GENERALISED MYCIELSKI GRAPHS AND THE BORSUK–ULAM THEOREM

matěj stehlík

Joint work with Tobias Müller

Réunion STINT, Sophia Antipolis

5 December 2017

• Clearly, $\chi(G) \ge \omega(G)$ holds for any graph.

• Clearly, $\chi(G) \ge \omega(G)$ holds for any graph.

• If
$$\omega(G) = 1$$
, then $\chi(G) = 1$.

- Clearly, $\chi(G) \ge \omega(G)$ holds for any graph.
- If $\omega(G) = 1$, then $\chi(G) = 1$.
- If $\omega(G) = 2$, is $\chi(G)$ bounded?

- Clearly, $\chi(G) \ge \omega(G)$ holds for any graph.
- If $\omega(G) = 1$, then $\chi(G) = 1$.
- If $\omega(G) = 2$, is $\chi(G)$ bounded?
- No, there exist triangle-free graphs of arbitrary chromatic number (Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955, Erdős 1958).

- Clearly, $\chi(G) \ge \omega(G)$ holds for any graph.
- If $\omega(G) = 1$, then $\chi(G) = 1$.
- If $\omega(G) = 2$, is $\chi(G)$ bounded?
- No, there exist triangle-free graphs of arbitrary chromatic number (Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955, Erdős 1958).
- ► There exist graphs of arbitrary girth and arbitrary chromatic number (Erdős 1959).

The Mycielski construction

Given a graph G = (V, E), the graph $M_2(G)$ has:

- vertex set $V \times \{0, 1\} \cup \{z\};$
- ▶ edges $\{(u, 0), (v, 0)\}$ and $\{(u, 0), (v, 1)\}$ iff $\{u, v\} \in E$;
- edges $\{(u, 1), z\}$ for all $u \in V$.

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_2(G)$.
- Define a colouring c' of G as

$$c'(u) = \begin{cases} c((u,0)) & \text{if } c((u,0)) \neq c(z) \\ c((u,1)) & \text{if } c((u,0)) = c(z). \end{cases}$$

• This shows $\chi(G) \leq \chi(M_2(G)) - 1$.

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_2(G)$.
- Define a colouring c' of G as

$$c'(u) = \begin{cases} c((u,0)) & \text{if } c((u,0)) \neq c(z) \\ c((u,1)) & \text{if } c((u,0)) = c(z). \end{cases}$$

• This shows $\chi(G) \leq \chi(M_2(G)) - 1$.

The chromatic number of Mycielski graphs

- Let c be a minimum colouring of $M_2(G)$.
- Define a colouring c' of G as

$$c'(u) = \begin{cases} c((u,0)) & \text{if } c((u,0)) \neq c(z) \\ c((u,1)) & \text{if } c((u,0)) = c(z). \end{cases}$$

• This shows $\chi(G) \leq \chi(M_2(G)) - 1$.

Theorem (Mycielski 1955)

For any graph G, $\chi(M_2(G)) = \chi(G) + 1$. If G is triangle-free, then so is $M_2(G)$.

Corollary

There exist triangle-free graphs of arbitrary chromatic number.

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph G = (V, E) and an integer $r \ge 1$, we define $M_r(G)$ as the graph with vertex set $V \times \{0, \ldots, r-1\} \cup \{z\}$, where there is an edge $\{(u, 0), (v, 0)\}$ and $\{(u, i), (v, i + 1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r - 1), z\}$ for all $u \in V$.
- ► Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph G = (V, E) and an integer $r \ge 1$, we define $M_r(G)$ as the graph with vertex set $V \times \{0, \ldots, r-1\} \cup \{z\}$, where there is an edge $\{(u, 0), (v, 0)\}$ and $\{(u, i), (v, i + 1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r - 1), z\}$ for all $u \in V$.
- ► Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

 $M_2(C_5)$

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph G = (V, E) and an integer $r \ge 1$, we define $M_r(G)$ as the graph with vertex set $V \times \{0, \ldots, r-1\} \cup \{z\}$, where there is an edge $\{(u, 0), (v, 0)\}$ and $\{(u, i), (v, i + 1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r - 1), z\}$ for all $u \in V$.
- ► Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

 $M_3(C_5)$

- Construction generalised by Stiebitz (1985), and independently by Van Ngoc (1987).
- Given a graph G = (V, E) and an integer $r \ge 1$, we define $M_r(G)$ as the graph with vertex set $V \times \{0, \ldots, r-1\} \cup \{z\}$, where there is an edge $\{(u, 0), (v, 0)\}$ and $\{(u, i), (v, i + 1)\}$ whenever $\{u, v\} \in E$, and an edge $\{(u, r - 1), z\}$ for all $u \in V$.
- ► Unlike Mycielski's original construction, the generalised Mycielski construction results in graphs of arbitrary odd girth.

 $M_4(C_5)$

Mycielski's theorem does not hold for the generalised case...

 $M_3(G)$

Observation

$$\chi(G) = \chi(M_3(G)) = 4$$

G

Mycielski's theorem does not hold for the generalised case...

 $M_3(G)$

Observation

$$\chi(G) = \chi(M_3(G)) = 4$$

... but it does if we start with an odd cycle!

Theorem (Stiebitz 1985)

The graph obtained from an odd cycle by n applications of $M_r(\cdot)$ has chromatic number n+3.

- Stiebitz's proof of the lower bound is topological.
- He shows that if the neighbourhood complex of G is k-connected, then the neighbourhood complex of $M_r(G)$ is (k + 1)-connected.
- ► Since the neighbourhood complex of an odd cycle is 0-connected, the neighbourhood complex of a graph obtained from an odd cycle by n applications of M_r(·) is n-connected.
- He then applies the following bound of Lovász.

Theorem (Lovász 1978)

If the neighbourhood complex of G is k -connected, then $\chi(G) \geq k+3.$

Key result from algebraic topology

Borsuk–Ulam Theorem (Borsuk 1933)

For every continuous mapping $f:S^n\to \mathbb{R}^n$ there exists a point $x\in S^n$ with f(x)=f(-x).

Key result from algebraic topology

Borsuk–Ulam Theorem (Borsuk 1933)

For every continuous mapping $f:S^n\to \mathbb{R}^n$ there exists a point $x\in S^n$ with f(x)=f(-x).

► Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

► Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)

Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

► Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)

Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

► Answer depends on the meaning of "elementary combinatorial".

► Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)

Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

- ► Answer depends on the meaning of "elementary combinatorial".
- ► If "elementary combinatorial"="discrete", we show the answer is YES.

► Van Ngoc and Tuza (1995) have found an "elementary combinatorial" proof of Stiebitz's theorem for 4-chromatic generalised Mycielski graphs.

Problem (Van Ngoc and Tuza 1995)

Is there an "elementary combinatorial" proof of Stiebitz's theorem for generalised Mycielski graphs of arbitrary chromatic number?

- ► Answer depends on the meaning of "elementary combinatorial".
- ► If "elementary combinatorial"="discrete", we show the answer is YES.
- ► If "elementary combinatorial"="avoiding topology", we argue the answer is NO.

A discrete version of Borsuk–Ulam

Tucker's lemma (Tucker 1946)

• Let K be an antipodally symmetric triangulation of S^n .

A discrete version of Borsuk–Ulam

Tucker's lemma (Tucker 1946)

- Let K be an antipodally symmetric triangulation of S^n .
- ► Let $\lambda : V(K) \to \{\pm 1, \dots, \pm n\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$.

A discrete version of Borsuk–Ulam

Tucker's lemma (Tucker 1946)

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*}.
- ► Let $\lambda : V(K) \to \{\pm 1, \dots, \pm n\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$.
- Then there must be an edge $\{u, v\}$ such that $\lambda(u) + \lambda(v) = 0$.

Equivalence of Tucker and Borsuk–Ulam

 Tucker follows from Borsuk–Ulam by considering λ as a simplicial map, and taking the affine extension |λ|.

Equivalence of Tucker and Borsuk–Ulam

 Tucker follows from Borsuk–Ulam by considering λ as a simplicial map, and taking the affine extension |λ|.

 Borsuk–Ulam follows from Tucker by taking sufficiently fine triangulations of Sⁿ and using compactness.

Alternating and almost alternating simplices

• Let K be a simplicial complex.

Alternating and almost alternating simplices

- Let *K* be a simplicial complex.
- Let $\lambda: V(K) \to \mathbb{Z} \setminus \{0\}$ be a labelling (map).

Alternating and almost alternating simplices

- Let *K* be a simplicial complex.
- Let $\lambda: V(K) \to \mathbb{Z} \setminus \{0\}$ be a labelling (map).
- ► A *d*-simplex $\sigma \in K$ is *positive alternating* if it has labels $\{+j_0, -j_1, +j_2, \dots, (-1)^d j_d\}$, where $0 < j_0 < j_1 < \dots < j_d$.

A generalisation of Tucker

Fan's lemma (Fan 1952)

• Let K be an antipodally symmetric triangulation of S^n .

A generalisation of Tucker

Fan's lemma (Fan 1952)

- Let K be an antipodally symmetric triangulation of S^n .
- ► Let $\lambda : V(K) \to \{\pm 1, \dots, \pm k\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*}.
- Let $\lambda: V(K) \to \{\pm 1, \dots, \pm k\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- ► Then there exists an odd number of positive alternating *n*-simplices.

A generalisation of Tucker

Fan's lemma (Fan 1952)

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*}.
- Let $\lambda: V(K) \to \{\pm 1, \dots, \pm k\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- ► Then there exists an odd number of positive alternating *n*-simplices.
- In particular, $k \ge n+1$.

Proof of Fan's lemma

- ► All known combinatorial proofs of Fan's lemma impose some additional restrictions on the triangulation.
- As long as the class of triangulations contains a sequence of triangulations with simplex diameter tending to 0, we can use a compactness argument to deduce (a generalisation of) the Borsuk–Ulam theorem, and then deduce the general version of Fan's lemma.
- In our case, we are going to use triangulations *aligned with hemispheres*.

Flags of hemispheres

▶ A *flag of hemispheres* in S^n is a sequence $H_0 \subset \cdots \subset H_n$ where each H_d is homeomorphic to a *d*-ball, $\{H_0, -H_0\}$ are antipodal points, $H_n \cup -H_n = S^n$, and for $1 \leq d \leq n$,

$$\partial H_d = \partial (-H_d) = H_d \cap -H_d = H_{d-1} \cup -H_{d-1} \cong S^{d-1}$$

► A symmetric triangulation *K* of *S*ⁿ is *aligned with hemispheres* if there is a flag of hemispheres such that for every *d*, there is a subcomplex of the *d*-skeleton of *K* that triangulates *H*_d.

Fan's lemma for triangulations aligned with hemispheres

Fan's lemma (Prescott and Su 2005)

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*} aligned with hemispheres.
- Let $\lambda : V(K) \to \{\pm 1, \dots, \pm k\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- ► Then there exists an odd number of positive alternating *n*-simplices.
- In particular, $k \ge n+1$.

Fan's lemma for triangulations aligned with hemispheres

Fan's lemma (Prescott and Su 2005)

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*} aligned with hemispheres.
- Let $\lambda : V(K) \to \{\pm 1, \dots, \pm k\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- ► Then there exists an odd number of positive alternating *n*-simplices.
- In particular, $k \ge n+1$.

Remark

The proof of Prescott and Su is entirely discrete.

Another discrete version of Borsuk–Ulam

Corollary of Fan's lemma

► Let *K* be an antipodally symmetric triangulation of *S*^{*n*} (aligned with hemispheres).

Another discrete version of Borsuk–Ulam

Corollary of Fan's lemma

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*} (aligned with hemispheres).
- Let $\lambda: V(K) \to \{\pm 1, \dots, \pm (n+1)\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and every *n*-simplex has vertices of both signs.

Another discrete version of Borsuk–Ulam

Corollary of Fan's lemma

- ► Let *K* be an antipodally symmetric triangulation of *S*^{*n*} (aligned with hemispheres).
- Let $\lambda: V(K) \to \{\pm 1, \dots, \pm (n+1)\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and every *n*-simplex has vertices of both signs.
- Then there exists an edge $\{u, v\} \in K$ such that $\lambda(u) + \lambda(v) = 0$.

Proof

- Suppose $\lambda(u) + \lambda(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Define a new labelling $\mu: V(K) \to \{\pm 1, \dots, \pm (n+1)\}$ by $\mu(v) = (-1)^{|\lambda(v)|} \lambda(v).$
- Observe that

$$\mu(-v) = (-1)^{|\lambda(-v)|} \lambda(-v) = -(-1)^{|\lambda(v)|} \lambda(v) = -\mu(v),$$

and if $\mu(u)=-\mu(v),$ then $\lambda(u)=-\lambda(v).$

- Therefore $\mu(u) + \mu(v) \neq 0$ for every edge $\{u, v\} \in K$.
- Hence μ satisfies the hypothesis of Fan's lemma.
- ► Therefore, there is an odd number of positive alternating *n*-simplices, i.e., simplices labelled $\{1, -2, ..., (-1)^n n, (-1)^{n+1}(n+1)\}$ by μ .
- ► Hence, there is an odd number of simplices labelled {1, 2, ..., n + 1} by λ.
- ► This contradicts the assumption that every *n*-simplex in *K* has vertices of both signs.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p: \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p: \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K,\kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K,\kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K, \kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K,\kappa)$, we set $G(K,\kappa) = \tilde{G}(K,\kappa)/\nu$, and let $p : \tilde{G}(K,\kappa) \to G(K,\kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

- Let K be a symmetric triangulation K of Sⁿ with a proper antisymmetric 2-colouring κ of K
- We denote by $\tilde{G}(K,\kappa)$ the graph obtained from the 1-skeleton $K^{(1)}$ by deleting all monochromatic edges.
- If ν denotes the antipodal action on $\tilde{G}(K, \kappa)$, we set $G(K, \kappa) = \tilde{G}(K, \kappa)/\nu$, and let $p : \tilde{G}(K, \kappa) \to G(K, \kappa)$ be the corresponding projection.
- Note that the graph $\tilde{G}(K,\kappa)$ is a bipartite double cover of $G(K,\kappa)$.

Theorem (Kaiser and MS 2015)

- ► Given n ≥ 1, let K be a symmetric triangulation of Sⁿ aligned with hemispheres, with a proper antisymmetric 2-colouring κ.
- For any $r \ge 1$, there exists a symmetric triangulation K' of S^{n+1} aligned with hemispheres, with a proper antisymmetric 2-colouring κ' such that $G(K', \kappa') \cong M_r(G(K, \kappa))$.

The final step (1/2)

• Assume k > 3 and let $G \in \mathcal{M}_k$.

- ► The graph G is obtained from an odd cycle by k 3 iterations of M_r(·), where the value of r can vary from iteration to iteration.
- ▶ By the previous theorem, there exists a symmetric triangulation K of S^{k-2} aligned with hemispheres, and a proper antisymmetric 2-colouring κ such that $G \cong G(K, \kappa)$. Say the colours used in κ are black and white.
- Consider any (not necessarily proper) (k − 1)-colouring c: V(G) → {1,...,k−1}.

► Set

$$\lambda(v) = \begin{cases} +c(p(v)) & \text{ if } v \text{ is black} \\ -c(p(v)) & \text{ if } v \text{ is white.} \end{cases}$$

The final step (2/2)

- ► $\lambda: V(K) \to \{\pm 1, \dots, \pm (k-1)\}$ is an antisymmetric labelling such that every (k-2)-simplex has vertices of both signs.
- By the corollary to Fan's lemma, there exists an edge {u, v} ∈ K such that λ(u) + λ(v) = 0.
- Hence, the edge $\{p(u), p(v)\} \in E(G)$ satisfies $c(p(u)) = |\lambda(u)| = |\lambda(v)| = c(p(v))$, i.e., c is not a proper colouring of G.
- This shows that $\chi(G) \ge k$.

Borsuk graphs

- Connection between Borsuk–Ulam and chromatic number first noticed by Erdős and Hajnal (1967).
- They defined the *Borsuk graph* $BG(n, \alpha)$ as the (infinite) graph whose vertices are the points of \mathbb{R}^{n+1} on S^n , and the edges connect points at Euclidean distance at least α where $0 < \alpha < 2$.
- As α tends to 2, the odd girth of $B(n, \alpha)$ tends to infinity.
- ▶ Borsuk–Ulam equivalent to $\chi(BG(n, \alpha)) \ge n + 2$.
- ▶ By using the standard (n + 2)-colouring of Sⁿ based on the central projection of a regular (n + 1)-simplex, it can be shown that χ(BG(n, α)) = n + 2 for all α sufficiently large.

Generalised Mycielski graphs

Lemma (Müller and MS 2017)

For every $n \ge 0$ and every $\delta > 0$, there exists $G \in \mathcal{M}_{n+2}$ and a mapping $f: V(G) \to S^n$ such that $||f(u) + f(v)|| < \delta$, for every edge $\{u, v\} \in G$. In particular, $G \subset BG(n, \sqrt{4 - \delta^2})$.

Stiebitz implies Borsuk–Ulam

- Suppose there exists a continuous antipodal map $f: S^n \to S^{n-1}$.
- For ε sufficiently small, $\chi(BG(n-1,\varepsilon)) = n+1$.
- Every continuous function on a compact set is uniformly continuous, so there exists $\delta > 0$ such that if $||x y|| < \delta$, then $||f(x) f(y)|| < 2\varepsilon$.
- ▶ By the previous lemma, there exists $G \in \mathcal{M}_{n+2}$ and a mapping $g: V(G) \to S^n$ such that $||g(u) + g(v)|| < \delta$, for every edge $\{u, v\} \in E(G)$.
- ► The mapping $f \circ g : V(G) \to S^{n-1}$ satisfies $\|f(g(u)) + f(g(v))\| < 2\varepsilon$, for every edge $\{u, v\} \in E(G)$.
- ▶ The Euclidean distance between f(g(u)) and f(g(v)) is

$$||f(g(u)) - f(g(v))|| > 2\sqrt{1 - \varepsilon^2},$$

- ► So $G \subset BG(n-1,\varepsilon)$, and $\chi(G) \leq \chi(BG(n-1,\varepsilon)) = n+1$.
- This contradicts Stiebitz's theorem.