INFERRING Effective state variables AND DYNAMICS FROM DATA

Grenoble AI for Physics workshop May 29, 2024

Nicolas Brodu

Information on the project

https://team.inria.fr/comcausa/

Context / Goal: Modeling from observations

Parameters

Use case = complex system

– Example : a forest

past \rightarrow **future**

- No access to all micro. parameters
- No known global states / equations
- Macro, data can be measured

– Interpretable (= characteristic scales) – Few meta-parameters

Inferred

- Effective state variables
- Dynamics at given scales

Modeling panorama (very incomplete)

Make dynamics linear

Koopman operator

micro-states

observable = function

micro / hidden dynamics

Hidden

Markov

Models

Hidden / latent variables

 ∞ Markov order, ∞ states

Causal states

inference

Make dynamics Markovian

Notion of causal states

Intrinsic properties

– States do not depend on the frame of reference \Rightarrow intrinsic property of the physical process

- No new observation can distinguish two past sequences in the same causal state \Rightarrow finest building blocks for modeling (computational mechanics [Crutchfield, 1988])
- No dependency left on histories \Rightarrow Markovian dynamics

(any process \Rightarrow Markov process [Knight, 1975])

(distribution shapes change but not the equiv. classes)

Theory Effective state variables, recovering laws of motion

Causal states = points in phase space

- Unique trajectory = future
- No dependency on the past

Effective state variables, recovering laws of motion Theory

Causal states = points in phase space

- Unique trajectory = future
- No dependency on the past

Causal states are independent from referential – Build one from data \Rightarrow other state variables – Equivalently valid law of motion

Effective state variables, recovering laws of motion Theory

Causal states = points in phase space

- Unique trajectory = future
- No dependency on the past

Causal states are independent from referential – Build one from data \Rightarrow other state variables – Equivalently valid law of motion

Reconstruction from measured data

- Model interpretation = effective state variables + evolution at that data scale
- Capturing effective physical law \Rightarrow may generalize better out of observed samples

Practice Case study on real data: monthly sunspots observations

Nomber / month

Data : SILSO

Practice Sunspots – Structure in effective state space

0.5

.0.5

1.5

2

15

,05

0

05

Inferred state variables

- 11-years cycle (x and y)
- Amplitudemodulations (z)

Trajectories on a structure *resembling* an attractor embedding

Sunspots – Predictions on the structure

Inferred state variables

- 11-years cycle (x and y)
- Amplitudemodulations (z)

Practice

Trajectories on a structure *resembling* an attractor embedding

Predictions

- Trajectory constrained on the structure
- Linear operator
 converging to the
 average state

Sunspots – Predictions in the data space

Robustness to measurement noise

Noisy Lorenz system (SDE)

$$du = -a (u - v) dt + \eta dW$$

 $dv = (bu - v - uw) dt + \eta dW$
 $dw = (-cw + uv) dt + \eta dW$
 $(a, b, c) = (10, 28, 8/3)$

- Simulation: V(t) = [u, v, w](t)
- Addition of Gaussian noise, var. σ^2
- Mesurements: $M(t) = V(t) + G(\sigma^2)$

Causal states

- Adding noise does not change equiv. classes \Rightarrow robust to measurement noise!
- Intrinsic noise: SDE details preserved

Finite state machines, HMM

data

Inferred from

Minimal edge-emitting & unifilar HMM States are causal states \Rightarrow

NOT a state-emitting HMM

Generic HMM, IFS

Generic HMM Iterated Function System \Rightarrow [Jurgens 2021] Symbols $i \in \{A, B, C\}$ $s_{n+1} = f^i(s_n)$ with p(i|s)**Observables = strings \in \{A, B, C\}^***

Inferred from data

Formal system

[Brodu 2022]

Infer

Theoretical limit density

Step 1: A functional space for representing conditional distributions

Step 2: Geometric structure of the causal states set

Step 3: Parametrize that set structure \Rightarrow coordinates = effective variables

Theory A functional space for representing conditional distributions

Causal state = {same P(future | past)} \Rightarrow whole class mapped to the same point

Some possibilities : explicit functional basis, neural networks, information geometry...

Easier and convenient : Reproducing Kernel Hilbert Spaces (RKHS)

[Brodu 2022] [Loomis 2023]

Conditional distribution = weighted average

[Gretton al 12]

Conditional density estimation

$\hat{p}(Y|X=x) = \sum_{i} \alpha_{i}(x)k(y_{i},\cdot)$

 $\alpha_i(x)$ = proximity with x_i , using $k'(x_i, \cdot)$

sample values = pairs (x_i, y_i)

Working with real data: combining kernels

Reproducing kernel property [Aronszajn 1950] k generalizes the δ function $\langle k(x,\cdot), f \rangle_{\mathcal{H}} = f(x)$ Inner product : k is positive s

Many known kernels, many data types (scalars, vectors, graphs, strings...)

Kernels can be combined, scaled

E.g., T = temperature, P = precipitations, E = evapotranspiration

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$
 $k^V(v, v') = k^T(t, t') k^P(t, t') k^P($

 $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$

Kernels act on dimentionless data

 \Rightarrow A scale is needed for each source

$$k^{V}\left(\frac{v}{\lambda}, \frac{v'}{\lambda}\right) = \exp\left(-\left\|\frac{v}{\lambda} - \frac{v'}{\lambda}\right\|^{2}\right)$$

$$\langle f, \delta_x \rangle_{L^2} = \int f \delta_x dx' = f(x)$$

ymmetric definite

\Rightarrow Consistently merge heterogenous data sources

Geometric structure of the causal states set

Hypothesis: system described by M state parameters

Theory

 \Rightarrow causal states set dimension at most M (manifold, fractal...)

Physical property: does not depend on data size N

States lying on a reduced dimension set $M \ll N$

Choice of basis = Generalized Fourier modes of minimally embedding manifold

- Causal states = distributions over future \Rightarrow Additional modes refine predictive info
- Estimated with diffusion maps \Rightarrow M inferred from an eigenspectrum decay profile [Coifman 2006, Berry 2020]

[Brodu 2022 + in prep.]

Practice CO₂ Flux and evapotranspiration : Grignon site (INRAE)

Data

- Experimental field, Grignon FR
- Temperature, soil humidity, sun illumination, évapotranspiration, precipitations

Photo : bing.com

Soon on Arxiv]

ICOS data (flux tower + in situ sensors),
 11 years of daily observations

Dynamics

- Variables 1, 2 = seasonal cycle. Var. 4 (visible) :
 different trajectories in 2005, 2008, 2011
- Culture of corn then \Rightarrow plant response is \neq
- Impossible to distinguish visually on raw data

Molecular dynamics of n-butane

n-butane molecule (wikipedia)

Data : Stefan Klus Inputs – Positions x,y,z of atoms sampled every 200 fs

– Local frame of reference

Dynamics

- Clusters = meta-stable conformations
- Sub-clusters = hydrogen position (chemically equivalent, distinct in data)
- Slow clusters + fast transitions \Rightarrow discrete dynamics at large Δt

[Soon on Arxiv]

Modeling ENSO

Data

- 50 years of measurements, very high quality
- 49 watersheds, Peruvian coast
- Pacific Ocean : 4 indices of sea surface temperature
- Per watershed: precipitations, runoff, evapotranspiration, temperature

Project with: Luc Bourrel (France), Pedro Rau (Peru)

Inferred state variables

- Seasonal cycle
- General amplitude of the oscillation
- Much more than 3 dimensions... difficult to visualize

Anomaly detection

- Niño extremes of 1997, 1982, 2016
- -2016 weaker \Leftrightarrow closer to the regular structure
- Conditions Niña a the center of the structure
- Deviations of trajectories monthes before

Work in progress - plans

- Trying various predictive models
- Regionalization : inference of local models for each hydroclimatically consistent region

Diversity of cases to model:

- ODE / SDE: Causal states = 1-to-1 mapping with state space
- Finite states, edge-emitting unifilar HMM

– General HMM, IFS, infinite states

Data-based reconstruction could be anything in between!

- Propose an encoding of causal states $s_t \equiv (e_t^1, e_t^2, \dots, e_t^M)$
- Fit the transition dynamics with that encoding

 $s_{t+1} - s_t \sim P(\Delta s, a \mid s_t)$ with density $p(\Delta s, a) = f(e_t^1, e_t^2, \dots, e_t^M)$ ds = a(s)dt + b(s)dW if dJ(s) = 0 otherwise $s' \sim P(s'|s)$

– Work in progress: many ML tools and possibilities

Quantifying the diffusion of information

(in theory...) This model specifies *how* predictive information diffuses through time!

Predictions

Converging in the limit to the data mean

Initial information (latest mesurements) completely lost

Limit distribution of the SDE

Conclusion: Causal inference / Global modeling

	——Goals ——
Modeling	Un
– Complex Systems	
– Machine learning approach (\neq neural ne	ets) – (
– Modeling the dynamics at the scale of da	ata — I
Inp	outs
Heterogeneous data	Few parar
– Temporal data (spatial extension possibl	e) – Length o
– (quasi-)arbitrary, (non-numerical possible	le) – Characte
– Multiple sources combined properly (RF	(HS) - A few m
Outputs	Application
Effective state variables	2005-07
– Condense predictive info. at data scale	2008-0911-07 2008-0911-07 20072043-044-04 2005-0
– Link with known mechanisms?	2010-10 2005-07 2005-10 2005-10 2005-10 2005-07 2004-07 2004-07
Predictive model	2009-117 2012-07 2019-07 2013-01
– Dynamics in reduced dimensions	2005-01 2002007-01 2002007-01 2012-02005-02
– Work in progress	2010-01 2010-02 4

nderstanding

- Principled construction
- Generalizes ODE / SDE
- Effective state variables + dynamics

meters, interpretable

of the past / future causal dependencies ceristic scales of each data source nore internal meta-parameters (kernel)

n example: Anomaly detection

