3-colorability of (claw, H)-free graphs

Mária Maceková
(joint work with F. Maffray)
Laboratoire G-SCOP, Grenoble

5.12.2017

k-coloring of graph G - a mapping $f: V(G) \rightarrow\{1, \ldots, k\}$ s.t.

$$
\forall u v \in E(G): f(u) \neq f(v)
$$

$\chi(G)$ - chromatic number of G

- coloring problems:

COLORING
Input: graph $G, k \in \mathbb{N}$
Question: Is $G k$-colorable?

k-COLORING

Input: graph G
Question: Is $G k$-colorable?
k-coloring of graph G - a mapping $f: V(G) \rightarrow\{1, \ldots, k\}$ s.t.

$$
\forall u v \in E(G): f(u) \neq f(v)
$$

$\chi(G)$ - chromatic number of G

- coloring problems:

COLORING
Input: graph $G, k \in \mathbb{N}$
Question: Is $G k$-colorable?

k-COLORING

Input: graph G
Question: Is $G k$-colorable?

- the problem coloring is NP-complete problem
(even 3-coloring is NP-hard)

Can further poly-time solvable cases be found if restrictions are placed on the input graphs?

Can further poly-time solvable cases be found if restrictions are placed on the input graphs?

Theorem (Král', Kratochvíl, Tuza, Woeginger)
COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_{4} or of $P_{1}+P_{3}$; otherwise it is NP-complete.

Can further poly-time solvable cases be found if restrictions are placed on the input graphs?

Theorem (Král', Kratochvíl, Tuza, Woeginger)
COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_{4} or of $P_{1}+P_{3}$; otherwise it is NP-complete.

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \geq 3 \Rightarrow 3$-COLORING is NP-complete for the class of H-free graphs whenever H contains a cycle

Can further poly-time solvable cases be found if restrictions are placed on the input graphs?

Theorem (Král', Kratochvíl, Tuza, Woeginger)
COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_{4} or of $P_{1}+P_{3}$; otherwise it is NP-complete.

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \geq 3 \Rightarrow 3$-COLORING is NP-complete for the class of H-free graphs whenever H contains a cycle
\Rightarrow complexity of 3 -COLORING when H is a forest?

Theorem (Holyer)
For every $k \geq 3, k$-COLORING is NP-complete for line graphs of k-regular graphs.

Theorem (Holyer)
For every $k \geq 3, k$-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free $\Rightarrow 3$-coLORING is NP-complete in the class of claw-free graphs
$\Rightarrow 3$-coloring is NP-complete on H-free graphs whenever H is a forest with $\Delta(H) \geq 3$

Theorem (Holyer)
For every $k \geq 3, k$-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free $\Rightarrow 3$-coLORING is NP-complete in the class of claw-free graphs
$\Rightarrow 3$-coloring is NP-complete on H-free graphs whenever H is a forest with $\Delta(H) \geq 3$
- computational complexity of 3-cOLORING in other subclasses of claw-free graphs?

Král', Kratochvíl, Tuza, Woeginger:

- 3-COLORING is NP-complete for (claw, C_{r})-free graphs whenever $r \geq 4$
- 3-COLORING is NP-complete for (claw, diamond, K_{4})-free graphs

Král', Kratochvíl, Tuza, Woeginger:

- 3-COLORING is NP-complete for (claw, C_{r})-free graphs whenever $r \geq 4$
- 3-COLORING is NP-complete for (claw, diamond, K_{4})-free graphs Malyshev:
- 3-COLORING is poly-time solvable for (claw, H)-free graphs for $H=P_{5}, C_{3}^{*}, C_{3}^{++}$

Theorem (Lozin, Purcell)

The 3-COLORING problem can be solved in polynomial time in the class of (claw, H)-free graphs only if every connected component of H is either a Φ_{i} with an odd i or a $T_{i, j, k}^{\Delta}$ with an even i or an induced subgraph of one of these two graphs.

$\Rightarrow 3$-COLORING problem in a class of (claw, H)-free graphs is polynomial-time solvable only if H contains at most 2 triangles in each of its connected components
$\Rightarrow 3$-coloring problem in a class of (claw, H)-free graphs is polynomial-time solvable only if H contains at most 2 triangles in each of its connected components

- for 1 triangle:
if H is a graph every connected component of the form $T_{i, j, k}^{1}$, then the clique-width of (claw, H)-free graphs of bounded vertex degree is bounded by a constant (Lozin, Rautenbach)

- for 2 triangles in the same component of H :
- for 2 triangles in the same component of H :
$H=\Phi_{0}$: Randerath, Schiermeyer, Tewes (polynomial-time algorithm), Kamiński, Lozin (linear-time algorithm)
$H=T_{0,0, k}^{\Delta}$: Kamiński, Lozin
$H \in\left\{\Phi_{1}, \Phi_{3}\right\}$: Lozin, Purcell
$H=\Phi_{2}, \Phi_{4}$: Maceková, Maffray
- every graph on 5 vertices contains either a C_{3}, or a $\overline{C_{3}}$, or a $C_{5} \Rightarrow$ as K_{4} and W_{5} are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- every graph on 5 vertices contains either a C_{3}, or a $\overline{C_{3}}$, or a $C_{5} \Rightarrow$ as K_{4} and W_{5} are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- every graph on 5 vertices contains either a C_{3}, or a $\overline{C_{3}}$, or a $C_{5} \Rightarrow$ as K_{4} and W_{5} are not 3-colorable, every claw-free graph, which is 3 -colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- G is 2 -connected
- every graph on 5 vertices contains either a C_{3}, or a $\overline{C_{3}}$, or a $C_{5} \Rightarrow$ as K_{4} and W_{5} are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- G is 2-connected

Definition

Any claw-free graph that is 2-connected, K_{4}-free, and where every vertex has degree either 3 or 4 is called a standard claw-free graph.

$F_{3 k+4}, k \geq 1$:

$F_{3 k+4}, k \geq 1$:

$F_{16}^{\prime}:$

$F_{3 k+4}, k \geq 1$:

$F_{16}^{\prime}:$

Definition

In a graph G, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \backslash R$ extends to a 3-coloring of G.

Definition

In a graph G, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \backslash R$ extends to a 3-coloring of G.

Lemma

In a graph G, let $R \subset V(G)$, and let $x, y \in R$ be such that every vertex in $R \backslash\{x, y\}$ has no neighbor in $V(G) \backslash R$, and each of x, y has at most two neighbors in $V(G) \backslash R$. Assume that either:
(a) $G[R]$ admits a 3-coloring where x and y have the same color and a 3-coloring where x and y have distinct colors; or
(b) $G[R]$ admits a 3-coloring, and each of x, y has at most one neighbor in $V(G) \backslash R$; or
(c) $G[R]$ admits a 3-coloring in which x and y have different colors, and one of x, y has at most one neighbor in $V(G) \backslash R$.
Then R is removable.

- given diamond $D \rightarrow$ vertices of degree $2=$ peripheral, vertices of degree 3 = central
- types of diamonds in G :
- pure diamond \rightarrow both central vertices of diamond have degree 3 in G
- perfect diamond \rightarrow pure diamond in which both peripheral vertices have degree at most 3 in G
- operations with diamonds:
- pure diamond contraction
- perfect diamond deletion

Lemma

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_{4}. Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or $K_{2,2,1}$, or

$K_{2,2,2}$, or $K_{2,2,2} \backslash e$, or

Lemma

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_{4}. Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or $K_{2,2,1}$, or $K_{2,2,2}$, or $K_{2,2,2} \backslash e$, or
- G contains a strip.

Lemma

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_{4}. Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or $K_{2,2,1}$, or $K_{2,2,2}$, or $K_{2,2,2} \backslash e$, or
- G contains a strip.
- if G is a tyre or a pseudo-tyre, then it is 3-colorable only if $|V(G)| \equiv 0$ (mod 3)
- if G is isomorphic to $K_{2,2,1}, K_{2,2,2}$, or $K_{2,2,2} \backslash e$, then it is 3-colorable
- if G contains a strip and is Φ_{2}-free, then we can reduce it

When G is a claw-free graph that contains a strip, we define a reduced graph G^{\prime} as follows:

- if G contains a linear strip S, then G^{\prime} is obtained by removing the vertices s_{1}, \ldots, s_{k-1} and identifying the vertices s_{0} and s_{t} (if $k=0 \bmod 3$), or adding the edge $s_{0} s_{k}$ (if $t \neq 0 \bmod 3$)
- if G contains a square strip S, then G^{\prime} is obtained by removing the vertices s_{1}, \ldots, s_{5} and identifying the vertices s_{0} and s_{6}
- if G contains a semi-square strip S, then G^{\prime} is obtained by removing the vertices s_{1}, \ldots, s_{5}
- if G contains a triple strip, then G^{\prime} is obtained by removing the vertices s_{2}, s_{4}, s_{6} and adding the three edges $s_{1} s_{3}, s_{1} s_{5}, s_{3} s_{5}$

Lemma

Let G be a claw-free graph that contains a strip S and no K_{4}, and let G^{\prime} be the reduced graph obtained from G by strip reduction. Then:
(i) G^{\prime} is claw-free.
(ii) G is 3-colorable if and only if G^{\prime} is 3-colorable.
(iii) If G is Φ_{2}-free, and S is not a diamond, then G^{\prime} is Φ_{2}-free.

Lemma

Let G be a (claw, $\left.\Phi_{2}\right)$-free graph. Let $T \subset V(G)$ be a set that induces a $(1,1,1)$-tripod. Let G^{\prime} be the graph obtained from G by removing the vertices of $T \backslash\left\{a_{3}, b_{3}, c_{3}\right\}$ and adding the three edges $a_{3} b_{3}, a_{3} c_{3}, b_{3} c_{3}$. Then:

- G^{\prime} is (claw, Φ_{2})-free,
- G is 3-colorable if and only if G^{\prime} is 3-colorable.

Theorem

Let G be a standard (claw, Φ_{2})-free graph. Then either:

- G is a tyre, a pseudo-tyre, a $K_{2,2,1}$, or a $K_{2,2,2}$ or a $K_{2,2,2} \backslash e$, or
- G contains F_{7} as an induced subgraph, or
- G is diamond-free, or
- G has a set whose reduction yields a Φ_{2}-free graph, or
- G has a removable set.

Definition
 The chordality of a graph G is the length of the longest chordless cycle in G.
 Theorem (Lozin, Purcell)
 For every fixed p, the 3-colorability problem is polynomial-time solvable in the class of claw-free graphs of chordality at most p.

Definition

The chordality of a graph G is the length of the longest chordless cycle in G.

Theorem (Lozin, Purcell)

For every fixed p, the 3-colorability problem is polynomial-time solvable in the class of claw-free graphs of chordality at most p.

Lemma

Let G be a standard (claw, Φ_{2})-free graph that contains no diamond. Assume that G contains a chordless cycle C of length at least 10.
Then every vertex of G not in C which has a neighbor in C is adjacent to exactly two consecutive vertices of the cycle.

Theorem

One can decide 3-coloring problem in polynomial time in the class of (claw, Φ_{2})-free graphs.

Sketch of the proof.
Testing:

- G is standard

Theorem

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_{2})-free graphs.

Sketch of the proof.
Testing:

- G is standard
- G contains F_{7} as a subgraph

Theorem

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_{2})-free graphs.

Sketch of the proof.
Testing:

- G is standard
- G contains F_{7} as a subgraph
- G contains a diamond - if yes, then 3-coloring of $G \leftrightarrow$ 3 -COLORING on a smaller (claw, Φ_{2})-free graph; otherwise G is diamond-free

Theorem

One can decide 3-coloring problem in polynomial time in the class of (claw, Φ_{2})-free graphs.

Sketch of the proof.
Testing:

- G is standard
- G contains F_{7} as a subgraph
- G contains a diamond - if yes, then 3-coloring of $G \leftrightarrow$ 3 -COLORING on a smaller (claw, Φ_{2})-free graph; otherwise G is diamond-free
- G contains a chordless cycle of length at least 10 - if no, G has bounded chordality; otherwise G has specifical structure and either it contains a removable set, or we can easily color the vertices of G with three colors

Lemma

Let G be a standard (claw, Φ_{k})-free graph, $k \geq 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or $|V(G)|$ is bounded by a function that depends only on k.
Lemma
Let G be a standard (claw, Φ_{k})-free graph, $k \geq 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or $|V(G)|$ is bounded by a function that depends only on k.

Definition

Let a Φ_{0} be pure if none of its two triangles extends to a diamond.
Lemma
Let G be a standard (claw, Φ_{k})-free graph, $k \geq 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or $|V(G)|$ is bounded by a function that depends only on k.

Definition

Let a Φ_{0} be pure if none of its two triangles extends to a diamond.
Lemma
Let G be a standard (claw, Φ_{4})-free graph. Assume that every strip in G is a diamond. If G contains a pure Φ_{0}, then either $|V(G)| \leq 127$ or we can find a removable set.

Theorem

Let G be a standard (claw, Φ_{4})-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G^{\prime} be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G^{\prime} is (claw, Φ_{4})-free, and G is 3-colorable if and only if G^{\prime} is 3-colorable;
- G contains F_{7}, F_{10} or F_{16}^{\prime} (and so G is not 3-colorable);
- G contains a pure Φ_{0};
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Theorem

Let G be a standard (claw, Φ_{4})-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G^{\prime} be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G^{\prime} is (claw, Φ_{4})-free, and G is 3-colorable if and only if G^{\prime} is 3-colorable;
- G contains F_{7}, F_{10} or F_{16}^{\prime} (and so G is not 3-colorable);
- G contains a pure Φ_{0};
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Corollary
One can decide 3-cOLORING in polynomial time in the class of (claw, Φ_{4}-free graphs.

Thank you for your attention!

