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Triangle-free graphs of high chromatic number

I Clearly, χ(G) ≥ ω(G) holds for any graph.

I If ω(G) = 1, then χ(G) = 1.
I If ω(G) = 2, is χ(G) bounded?
I No, there exist triangle-free graphs of arbitrary chromatic number
(Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955,
Erdős 1958).

I There exist graphs of arbitrary girth and arbitrary chromatic number
(Erdős 1959).
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TheMycielski construction

Given a graphG = (V,E), the graphM2(G) has:
I vertex set V × {0, 1} ∪ {z};
I edges {(u, 0), (v, 0)} and {(u, 0), (v, 1)} iff {u, v} ∈ E;
I edges {(u, 1), z} for all u ∈ V .
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The chromatic number of Mycielski graphs
I Let c be a minimum colouring ofM2(G).
I Define a colouring c′ ofG as

c′(u) =

{
c((u, 0)) if c((u, 0)) 6= c(z)

c((u, 1)) if c((u, 0)) = c(z).

I This shows χ(G) ≤ χ(M2(G))− 1.
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Mycielski’s theorem

Theorem (Mycielski 1955)
For any graphG, χ(M2(G)) = χ(G) + 1. IfG is triangle-free, then so is
M2(G).

Corollary
There exist triangle-free graphs of arbitrary chromatic number.
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The generalised Mycielski construction
I Construction generalised by Stiebitz (1985), and independently by Van

Ngoc (1987).
I Given a graphG = (V,E) and an integer r ≥ 1, we defineMr(G)

as the graph with vertex set V ×{0, . . . , r− 1} ∪ {z}, where there is
an edge {(u, 0), (v, 0)} and {(u, i), (v, i+ 1)}whenever
{u, v} ∈ E, and an edge {(u, r − 1), z} for all u ∈ V .

I Unlike Mycielski’s original construction, the generalised Mycielski
construction results in graphs of arbitrary odd girth.

M1(C5)
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Mycielski’s theorem does not hold for the generalised case. . .

G M3(G)

Observation
χ(G) = χ(M3(G)) = 4
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. . .but it does if we start with an odd cycle!

Theorem (Stiebitz 1985)
The graph obtained from an odd cycle by n applications ofMr(·) has
chromatic number n+ 3.

I Stiebitz’s proof of the lower bound is topological.
I He shows that if the neighbourhood complex ofG is k-connected,

then the neighbourhood complex ofMr(G) is (k + 1)-connected.
I Since the neighbourhood complex of an odd cycle is 0-connected, the

neighbourhood complex of a graph obtained from an odd cycle by n
applications ofMr(·) is n-connected.

I He then applies the following bound of Lovász.

Theorem (Lovász 1978)
If the neighbourhood complex ofG is k-connected, then χ(G) ≥ k + 3.
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Key result from algebraic topology
Borsuk−Ulam Theorem (Borsuk 1933)
For every continuous mapping f : Sn → Rn there exists a point x ∈ Sn
with f(x) = f(−x).
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“Elementary combinatorial” proof of Stiebitz’s theorem?

I Van Ngoc and Tuza (1995) have found an “elementary combinatorial”
proof of Stiebitz’s theorem for 4-chromatic generalised Mycielski
graphs.

Problem (Van Ngoc and Tuza 1995)
Is there an “elementary combinatorial” proof of Stiebitz’s theorem for
generalised Mycielski graphs of arbitrary chromatic number?

I Answer depends on the meaning of “elementary combinatorial”.
I If “elementary combinatorial”=“discrete”, we show the answer is yes.
I If “elementary combinatorial”=“avoiding topology”, we argue the

answer is no.
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A discrete version of Borsuk–Ulam
Tucker’s lemma (Tucker 1946)

I LetK be an antipodally symmetric triangulation of Sn.

I Let λ : V (K)→ {±1, . . . ,±n} be a labelling such that
λ(−v) = −λ(v) for all v ∈ V (K).

I Then there must be an edge {u, v} such that λ(u) + λ(v) = 0.
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Equivalence of Tucker and Borsuk–Ulam
I Tucker follows from Borsuk–Ulam by considering λ as a simplicial

map, and taking the affine extension |λ|.
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I Borsuk–Ulam follows from Tucker by taking sufficiently fine
triangulations of Sn and using compactness.
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Alternating and almost alternating simplices

I LetK be a simplicial complex.

I Let λ : V (K)→ Z \ {0} be a labelling (map).
I A d-simplex σ ∈ K is positive alternating if it has labels
{+j0,−j1,+j2, . . . , (−1)djd}, where 0 < j0 < j1 < · · · < jd.
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A generalisation of Tucker
Fan’s lemma (Fan 1952)

I LetK be an antipodally symmetric triangulation of Sn.

I Let λ : V (K)→ {±1, . . . ,±k} be a labelling such that
λ(−v) = −λ(v) for all v ∈ V (K), and λ(u) + λ(v) 6= 0 for every
edge {u, v} ∈ K .

I Then there exists an odd number of positive alternating n-simplices.
I In particular, k ≥ n+ 1.
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Proof of Fan’s lemma

I All known combinatorial proofs of Fan’s lemma impose some
additional restrictions on the triangulation.

I As long as the class of triangulations contains a sequence of
triangulations with simplex diameter tending to 0, we can use a
compactness argument to deduce (a generalisation of) the
Borsuk–Ulam theorem, and then deduce the general version of Fan’s
lemma.

I In our case, we are going to use triangulations aligned with
hemispheres.
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Flags of hemispheres
I A flag of hemispheres in Sn is a sequenceH0 ⊂ · · · ⊂ Hn where each
Hd is homeomorphic to a d-ball, {H0,−H0} are antipodal points,
Hn ∪ −Hn = Sn, and for 1 ≤ d ≤ n,
∂Hd = ∂(−Hd) = Hd ∩ −Hd = Hd−1 ∪ −Hd−1 ∼= Sd−1.

I A symmetric triangulationK of Sn is aligned with hemispheres if
there is a flag of hemispheres such that for every d, there is a
subcomplex of the d-skeleton ofK that triangulatesHd.

+H2

−H2

+H1
−H1

−H0

H0
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Fan’s lemma for triangulations aligned with hemispheres

Fan’s lemma (Prescott and Su 2005)
I LetK be an antipodally symmetric triangulation of Sn aligned with

hemispheres.
I Let λ : V (K)→ {±1, . . . ,±k} be a labelling such that
λ(−v) = −λ(v) for all v ∈ V (K), and λ(u) + λ(v) 6= 0 for every
edge {u, v} ∈ K .

I Then there exists an odd number of positive alternating n-simplices.
I In particular, k ≥ n+ 1.

Remark
The proof of Prescott and Su is entirely discrete.
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Another discrete version of Borsuk–Ulam
Corollary of Fan’s lemma

I LetK be an antipodally symmetric triangulation of Sn (aligned with
hemispheres).

I Let λ : V (K)→ {±1, . . . ,±(n+ 1)} be a labelling such that
λ(−v) = −λ(v) for all v ∈ V (K), and every n-simplex has vertices
of both signs.

I Then there exists an edge {u, v} ∈ K such that λ(u) + λ(v) = 0.
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Proof
I Suppose λ(u) + λ(v) 6= 0 for every edge {u, v} ∈ K .
I Define a new labelling µ : V (K)→ {±1, . . . ,±(n+ 1)} by
µ(v) = (−1)|λ(v)|λ(v).

I Observe that

µ(−v) = (−1)|λ(−v)|λ(−v) = −(−1)|λ(v)|λ(v) = −µ(v),

and if µ(u) = −µ(v), then λ(u) = −λ(v).
I Therefore µ(u) + µ(v) 6= 0 for every edge {u, v} ∈ K .
I Hence µ satisfies the hypothesis of Fan’s lemma.
I Therefore, there is an odd number of positive alternating n-simplices,

i.e., simplices labelled {1,−2, . . . , (−1)nn, (−1)n+1(n+ 1)} by µ.
I Hence, there is an odd number of simplices labelled
{1, 2, . . . , n+ 1} by λ.

I This contradicts the assumption that every n-simplex inK has
vertices of both signs.
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Graphs associated to 2-coloured triangulations
I LetK be a symmetric triangulationK of Sn with a proper

antisymmetric 2-colouring κ ofK
I We denote by G̃(K,κ) the graph obtained from the 1-skeletonK(1)

by deleting all monochromatic edges.
I If ν denotes the antipodal action on G̃(K,κ), we set
G(K,κ) = G̃(K,κ)/ν, and let p : G̃(K,κ)→ G(K,κ) be the
corresponding projection.

I Note that the graph G̃(K,κ) is a bipartite double cover ofG(K,κ).
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antisymmetric 2-colouring κ ofK
I We denote by G̃(K,κ) the graph obtained from the 1-skeletonK(1)

by deleting all monochromatic edges.
I If ν denotes the antipodal action on G̃(K,κ), we set
G(K,κ) = G̃(K,κ)/ν, and let p : G̃(K,κ)→ G(K,κ) be the
corresponding projection.

I Note that the graph G̃(K,κ) is a bipartite double cover ofG(K,κ).
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Theorem (Kaiser andMS 2015)
I Given n ≥ 1, letK be a symmetric triangulation of Sn aligned with

hemispheres, with a proper antisymmetric 2-colouring κ.
I For any r ≥ 1, there exists a symmetric triangulationK ′ of Sn+1

aligned with hemispheres, with a proper antisymmetric 2-colouring κ′
such thatG(K ′, κ′) ∼=Mr(G(K,κ)).

K K ′

G(K,κ) G(K ′, κ′)
21 / 26



The final step (1/2)

I Assume k > 3 and letG ∈Mk.
I The graphG is obtained from an odd cycle by k − 3 iterations of
Mr(·), where the value of r can vary from iteration to iteration.

I By the previous theorem, there exists a symmetric triangulationK of
Sk−2 aligned with hemispheres, and a proper antisymmetric
2-colouring κ such thatG ∼= G(K,κ). Say the colours used in κ are
black and white.

I Consider any (not necessarily proper) (k − 1)-colouring
c : V (G)→ {1, . . . , k − 1}.

I Set

λ(v) =

{
+c(p(v)) if v is black
−c(p(v)) if v is white.
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The final step (2/2)

I λ : V (K)→ {±1, . . . ,±(k − 1)} is an antisymmetric labelling
such that every (k − 2)-simplex has vertices of both signs.

I By the corollary to Fan’s lemma, there exists an edge {u, v} ∈ K such
that λ(u) + λ(v) = 0.

I Hence, the edge {p(u), p(v)} ∈ E(G) satisfies
c(p(u)) = |λ(u)| = |λ(v)| = c(p(v)), i.e., c is not a proper
colouring ofG.

I This shows that χ(G) ≥ k.
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Borsuk graphs

I Connection between Borsuk–Ulam and chromatic number first
noticed by Erdős and Hajnal (1967).

I They defined the Borsuk graphBG(n, α) as the (infinite) graph
whose vertices are the points ofRn+1 on Sn, and the edges connect
points at Euclidean distance at least αwhere 0 < α < 2.

I As α tends to 2, the odd girth ofB(n, α) tends to infinity.
I Borsuk–Ulam equivalent to χ(BG(n, α)) ≥ n+ 2.
I By using the standard (n+ 2)-colouring of Sn based on the central
projection of a regular (n+ 1)-simplex, it can be shown that
χ(BG(n, α)) = n+ 2 for all α sufficiently large.
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Generalised Mycielski graphs
Lemma (Müller andMS 2017)
For every n ≥ 0 and every δ > 0, there existsG ∈Mn+2 and a mapping
f : V (G)→ Sn such that ‖f(u) + f(v)‖ < δ, for every edge
{u, v} ∈ G. In particular,G ⊂ BG(n,

√
4− δ2).

25 / 26



Stiebitz implies Borsuk–Ulam
I Suppose there exists a continuous antipodal map f : Sn → Sn−1.
I For ε sufficiently small, χ(BG(n− 1, ε)) = n+ 1.
I Every continuous function on a compact set is uniformly continuous,

so there exists δ > 0 such that if ‖x− y‖ < δ, then
‖f(x)− f(y)‖ < 2ε.

I By the previous lemma, there existsG ∈Mn+2 and a mapping
g : V (G)→ Sn such that ‖g(u) + g(v)‖ < δ, for every edge
{u, v} ∈ E(G).

I The mapping f ◦ g : V (G)→ Sn−1 satisfies
‖f(g(u)) + f(g(v))‖ < 2ε, for every edge {u, v} ∈ E(G).

I The Euclidean distance between f(g(u)) and f(g(v)) is

‖f(g(u))− f(g(v))‖ > 2
√

1− ε2,

I SoG ⊂ BG(n− 1, ε), and χ(G) ≤ χ(BG(n− 1, ε)) = n+ 1.
I This contradicts Stiebitz’s theorem.
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