On the minimum size of an identifying code over all orientations of a graph

Frédéric Havet

Joint work with

N. Cohen

COATI, INRIA, I3S, CNRS, Univ. Nice Sophia Antipolis Sophia Antipolis, France

Réunion STINT, 4 Décembre 2017

Definitions

neighbourhood of $v: N(v) = \{u \mid uv \in E(G)\}.$ closed neighbourhood of $v: N[v] = N(v) \cup \{v\}$.

 $C \subset V(G)$

identifier of $v: I(v) = N[v] \cap C$.

C is an identifying code if

- $I(v) \neq \emptyset$ for all $v \in V(G)$;
- $I(v) \neq I(u)$ for any $v \neq u$.

Definitions

out-neighbourhood of $v: N^+(v) = \{u \mid uv \in A(D)\}.$ closed out-neighbourhood of $v: N^+[v] = N^+(v) \cup \{v\}$.

$$C \subseteq V(D)$$

identifier of
$$v: I(v) = N^+[v] \cap C$$
.

C is an identifying code if

- $I(v) \neq \emptyset$ for all $v \in V(D)$;
- $I(v) \neq I(u)$ for any $v \neq u$.

Existence theorem

$$u$$
 and v are twins if $N[u] = N[v]$. resp. $N^+[u] = N^+[v]$.

For all C, two twins have the same identifier.

Theorem: G admits an identifying code iff G has no twins.

Proof: If two twins, no identifying code.

If no twins, then V(G) is an identifying code.

Problem 1: Let G be a finite (di)graph with no twins. What is the **minimum size** id(G) of an identifying code?

Identifying codes of orientations

Theorem: *D* admits an identifying code iff *D* has no twins.

Corollary: If D is an orientation of G, then D has an identifying code.

Problem 2: Let G be a graph. What is the minimum size idor(G) of an identifying code of an **orientation** D of G?

First bounds on idor

$$\log_2(n+1) \le \mathsf{idor}(G) \le n$$

empty graphs : $idor(E_n) = n$.

complete graphs : $idor(K_n) = \lceil log_2(n+1) \rceil$.

Proposition: $idor(G) \leq idor(G \setminus e)$.

Slightly better upper bounds for idor

Lemma:
$$(V_1, V_2)$$
 partition of G idor $(G) \leq idor(G\langle V_1 \rangle) + idor(G\langle V_2 \rangle)$ [[Orient all arcs from V_1 to V_2 .]]

$$idor(G) \le |V(G)| - \omega(G) + \lceil \log_2(\omega(G) + 1) \rceil.$$

$$idor(G) \leq |V(G)| - \delta(G)/2 + 1.$$

We cannot expect better than
$$|V(G)|-g(\delta(G))$$
 for some g s.t. $\frac{k}{2}-1\leq g(k)\leq 2^k-1$.

$$\mathsf{idor}(K_{k,n-k}) \geq n - 2^k + 1.$$

Lower bounds for idor

Lemma:
$$idor(G) \ge \frac{2}{\Delta(G) + 2} |V(G)|$$
.

Discharging Method

Initial charge : $w_0(v) = 1$ for all $v \in V(G)$. Total charge = |V(G)|.

Discharging rule: every vertex sends $\frac{1}{|I(v)|}$ to every vertex of I(v).

Final charge: if $v \notin C$, then w(v) = 0;

if
$$v \in C$$
, then $w(v) \le 1 + d^-(v)/2 \le \frac{2+\Delta(G)}{2}$;

$$|V(G)| = \sum_{v \in C} w(v) \leq |C| \frac{\Delta(G) + 2}{2}.$$

Lower bounds for idor

Lemma:
$$idor(G) \ge \frac{2}{\Delta(G) + 2} |V(G)|$$
.

This bound is tight.

Proposition: If G is the incidence graph of a Δ -regular graph, then idor(G) = $\frac{2}{\Delta+2}|V(G)|$.

[[G incidence graph of H. Orient all arcs from E(H) to V(H).

Trees

Theorem: If T is a tree of order n > 2, then

 $idor(T) > \lceil (n+1)/2 \rceil$.

Paths: $idor(P_n) = \lceil (n+1)/2 \rceil$.

Stars: $idor(S_n) = n - 1$.

Theorem: If T is a tree, then $idor(T) \leq \left| \frac{|V(T)| + leav(T)}{2} \right|$.

Corollary: If T is a tree, then $idor(T) \leq \frac{3\alpha(T)}{2}$.

Theorem: If T is a tree, $T \neq P_2, P_4$, then $idor(T) \leq \frac{4}{3}\alpha(T)$.

idor(*G*) versus id(*G*)

 $\log_2(n+1) \le \operatorname{id}(G) \le n$ for G twin-free $\log_2(n+1) < \operatorname{idor}(G) < n$.

$$idor(G) \le 2^{id(G)}$$
 and $id(G) \le 2^{idor(G)}$ (G twin-free)

$$idor(K_{k,2^k-k-1}) = k$$
 and $id(K_{k,2^k-k-1}) = 2^k - 3$.

Theorem: $idor(G) \leq \frac{3}{2} id(G)$ for all graph G.

Complexity

IDOR.

Input: A graph G and an integer k.

Parameter: k.

Question: $idor(G) \le k$?

IDOR is NP-complete even for bipartite cubic graphs or bipartite planar graphs of maximum degree 3.

It is FPT. (If idor(G) < k, then $|G| < 2^k - 1$.)

Problem: Does IDOR admit a polynomial kernel?

Large Idor

LARGE-IDOR

Input: A graph G and an non-negative integer k.

Parameter: k.

Question: $idor(G) \ge |V(G)| - k$?

It is in XP

k-atom G: idor(G) = |V(G)| - k and idor(H) > |V(H)| - k for all proper induced subgraphs H of G.

Lemma: Every k-atom has order at most $\binom{k}{2} + 2k + 1$.

Problem: Is LARGE-IDOR FPT?

Is Code

IsCode

Input: A graph G and a set $C \subseteq V(G)$. Question: Is there an orientation D of G for which C is an identifying code?

ISCODE is NP-hard.

Many polynomial subcases.

- If C = V(G), then the answer is trivially 'yes', and if $2^{|C|} - 1 < V(G)$, then the answer is trivially 'no'.
- If G(C) has a **bounded number of edges**, then IsCode can be solved in polynomial time using matchings.

Given $G, C \subseteq V(G)$, and D_C orientation of G(C), one can check in polynomial time whether there exists an orientation D of G such that $D(C) = D_C$ and C is an identifying code of D.

