GENERALISED MYCIELSKI GRAPHS AND THE BORSUK-ULAM THEOREM

MATĚJ STEHLÍK

Joint work with Tobias Müller

Réunion stint, Sophia Antipolis
${ }_{5}$ December 2017

Triangle-free graphs of high chromatic number

- Clearly, $\chi(G) \geq \omega(G)$ holds for any graph.

Triangle-free graphs of high chromatic number

- Clearly, $\chi(G) \geq \omega(G)$ holds for any graph.
- If $\omega(G)=1$, then $\chi(G)=1$.

Triangle-free graphs of high chromatic number

- Clearly, $\chi(G) \geq \omega(G)$ holds for any graph.
- If $\omega(G)=1$, then $\chi(G)=1$.
- If $\omega(G)=2$, is $\chi(G)$ bounded?

Triangle-free graphs of high chromatic number

- Clearly, $\chi(G) \geq \omega(G)$ holds for any graph.
- If $\omega(G)=1$, then $\chi(G)=1$.
- If $\omega(G)=2$, is $\chi(G)$ bounded?
- No, there exist triangle-free graphs of arbitrary chromatic number (Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955, Erdős 1958).

Triangle-free graphs of high chromatic number

- Clearly, $\chi(G) \geq \omega(G)$ holds for any graph.
- If $\omega(G)=1$, then $\chi(G)=1$.
- If $\omega(G)=2$, is $\chi(G)$ bounded?
- No, there exist triangle-free graphs of arbitrary chromatic number (Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955, Erdős 1958).
- There exist graphs of arbitrary girth and arbitrary chromatic number (Erdős 1959).

The Mycielski construction

Given a graph $G=(V, E)$, the graph $M_{2}(G)$ has:

- vertex set $V \times\{0,1\} \cup\{z\}$;
- edges $\{(u, 0),(v, 0)\}$ and $\{(u, 0),(v, 1)\}$ iff $\{u, v\} \in E$;
- edges $\{(u, 1), z\}$ for all $u \in V$.

G

$M_{2}(G)$

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_{2}(G)$.
- Define a colouring c^{\prime} of G as

$$
c^{\prime}(u)= \begin{cases}c((u, 0)) & \text { if } c((u, 0)) \neq c(z) \\ c((u, 1)) & \text { if } c((u, 0))=c(z)\end{cases}
$$

- This shows $\chi(G) \leq \chi\left(M_{2}(G)\right)-1$.

G

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_{2}(G)$.
- Define a colouring c^{\prime} of G as

$$
c^{\prime}(u)= \begin{cases}c((u, 0)) & \text { if } c((u, 0)) \neq c(z) \\ c((u, 1)) & \text { if } c((u, 0))=c(z)\end{cases}
$$

- This shows $\chi(G) \leq \chi\left(M_{2}(G)\right)-1$.

G

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_{2}(G)$.
- Define a colouring c^{\prime} of G as

$$
c^{\prime}(u)= \begin{cases}c((u, 0)) & \text { if } c((u, 0)) \neq c(z) \\ c((u, 1)) & \text { if } c((u, 0))=c(z)\end{cases}
$$

- This shows $\chi(G) \leq \chi\left(M_{2}(G)\right)-1$.

G

Mycielski's theorem

Theorem (Mycielski 1955)
For any graph $G, \chi\left(M_{2}(G)\right)=\chi(G)+1$. If G is triangle-free, then so is $M_{2}(G)$.

Corollary
There exist triangle-free graphs of arbitrary chromatic number.

The generalised Mycielski construction

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph $G=(V, E)$ and an integer $r \geq 1$, we define $M_{r}(G)$ as the graph with vertex set $V \times\{0, \ldots, r-1\} \cup\{z\}$, where there is an edge $\{(u, 0),(v, 0)\}$ and $\{(u, i),(v, i+1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r-1), z\}$ for all $u \in V$.
- Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

$$
M_{1}\left(C_{5}\right)
$$

The generalised Mycielski construction

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph $G=(V, E)$ and an integer $r \geq 1$, we define $M_{r}(G)$ as the graph with vertex set $V \times\{0, \ldots, r-1\} \cup\{z\}$, where there is an edge $\{(u, 0),(v, 0)\}$ and $\{(u, i),(v, i+1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r-1), z\}$ for all $u \in V$.
- Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

$M_{2}\left(C_{5}\right)$

The generalised Mycielski construction

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph $G=(V, E)$ and an integer $r \geq 1$, we define $M_{r}(G)$ as the graph with vertex set $V \times\{0, \ldots, r-1\} \cup\{z\}$, where there is an edge $\{(u, 0),(v, 0)\}$ and $\{(u, i),(v, i+1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r-1), z\}$ for all $u \in V$.
- Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

$M_{3}\left(C_{5}\right)$

The generalised Mycielski construction

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph $G=(V, E)$ and an integer $r \geq 1$, we define $M_{r}(G)$ as the graph with vertex set $V \times\{0, \ldots, r-1\} \cup\{z\}$, where there is an edge $\{(u, 0),(v, 0)\}$ and $\{(u, i),(v, i+1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r-1), z\}$ for all $u \in V$.
- Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

$M_{4}\left(C_{5}\right)$

Mycielski's theorem does not hold for the generalised case...

G
$M_{3}(G)$
Observation
$\chi(G)=\chi\left(M_{3}(G)\right)=4$

Mycielski's theorem does not hold for the generalised case...

G
$M_{3}(G)$
Observation
$\chi(G)=\chi\left(M_{3}(G)\right)=4$

...but it does if we start with an odd cycle!

Theorem (Stiebitz 1985)
The graph obtained from an odd cycle by n applications of $M_{r}(\cdot)$ has chromatic number $n+3$.

- Stiebitz's proof of the lower bound is topological.
- He shows that if the neighbourhood complex of G is k-connected, then the neighbourhood complex of $M_{r}(G)$ is $(k+1)$-connected.
- Since the neighbourhood complex of an odd cycle is 0 -connected, the neighbourhood complex of a graph obtained from an odd cycle by n applications of $M_{r}(\cdot)$ is n-connected.
- He then applies the following bound of Lovász.

Theorem (Lovász 1978)
If the neighbourhood complex of G is k-connected, then $\chi(G) \geq k+3$.

Key result from algebraic topology

Borsuk-Ulam Theorem (Borsuk 1933)
For every continuous mapping $f: S^{n} \rightarrow \mathbb{R}^{n}$ there exists a point $x \in S^{n}$ with $f(x)=f(-x)$.

Key result from algebraic topology

Borsuk-Ulam Theorem (Borsuk 1933)
For every continuous mapping $f: S^{n} \rightarrow \mathbb{R}^{n}$ there exists a point $x \in S^{n}$ with $f(x)=f(-x)$.

"Elementary combinatorial" proof of Stiebitz's theorem?

- Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

"Elementary combinatorial" proof of Stiebitz's theorem?

- Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)
Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

"Elementary combinatorial" proof of Stiebitz's theorem?

- Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)
Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

- Answer depends on the meaning of "elementary combinatorial".

"Elementary combinatorial" proof of Stiebitz's theorem?

- Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)
Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

- Answer depends on the meaning of "elementary combinatorial".
- If "elementary combinatorial"="discrete", we show the answer is YEs.

"Elementary combinatorial" proof of Stiebitz's theorem?

- Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)
Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

- Answer depends on the meaning of "elementary combinatorial".
- If "elementary combinatorial"="discrete", we show the answer is yes.
- If "elementary combinatorial"="avoiding topology", we argue the answer is No.

A discrete version of Borsuk-Ulam

Tucker's lemma (Tucker 1946)

- Let K be an antipodally symmetric triangulation of S^{n}.

A discrete version of Borsuk-Ulam

Tucker's lemma (Tucker 1946)

- Let K be an antipodally symmetric triangulation of S^{n}.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm n\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$.

A discrete version of Borsuk-Ulam

Tucker's lemma (Tucker 1946)

- Let K be an antipodally symmetric triangulation of S^{n}.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm n\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$.
- Then there must be an edge $\{u, v\}$ such that $\lambda(u)+\lambda(v)=0$.

Equivalence of Tucker and Borsuk-Ulam

- Tucker follows from Borsuk-Ulam by considering λ as a simplicial map, and taking the affine extension $|\lambda|$.

Equivalence of Tucker and Borsuk-Ulam

- Tucker follows from Borsuk-Ulam by considering λ as a simplicial map, and taking the affine extension $|\lambda|$.

- Borsuk-Ulam follows from Tucker by taking sufficiently fine triangulations of S^{n} and using compactness.

Alternating and almost alternating simplices

- Let K be a simplicial complex.

Alternating and almost alternating simplices

- Let K be a simplicial complex.
- Let $\lambda: V(K) \rightarrow \mathbb{Z} \backslash\{0\}$ be a labelling (map).

Alternating and almost alternating simplices

- Let K be a simplicial complex.
- Let $\lambda: V(K) \rightarrow \mathbb{Z} \backslash\{0\}$ be a labelling (map).
- A d-simplex $\sigma \in K$ is positive alternating if it has labels $\left\{+j_{0},-j_{1},+j_{2}, \ldots,(-1)^{d} j_{d}\right\}$, where $0<j_{0}<j_{1}<\cdots<j_{d}$.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- Let K be an antipodally symmetric triangulation of S^{n}.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- Let K be an antipodally symmetric triangulation of S^{n}.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm k\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- Let K be an antipodally symmetric triangulation of S^{n}.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm k\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Then there exists an odd number of positive alternating n-simplices.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- Let K be an antipodally symmetric triangulation of S^{n}.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm k\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Then there exists an odd number of positive alternating n-simplices.
- In particular, $k \geq n+1$.

Proof of Fan's lemma

- All known combinatorial proofs of Fan's lemma impose some additional restrictions on the triangulation.
- As long as the class of triangulations contains a sequence of triangulations with simplex diameter tending to 0 , we can use a compactness argument to deduce (a generalisation of) the Borsuk-Ulam theorem, and then deduce the general version of Fan's lemma.
- In our case, we are going to use triangulations aligned with hemispheres.

Flags of hemispheres

- A flag of hemispheres in S^{n} is a sequence $H_{0} \subset \cdots \subset H_{n}$ where each H_{d} is homeomorphic to a d-ball, $\left\{H_{0},-H_{0}\right\}$ are antipodal points, $H_{n} \cup-H_{n}=S^{n}$, and for $1 \leq d \leq n$,

$$
\partial H_{d}=\partial\left(-H_{d}\right)=H_{d} \cap-H_{d}=H_{d-1} \cup-H_{d-1} \cong S^{d-1}
$$

- A symmetric triangulation K of S^{n} is aligned with hemispheres if there is a flag of hemispheres such that for every d, there is a subcomplex of the d-skeleton of K that triangulates H_{d}.

Fan's lemma for triangulations aligned with hemispheres

Fan's lemma (Prescott and Su 2005)

- Let K be an antipodally symmetric triangulation of S^{n} aligned with hemispheres.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm k\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Then there exists an odd number of positive alternating n-simplices.
- In particular, $k \geq n+1$.

Fan's lemma for triangulations aligned with hemispheres

Fan's lemma (Prescott and Su 2005)

- Let K be an antipodally symmetric triangulation of S^{n} aligned with hemispheres.
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm k\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Then there exists an odd number of positive alternating n-simplices.
- In particular, $k \geq n+1$.

Remark
The proof of Prescott and Su is entirely discrete.

Another discrete version of Borsuk-Ulam

Corollary of Fan's lemma

- Let K be an antipodally symmetric triangulation of S^{n} (aligned with hemispheres).

Another discrete version of Borsuk-Ulam

Corollary of Fan's lemma

- Let K be an antipodally symmetric triangulation of S^{n} (aligned with hemispheres).
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm(n+1)\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and every n-simplex has vertices of both signs.

Another discrete version of Borsuk-Ulam

Corollary of Fan's lemma

- Let K be an antipodally symmetric triangulation of S^{n} (aligned with hemispheres).
- Let $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm(n+1)\}$ be a labelling such that $\lambda(-v)=-\lambda(v)$ for all $v \in V(K)$, and every n-simplex has vertices of both signs.
- Then there exists an edge $\{u, v\} \in K$ such that $\lambda(u)+\lambda(v)=0$.

Proof

- Suppose $\lambda(u)+\lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Define a new labelling $\mu: V(K) \rightarrow\{ \pm 1, \ldots, \pm(n+1)\}$ by $\mu(v)=(-1)^{|\lambda(v)|} \lambda(v)$.
- Observe that

$$
\mu(-v)=(-1)^{|\lambda(-v)|} \lambda(-v)=-(-1)^{|\lambda(v)|} \lambda(v)=-\mu(v),
$$

and if $\mu(u)=-\mu(v)$, then $\lambda(u)=-\lambda(v)$.

- Therefore $\mu(u)+\mu(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Hence μ satisfies the hypothesis of Fan's lemma.
- Therefore, there is an odd number of positive alternating n-simplices, i.e., simplices labelled $\left\{1,-2, \ldots,(-1)^{n} n,(-1)^{n+1}(n+1)\right\}$ by μ.
- Hence, there is an odd number of simplices labelled $\{1,2, \ldots, n+1\}$ by λ.
- This contradicts the assumption that every n-simplex in K has vertices of both signs.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Graphs associated to 2-coloured triangulations

- Let K be a symmetric triangulation K of S^{n} with a proper antisymmetric 2 -colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1 -skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa)=\tilde{G}(K, \kappa) / \nu$, and let $p: \tilde{G}(K, \kappa) \rightarrow G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K, \kappa)$ is a bipartite double cover of $G(K, \kappa)$.

Theorem (Kaiser and MS 2OI5)

- Given $n \geq 1$, let K be a symmetric triangulation of S^{n} aligned with hemispheres, with a proper antisymmetric 2 -colouring κ.
- For any $r \geq 1$, there exists a symmetric triangulation K^{\prime} of S^{n+1} aligned with hemispheres, with a proper antisymmetric 2 -colouring κ^{\prime} such that $G\left(K^{\prime}, \kappa^{\prime}\right) \cong M_{r}(G(K, \kappa))$.

K

K^{\prime}

The final step ($\mathrm{I} / 2$)

- Assume $k>3$ and let $G \in \mathcal{M}_{k}$.
- The graph G is obtained from an odd cycle by $k-3$ iterations of $M_{r}(\cdot)$, where the value of r can vary from iteration to iteration.
- By the previous theorem, there exists a symmetric triangulation K of S^{k-2} aligned with hemispheres, and a proper antisymmetric 2 -colouring κ such that $G \cong G(K, \kappa)$. Say the colours used in κ are black and white.
- Consider any (not necessarily proper) $(k-1)$-colouring $c: V(G) \rightarrow\{1, \ldots, k-1\}$.
- Set

$$
\lambda(v)= \begin{cases}+c(p(v)) & \text { if } v \text { is black } \\ -c(p(v)) & \text { if } v \text { is white }\end{cases}
$$

The final step $(2 / 2)$

- $\lambda: V(K) \rightarrow\{ \pm 1, \ldots, \pm(k-1)\}$ is an antisymmetric labelling such that every $(k-2)$-simplex has vertices of both signs.
- By the corollary to Fan's lemma, there exists an edge $\{u, v\} \in K$ such that $\lambda(u)+\lambda(v)=0$.
- Hence, the edge $\{p(u), p(v)\} \in E(G)$ satisfies $c(p(u))=|\lambda(u)|=|\lambda(v)|=c(p(v))$, i.e., c is not a proper colouring of G.
- This shows that $\chi(G) \geq k$.

Borsuk graphs

- Connection between Borsuk-Ulam and chromatic number first noticed by Erdős and Hajnal (1967).
- They defined the Borsuk graph $B G(n, \alpha)$ as the (infinite) graph whose vertices are the points of \mathbb{R}^{n+1} on S^{n}, and the edges connect points at Euclidean distance at least α where $0<\alpha<2$.
- As α tends to 2 , the odd girth of $B(n, \alpha)$ tends to infinity.
- Borsuk-Ulam equivalent to $\chi(B G(n, \alpha)) \geq n+2$.
- By using the standard $(n+2)$-colouring of S^{n} based on the central projection of a regular ($n+1$)-simplex, it can be shown that $\chi(B G(n, \alpha))=n+2$ for all α sufficiently large.

Generalised Mycielski graphs

Lemma (Müller and MS 2017)

For every $n \geq 0$ and every $\delta>0$, there exists $G \in \mathcal{M}_{n+2}$ and a mapping $f: V(G) \rightarrow S^{n}$ such that $\|f(u)+f(v)\|<\delta$, for every edge $\{u, v\} \in G$. In particular, $G \subset B G\left(n, \sqrt{4-\delta^{2}}\right)$.

Stiebitz implies Borsuk-Ulam

- Suppose there exists a continuous antipodal map $f: S^{n} \rightarrow S^{n-1}$.
- For ε sufficiently small, $\chi(B G(n-1, \varepsilon))=n+1$.
- Every continuous function on a compact set is uniformly continuous, so there exists $\delta>0$ such that if $\|x-y\|<\delta$, then
$\|f(x)-f(y)\|<2 \varepsilon$.
- By the previous lemma, there exists $G \in \mathcal{M}_{n+2}$ and a mapping $g: V(G) \rightarrow S^{n}$ such that $\|g(u)+g(v)\|<\delta$, for every edge $\{u, v\} \in E(G)$.
- The mapping $f \circ g: V(G) \rightarrow S^{n-1}$ satisfies $\|f(g(u))+f(g(v))\|<2 \varepsilon$, for every edge $\{u, v\} \in E(G)$.
- The Euclidean distance between $f(g(u))$ and $f(g(v))$ is

$$
\|f(g(u))-f(g(v))\|>2 \sqrt{1-\varepsilon^{2}}
$$

- So $G \subset B G(n-1, \varepsilon)$, and $\chi(G) \leq \chi(B G(n-1, \varepsilon))=n+1$.
- This contradicts Stiebitz's theorem.

