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(Zykov 1949, Tutte (alias Blanche Descartes) 1954, Mycielski 1955,
Erdds 1958).

> There exist graphs of arbitrary girth and arbitrary chromatic number
(Erd8s 1959).



The Mycielski construction

Given agraph G = (V, E), the graph M3(G) has:
» vertexset V' x {0,1} U {z};
» edges {(u,0), (v,0)}and {(u,0), (v, 1)} iff {u,v} € E;
> edges {(u,1),z} forallu € V.




The chromatic number of Mycielski graphs

» Let ¢ be 2 minimum colouring of M»(G).

» Define a colouring ¢’ of G as
) = {c((u,o» ife((u,0)) # c(2)
c((u, 1)) ife((u,0)) = e(z).
» This shows x(G) < x(M2(G)) — 1.
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Mycielski’s theorem

Theorem (Mycielski 1955)

For any graph G, x(M2(G)) = x(G) + 1. If G is triangle-free, then so is
My (G).

w

Corollary

There exist triangle-free graphs of arbitrary chromatic number.
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The generalised Mycielski construction

» Construction generalised by Stiebitz (1985), and independently by Van
Ngoc (1987).

» Givenagraph G = (V, E) and an integer 7 > 1, we define M,.(G)
as the graph with vertexset V' x {0, ..., 7 — 1} U {z}, where there is
an edge {(u,0), (v,0)} and {(u, ©), (v,7 + 1)} whenever
{u,v} € E,and anedge {(u,r — 1), z} forallu € V.

» Unlike Mycielski’s original construction, the generalised Mycielski
construction results in graphs of arbitrary odd girth.
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Mycielski’s theorem does not hold for the generalised case. ..
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...but it does if we start with an odd cycle!

Theorem (Stiebitz 1985)
The graph obtained from an odd cycle by n applications of M,.(-) has

chromatic number n + 3.

» Stiebitz’s proof of the lower bound is topological.

» He shows that if the neighbourhood complex of G is k-connected,
then the neighbourhood complex of M,.(G) is (k + 1)-connected.

» Since the neighbourhood complex of an odd cycle is 0-connected, the
neighbourhood complex of a graph obtained from an odd cycle by n

applications of M, (+) is n-connected.

» He then applies the following bound of Lovisz.

Theorem (Lovisz 1978)
If the neighbourhood complex of G is k-connected, then x (G) > k + 3. J




Key result from algebraic topology
Borsuk—Ulam Theorem (Borsuk 1933)

For every continuous mapping f : S™ — R" there exists a point z € S™

with f(z) = f(—=x).
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“Elementary combinatorial” proof of Stiebitz’s theorem?

» Van Ngoc and Tuza (1995) have found an “elementary combinatorial”
proof of Stiebitz’s theorem for 4-chromatic generalised Mycielski

graphs.
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» Van Ngoc and Tuza (1995) have found an “elementary combinatorial”
proof of Stiebitz’s theorem for 4-chromatic generalised Mycielski

graphs.

Problem (Van Ngoc and Tuza 1995)

Is there an “elementary combinatorial” proof of Stiebitz’s theorem for
generalised Mycielski graphs of arbitrary chromatic number?

» Answer depends on the meaning of “elementary combinatorial”.
> If “elementary combinatorial”=“discrete”, we show the answer is YES.

> If “elementary combinatorial’=“avoiding topology”, we argue the
answer is NO.
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Equivalence of Tucker and Borsuk—Ulam

> Tucker follows from Borsuk—Ulam by considering A as a simplicial
map, and taking the affine extension |A|.
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> Tucker follows from Borsuk—Ulam by considering A as a simplicial
map, and taking the affine extension |A|.
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» Borsuk-Ulam follows from Tucker by taking sufficiently fine
triangulations of S™ and using compactness.



Alternating and almost alternating simplices

> Let K be a simplicial complex.
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Alternating and almost alternating simplices

> Let K be a simplicial complex.
» Let A : V(K) — Z \ {0} be a labelling (map).

> Ad-simplex o € K is positive alternating if it has labels
{70, =g, +J2s - -, (=1)%a}, where 0 < jo < j1 < -+ < ja.
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A generalisation of Tucker

Fan’s lemma (Fan 1952)

» Let K be an antipodally symmetric triangulation of S™.

» Let A : V(K) — {£1,..., £k} be alabelling such that
A(—v) = =A(v) forallv € V(K),and A(u) + A(v) # 0 for every
edge {u,v} € K.

» Then there exists an odd number of positive alternating n-simplices.

» In particular, k > n + 1.




Proof of Fan’s lemma

» All known combinatorial proofs of Fan’s lemma impose some
additional restrictions on the triangulation.

> Aslong as the class of triangulations contains a sequence of
triangulations with simplex diameter tending to 0, we can use a
compactness argument to deduce (a generalisation of) the
Borsuk—Ulam theorem, and then deduce the general version of Fan’s
lemma.

» In our case, we are going to use triangulations aligned with
hemispheres.
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Flags of hemispheres

> Aflag of hemispheresin S™ is a sequence Hy C - -+ C H,, where each
H g is homeomorphic to a d-ball, { Hy, —Hj } are antipodal points,
H,U—-H, =5 andforl <d<n,

O0Hy = 8(—Hd) =H;Nn—-H;=Hy; U—-Hy; = S,

> A symmetric triangulation K of S™ is aligned with hemispheres if
there is a flag of hemispheres such that for every d, there is a
subcomplex of the d-skeleton of K that triangulates H .

+Hy

_ H
gy e

—H3



Fan’s lemma for triangulations aligned with hemispheres

Fan’s lemma (Prescott and Su 2005)

» Let K be an antipodally symmetric triangulation of S™ aligned with
hemispheres.

» Let A : V(K) — {£1,..., £k} be alabelling such that
A(—=v) = =A(v) forallv € V(K),and A(u) + A(v) # 0 for every
edge {u,v} € K.

» Then there exists an odd number of positive alternating n-simplices.

» In particular, k > n + 1.
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Fan’s lemma (Prescott and Su 2005)

» Let K be an antipodally symmetric triangulation of S™ aligned with
hemispheres.

» Let A : V(K) — {£1,..., £k} be alabelling such that
A—v) = =A(v) forallv € V(K),and A(u) + A\(v) # 0 for every
edge {u,v} € K.

» Then there exists an odd number of positive alternating n-simplices.

» In particular, k > n + 1.

Remark

The proof of Prescott and Su is entirely discrete.
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Another discrete version of Borsuk—Ulam

Corollary of Fan’s lemma

> Let K be an antipodally symmetric triangulation of S™ (aligned with
hemispheres).

» Let A : V(K) — {£1,...,£(n + 1)} be a labelling such that
A—v) = =A(v) forallv € V(K), and every n-simplex has vertices
of both signs.

» Then there exists an edge {u, v} € K such that A(u) + A(v) = 0.

v
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Proof

Suppose A(u) + A(v) # 0 for every edge {u, v} € K.
Define a new labelling p¢ : V/(K) — {£1,...,+(n+ 1)} by
p(v) = (~1)ROIA(w).

Observe that

p(=v) = (=D (o) = —(~D)IN@) = —p(w),

and if p(u) = —p(v), then A(u) = —A(v).

Therefore p(u) + p(v) # 0 for every edge {u, v} € K.

Hence p satisfies the hypothesis of Fan’s lemma.

Therefore, there is an odd number of positive alternating n-simplices,
i.e., simplices labelled {1, —2, ..., (=1)"n, (=1)" "1 (n + 1)} by p.
Hence, there is an odd number of simplices labelled
{1,2,...,n+1} by \.

This contradicts the assumption that every n-simplex in K has
vertices of both signs.



Graphs associated to 2-coloured triangulations

> Let K be a symmetric triangulation K of S™ with a proper
antisymmetric 2-colouring x of K

> We denote by G(K, k) the graph obtained from the 1-skeleton K (1)
by deleting all monochromatic edges.

» If v denotes the antipodal action on G/(K, k), we set
G(K,r) = G(K,r)/v,andletp : G(K, k) — G(K, k) be the
corresponding projection.

» Note that the graph G(K, k) is a bipartite double cover of G(K, k).
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Graphs associated to 2-coloured triangulations

> Let K be a symmetric triangulation K of S™ with a proper
antisymmetric 2-colouring x of K

> We denote by G(K, «) the graph obtained from the 1-skeleton K1)
by deleting all monochromatic edges.

» If v denotes the antipodal action on C:? (K, k), we set
G(K,k) = G(K,k)/v,andletp : G(K, k) — G(K, k) be the

corresponding projection.

> Note that the graph G (K, ) is a bipartite double cover of G(K, ).




Theorem (Kaiser and MS 2015)

» Givenn > 1,let K be a symmetric triangulation of S™ aligned with
hemispheres, with a proper antisymmetric 2-colouring &.

» Foranyr > 1, there exists a symmetric triangulation K’ of S n+l
aligned with hemispheres, with a proper antisymmetric 2-colouring K

such that G(K', k') =2 M, (G(K, k)).
KI

G(K, k) G(K', k)

y




The final step (1/2)

» Assume k > 3andlet G € M.
» The graph G is obtained from an odd cycle by £ — 3 iterations of

M,.(-), where the value of  can vary from iteration to iteration.
> By the previous theorem, there exists a symmetric triangulation K of
S*=2 aligned with hemispheres, and a proper antisymmetric
2-colouring k such that G = G (K, k). Say the colours used in r are
black and white.
» Consider any (not necessarily proper) (k — 1)-colouring
c:V(G)—=A{1,...,k—1}.
> Set
A(v) = +c(p(v)) ifvisblack
—c(p(v)) ifwvis white.



The final step (2/2)

v

A V(K) — {£1,...,£(k — 1)} is an antisymmetric labelling
such that every (k — 2)-simplex has vertices of both signs.

By the corollary to Fan’s lemma, there exists an edge {u, v} € K such
that A(u) + A(v) = 0.

Hence, the edge {p(u), p(v)} € E(G) satisfies

c(p(u)) = |A(w)] = |A(v)| = ¢(p(v)), ie., cis nota proper
colouring of G.

This shows that x(G) > k.



Borsuk graphs

» Connection between Borsuk—Ulam and chromatic number first
noticed by Erd8s and Hajnal (1967).

» They defined the Borsuk graph BG(n, ) as the (infinite) graph
whose vertices are the points of R™*1 on S™, and the edges connect
points at Euclidean distance at least & where 0 < o < 2.

> As o tends to 2, the odd girth of B(n, o) tends to infinity.
» Borsuk—Ulam equivalent to x (BG(n, a)) > n + 2.

» By using the standard (n + 2)-colouring of S™ based on the central
projection of a regular (1 + 1)-simplex, it can be shown that
X(BG(n,a)) = n + 2 for all a sufficiently large.



Generalised Mycielski graphs

Lemma (Miiller and MS 2017)

For every n > 0 and every 0 > 0, there exists G € M, 12 and a mapping
f:V(G) — S™such that || f(u) + f(v)]|| < 6, for every edge

{u,v} € G.In particular, G C BG(n, V4 — §?).




Stiebitz implies Borsuk—Ulam

» Suppose there exists a continuous antipodal map f : S™ — S"~1,
» For e sufficiently small, x(BG(n — 1,¢)) =n + 1.

» Every continuous function on a compact set is uniformly continuous,
so there exists & > 0 such thatif ||z — y|| < 6, then

1f (@) = fW)]l < 2e.

> By the previous lemma, there exists G € M, 42 and a mapping
g : V(G) — S™ such that ||g(u) + g(v)|| < 0, for every edge
{u,v} € E(G).

» The mapping f o g : V(G) — S™ L satisfies
Il f(g(w) + f(g(v))| < 2, for every edge {u,v} € E(G).

» The Euclidean distance between f(g(u)) and f(g(v)) is

1 (g(w) = flg())]| > 2V1 —e?,
» SoG C BG(n—1,¢),and x(G) < x(BG(n —1,¢)) =n+ 1.

» This contradicts Stiebitz’s theorem.



