3-colorability of (claw, H)-free graphs

Mária Maceková (joint work with F. Maffray)

Laboratoire G-SCOP, Grenoble

5.12.2017

k-coloring of graph *G* - a mapping $f : V(G) \rightarrow \{1, ..., k\}$ s.t. $\forall uv \in E(G) : f(u) \neq f(v)$

 $\chi(G)$ - chromatic number of G

• coloring problems:

COLORING

Input: graph $G, k \in \mathbb{N}$ Question: Is G k-colorable?

k-COLORING

Input: graph G Question: Is G k-colorable? *k*-coloring of graph *G* - a mapping $f : V(G) \rightarrow \{1, ..., k\}$ s.t. $\forall uv \in E(G) : f(u) \neq f(v)$

 $\chi(G)$ - chromatic number of G

oloring problems:

COLORING

Input: graph G, $k \in \mathbb{N}$ Question: Is G k-colorable?

k-COLORING

Input: graph G Question: Is G k-colorable?

- the problem COLORING is NP-complete problem (even 3-COLORING is NP-hard)

Theorem (Kráľ, Kratochvíl, Tuza, Woeginger)

COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_4 or of $P_1 + P_3$; otherwise it is NP-complete.

Theorem (Kráľ, Kratochvíl, Tuza, Woeginger)

COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_4 or of $P_1 + P_3$; otherwise it is NP-complete.

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \ge 3 \Rightarrow$ 3-COLORING is NP-complete for the class of *H*-free graphs whenever *H* contains a cycle

Theorem (Kráľ, Kratochvíl, Tuza, Woeginger)

COLORING is polynomial-time solvable in the class of H-free graphs if H is an induced subgraph of P_4 or of $P_1 + P_3$; otherwise it is NP-complete.

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \ge 3 \Rightarrow$ 3-COLORING is NP-complete for the class of *H*-free graphs whenever *H* contains a cycle \Rightarrow complexity of 3-COLORING when *H* is a forest?

Theorem (Holyer)

For every $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

Theorem (Holyer)

For every $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free \Rightarrow 3-COLORING is NP-complete in the class of claw-free graphs \Rightarrow 3-COLORING is NP-complete on *H*-free graphs whenever *H* is a forest with $\Delta(H) \geq 3$

Theorem (Holyer)

For every $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free \Rightarrow 3-COLORING is NP-complete in the class of claw-free graphs

 \Rightarrow 3-COLORING is NP-complete on *H*-free graphs whenever *H* is a forest with $\Delta(H) \ge 3$

- computational complexity of 3-COLORING in other subclasses of claw-free graphs?

Kráľ, Kratochvíl, Tuza, Woeginger:

- 3-COLORING is NP-complete for (claw, C_r)-free graphs whenever $r \ge 4$
- 3-COLORING is NP-complete for (claw, diamond, K_4)-free graphs

Kráľ, Kratochvíl, Tuza, Woeginger:

- 3-COLORING is NP-complete for (claw, C_r)-free graphs whenever r ≥ 4
- 3-COLORING is NP-complete for (claw, diamond, K_4)-free graphs

Malyshev:

• 3-COLORING is poly-time solvable for (claw, *H*)-free graphs for $H = P_5, C_3^*, C_3^{++}$

Theorem (Lozin, Purcell)

The 3-COLORING problem can be solved in polynomial time in the class of (claw, H)-free graphs only if every connected component of H is either a Φ_i with an odd i or a $T_{i,j,k}^{\Delta}$ with an even i or an induced subgraph of one of these two graphs.

 \Rightarrow 3-COLORING problem in a class of (claw, *H*)-free graphs is polynomial-time solvable only if *H* contains at most 2 triangles in each of its connected components \Rightarrow 3-COLORING problem in a class of (claw, *H*)-free graphs is polynomial-time solvable only if *H* contains at most 2 triangles in each of its connected components

• for 1 triangle:

if *H* is a graph every connected component of the form $T_{i,j,k}^1$, then the clique-width of (claw, *H*)-free graphs of bounded vertex degree is bounded by a constant (Lozin, Rautenbach)

• for 2 triangles in the same component of *H*:

• for 2 triangles in the same component of *H*:

 $H = \Phi_0$: Randerath, Schiermeyer, Tewes (polynomial-time algorithm), Kamiński, Lozin (linear-time algorithm) $H = T^{\Delta}_{0,0,k}$: Kamiński, Lozin $H \in {\Phi_1, \Phi_3}$: Lozin, Purcell $H = \Phi_2, \Phi_4$: Maceková, Maffray - every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- G is 2-connected

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- G is 2-connected

Definition

Any claw-free graph that is 2-connected, K_4 -free, and where every vertex has degree either 3 or 4 is called a standard claw-free graph.

$F_{3k+4}, k \ge 1$:

 $F_{3k+4}, k \ge 1$:

F[′]₁₆:

 $F_{3k+4}, k \ge 1$:

F[′]₁₆:

Definition

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

Definition

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

Lemma

In a graph G, let $R \subset V(G)$, and let $x, y \in R$ be such that every vertex in $R \setminus \{x, y\}$ has no neighbor in $V(G) \setminus R$, and each of x, y has at most two neighbors in $V(G) \setminus R$. Assume that either:

- (a) *G*[*R*] admits a 3-coloring where *x* and *y* have the same color and a 3-coloring where *x* and *y* have distinct colors; or
- (b) G[R] admits a 3-coloring, and each of x, y has at most one neighbor in V(G) \ R; or
- (c) G[R] admits a 3-coloring in which x and y have different colors, and one of x, y has at most one neighbor in $V(G) \setminus R$.

Then R is removable.

M. Maceková (G-SCOP)

- given diamond $D \rightarrow$ vertices of degree 2 = peripheral, vertices of degree 3 = central

- types of diamonds in G:
 - pure diamond → both central vertices of diamond have degree 3 in G
 - perfect diamond → pure diamond in which both peripheral vertices have degree at most 3 in G
- operations with diamonds:
 - pure diamond contraction
 - perfect diamond deletion

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_4 . Then one of the following holds:

• G is either a tyre, or a pseudo-tyre, or K_{2,2,1}, or

 $K_{2,2,2}$, or $K_{2,2,2} \setminus e$, or

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_4 . Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or $K_{2,2,1}$, or $K_{2,2,2}$, or $K_{2,2,2} \setminus e$, or
- G contains a strip.

Diamonds

Lemma

Let G be a connected claw-free graph with maximum degree at most 4. Assume that G contains a diamond and no K_4 . Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or $K_{2,2,1}$, or $K_{2,2,2}$, or $K_{2,2,2} \setminus e, or$
- G contains a strip.
- if G is a tyre or a pseudo-tyre, then it is 3-colorable only if $|V(G)| \equiv 0$ (mod 3)
- if G is isomorphic to $K_{2,2,1}$, $K_{2,2,2}$, or $K_{2,2,2} \setminus e$, then it is 3-colorable
- if G contains a strip and is Φ_2 -free, then we can reduce it

When *G* is a claw-free graph that contains a strip, we define a reduced graph G' as follows:

- if G contains a linear strip S, then G' is obtained by removing the vertices s₁,..., s_{k-1} and identifying the vertices s₀ and s_t (if k = 0 mod 3), or adding the edge s₀s_k (if t ≠ 0 mod 3)
- if G contains a square strip S, then G' is obtained by removing the vertices s₁,..., s₅ and identifying the vertices s₀ and s₆
- if *G* contains a semi-square strip *S*, then *G*' is obtained by removing the vertices *s*₁,..., *s*₅
- if G contains a triple strip, then G' is obtained by removing the vertices s₂, s₄, s₆ and adding the three edges s₁s₃, s₁s₅, s₃s₅

Let G be a claw-free graph that contains a strip S and no K_4 , and let G' be the reduced graph obtained from G by strip reduction. Then:

- (i) G' is claw-free.
- (ii) G is 3-colorable if and only if G' is 3-colorable.

(iii) If G is Φ_2 -free, and S is not a diamond, then G' is Φ_2 -free.

Let G be a (claw, Φ_2)-free graph. Let $T \subset V(G)$ be a set that induces a (1, 1, 1)-tripod. Let G' be the graph obtained from G by removing the vertices of $T \setminus \{a_3, b_3, c_3\}$ and adding the three edges a_3b_3, a_3c_3, b_3c_3 . Then:

- G' is (claw, Φ_2)-free,
- G is 3-colorable if and only if G' is 3-colorable.

Let G be a standard (claw, Φ_2)-free graph. Then either:

- *G* is a tyre, a pseudo-tyre, a $K_{2,2,1}$, or a $K_{2,2,2}$ or a $K_{2,2,2} \setminus e$, or
- G contains F7 as an induced subgraph, or
- G is diamond-free, or
- G has a set whose reduction yields a Φ₂-free graph, or
- G has a removable set.

Definition

The chordality of a graph G is the length of the longest chordless cycle in G.

Theorem (Lozin, Purcell)

For every fixed p, the 3-colorability problem is polynomial-time solvable in the class of claw-free graphs of chordality at most p.

Definition

The chordality of a graph G is the length of the longest chordless cycle in G.

Theorem (Lozin, Purcell)

For every fixed p, the 3-colorability problem is polynomial-time solvable in the class of claw-free graphs of chordality at most p.

Lemma

Let G be a standard (claw, Φ_2)-free graph that contains no diamond. Assume that G contains a chordless cycle C of length at least 10. Then every vertex of G not in C which has a neighbor in C is adjacent to exactly two consecutive vertices of the cycle.

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph
- *G* contains a diamond if yes, then 3-COLORING of $G \leftrightarrow$ 3-COLORING on a smaller (claw, Φ_2)-free graph; otherwise *G* is diamond-free

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph
- *G* contains a diamond if yes, then 3-COLORING of $G \leftrightarrow$ 3-COLORING on a smaller (claw, Φ_2)-free graph; otherwise *G* is diamond-free
- *G* contains a chordless cycle of length at least 10 if no, *G* has bounded chordality; otherwise *G* has specifical structure and either it contains a removable set, or we can easily color the vertices of *G* with three colors

M. Maceková (G-SCOP)

3-colorability of (claw, *H*)-free graphs

Let G be a standard (claw, Φ_k)-free graph, $k \ge 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or |V(G)| is bounded by a function that depends only on k.

Let G be a standard (claw, Φ_k)-free graph, $k \ge 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or |V(G)| is bounded by a function that depends only on k.

Definition

Let a Φ_0 be pure if none of its two triangles extends to a diamond.

Let G be a standard (claw, Φ_k)-free graph, $k \ge 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or |V(G)| is bounded by a function that depends only on k.

Definition

Let a Φ_0 be pure if none of its two triangles extends to a diamond.

Lemma

Let G be a standard (claw, Φ_4)-free graph. Assume that every strip in G is a diamond. If G contains a pure Φ_0 , then either $|V(G)| \le 127$ or we can find a removable set.

Let G be a standard (claw, Φ_4)-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G' be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G' is (claw, Φ₄)-free, and G is 3-colorable if and only if G' is 3-colorable;
- G contains F₇, F₁₀ or F'₁₆ (and so G is not 3-colorable);
- G contains a pure Φ_0 ;
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Let G be a standard (claw, Φ_4)-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G' be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G' is (claw, Φ₄)-free, and G is 3-colorable if and only if G' is 3-colorable;
- G contains F₇, F₁₀ or F'₁₆ (and so G is not 3-colorable);
- G contains a pure Φ_0 ;
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Corollary

One can decide 3-COLORING in polynomial time in the class of (claw,

 Φ_4)-free graphs.

M. Maceková (G-SCOP)

3-colorability of (claw, H)-free graphs

Thank you for your attention!