendulum

Effective state variables
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– Equivalently valid law of motion

– Capturing effective physical law ⇒ may generalize better out of observed samples

Reconstruction from measured data

– Model interpretation = effective state variables + evolution at that data scale

– No dependency on the past

– Unique trajectory = future

Causal states = points in phase space

– Build one from data ⇒ other state variables

Causal states are independent from referential

State space: ,



Practice Case study on real data: monthly sunspots observations

Nomber / month Data : SILSO



Practice Sunspots – Structure in effective state space

Inferred state variables
– 11-years cycle (x and y)

– Amplitude 

   modulations (z)

  
Trajectories on a
structure resembling
an attractor embedding



Practice Sunspots – Predictions on the structure

Inferred state variables
– 11-years cycle (x and y)

– Amplitude 

   modulations (z)

  
Trajectories on a
structure resembling
an attractor embedding

Predictions
– Trajectory constrained

   on the structure

– Linear operator

   converging to the

   average state



Practice Sunspots – Predictions in the data space

Measured data Prediction (trajectory)
Prediction (linear model)



Measurements Estimated Causal StatesNoisy Lorenz system (SDE)

Causal states

– Adding noise does not change equiv.
   classes ⇒ robust to measurement noise!

– Intrinsic noise: SDE details preserved

Theory Robustness to measurement noise

Data

– Addition of Gaussian noise, var.

– Simulation: 

– Mesurements:



Theory Finite state machines, HMM

States are causal states⇒

Example : Even process

Observables = strings ∊ {A,B}*

s = …BAABBAAAABBBAAB…

AABAAA…

Ensemble of observations
past → future

ABBAAB…

BBAABB…

S1 S2

,A p=0.5

,A p=1

,B p=0.5

S1 S2 Sn

p(s2|s1)

q(A|s2)
q(B|s2)

A B

q(A|s1)
q(B|s1)

A B

p(s1|s2)
?

[Crutchfield 1988]

even numbers of As

Generate

Infer

Only one state variable

D
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y

Minimal edge-emitting & unifilar HMM NOT a state-emitting HMM

∞ Markov order, ∞ states

Finite length artifact
(sequences of all A)

…BAABBA

…AABAAA

…ABAABB [Brodu 2022]

Cluster

S1
S2

S3
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S0

S3

S1

S2

A

B

C

Theory Generic HMM, IFS

Iterated Function SystemGeneric HMM ⇒

ACBCAB…

Ensemble of observations
past → future

BACCAA…

ACBABC…

Generate

Infer
…BACBBC

…ACABBC

…CBACBA [Brodu 2022]
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Observables = strings ∊ {A,B,C}*
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[Marzen
  2017]

[Jurgens 2021]



Theory

Step 1: A functional space for representing conditional distributions

Step 2: Geometric structure of the causal states set

        From causal states to state variables - 3. Cooking recipe

Step 3: Parametrize that set structure ⇒ coordinates = effective variables



Theory     A functional space for representing conditional distributions

Some possibilities : explicit functional basis, neural networks, information geometry…

Easier and convenient : Reproducing Kernel Hilbert Spaces (RKHS)

Causal state = {same P(future | past)}   ⇒    whole class mapped to the same point

[Brodu 2022]

[Loomis 2023]



Theory RKHS embedding of distributions - Some intuition

Density estimation

kernel 
centered 
on

sample values



Theory RKHS embedding of distributions - Some intuition

Density estimation

kernel 
centered 
on

Geometric view = barycenter

sample values



Theory RKHS embedding of distributions - Some intuition

sample values = pairs

Density estimation

Conditional density estimation

, using

kernel 
centered 
on

Geometric view = barycenter

Conditional distribution = weighted average

sample values

= proximity with

[Gretton_al_12]



Theory Working with real data: combining kernels

Reproducing kernel property

Kernels can be combined, scaled

⇒ A scale is needed for each source

⇒ Consistently merge heterogenous data sources

k generalizes the δ function

Inner product : k is positive symmetric definite

Many known kernels, many data types (scalars, vectors, graphs, strings…)

[Aronszajn 1950]

Kernels act on dimentionless data



Theory Geometric structure of the causal states set

Hypothesis: system described by 
                    M state parameters

⇒ causal states set dimension 
     at most M (manifold, fractal…)

Physical property: does not 
depend on data size N



Theory Steps 3: Coordinates ⇒ Effective state variables

Hypothesis: system described by 
                    M state parameters

– Estimated with diffusion maps   ⇒   M inferred from an eigenspectrum decay profile

– Causal states = distributions over future   ⇒   Additional modes refine predictive info

⇒ causal states set dimension 
     at most M (manifold, fractal…)

Physical property: does not 
depend on data size N

Choice of basis = Generalized Fourier modes of minimally embedding manifold

[Brodu 2022 + in prep.]

[Coifman 2006, Berry 2020]



Dynamics

colors = days of the year

– Variables 1, 2 = seasonal cycle. Var. 4 (visible) : 
   different trajectories in 2005, 2008, 2011

– Culture of corn then ⇒ plant response is ≠

– Experimental field, Grignon FR

Data

– ICOS data (flux tower + in situ sensors), 
   11 years of daily observations

– Temperature, soil humidity,
   sun illumination, évapo-
   transpiration, precipitations Photo : bing.com

– Impossible to distinguish visually on raw data

H₂O

05
↓ ↓ ↓

08 11 05
↓ ↓ ↓

08 11

CO₂

[Soon on Arxiv]

Practice CO₂ Flux and evapotranspiration : Grignon site (INRAE)



Practice Molecular dynamics of n-butane

– Positions x,y,z of atoms
sampled every 200 fs
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– Sub-clusters = hydrogen 
   position (chemically 
   equivalent, distinct in data)

– Clusters = meta-stable
   conformations

– Slow clusters + fast transitions 
   ⇒ discrete dynamics at large Δt

Inputs

– Local frame of reference

Data : Stefan Klus

n-butane
molecule
(wikipedia)

Dynamics

[Soon on Arxiv]
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Images :
Wikipedia

Data

– 50 years of measurements, very high quality

– 49 watersheds, Peruvian coast

– Pacific Ocean : 4 indices of sea surface temperature

– Per watershed: precipitations, runoff, evapotranspiration,

                            temperature

Project with: Luc Bourrel (France), Pedro Rau (Peru)

Image :
Google Earth

Practice Modeling ENSO



Inferred state variables

– Much more than 3 dimensions… difficult

   to visualize

– General amplitude of the oscillation

– Seasonal cycle

Anomaly detection

– Niño extremes of 1997, 1982, 2016

– 2016 weaker ⇔ closer to the regular structure

– Conditions Niña a the center of the structure

– Deviations of trajectories monthes before

Work in progress - plans

– Trying various predictive models

– Regionalization : inference of local models

   for each hydroclimatically consistent region

Practice Modeling ENSO: preliminary results



Theory Effective stochastic model: Work in progress

– Fit the transition dynamics with that encoding

Diversity of cases to model:

– ODE / SDE: Causal states = 1-to-1 mapping with state space

– Propose an encoding of causal states

– Work in progress: many ML tools and possibilities

with density

if otherwise

S1 S2– Finite states, edge-emitting unifilar HMM

– General HMM, IFS, infinite states

Data-based reconstruction could be anything in between!



Theory Quantifying the diffusion of information

(in theory…) This model specifies how predictive information diffuses through time!

SDE ⇔ Diffusion :
distribution of states

Limit distribution
of the SDE

PredictionsMeasured data

Initial information
(latest mesurements)
completely lost

Converging in
the limit to the 
data mean

Initial causal state
or distribution

= transfer operator



Heterogeneous data Few parameters, interpretable

– Length of the past / future causal dependencies

– Characteristic scales of each data source

– A few more internal meta-parameters (kernel)

– Temporal data (spatial extension possible)

– (quasi-)arbitrary, (non-numerical possible)

– Multiple sources combined properly (RKHS)

Inputs

Application example: Anomaly detection

Inferred
dynamics

Anomalies

Modeling Understanding

– Principled construction

– Generalizes ODE / SDE

– Effective state variables + dynamics

– Complex Systems

– Machine learning approach (≠ neural nets)

– Modeling the dynamics at the scale of data

Goals

Conclusion: Causal inference / Global modeling

Predictive model

Effective state variables
Outputs

– Condense predictive info. at data scale

– Link with known mechanisms?

– Dynamics in reduced dimensions

– Work in progress…


