A tight Erdős-Posa function for wheel minors

Pierre Aboulker — G-SCOP

Joint work with S. Fiorini, T. Huynh, G. Joret, JF. Raymond and I. Sau

Definition

- Let G and H be two graphs.
- $\nu_H(G) = \text{maximum number of pairwise disjoint } H \text{ minors in } G$.
- $\tau_H(G)$ = minimum size of a subset $X \subseteq V(G)$ such that G X is *H*-minor free.

We clearly have

 $\nu_H(G) \leq \tau_H(G)$

Definition

- Let G and H be two graphs.
- $\nu_H(G) = \text{maximum number of pairwise disjoint } H \text{ minors in } G$.
- $\tau_H(G)$ = minimum size of a subset $X \subseteq V(G)$ such that G X is *H*-minor free.

We clearly have

$$\nu_H(G) \leq \tau_H(G)$$

Definition

We say that *H* has the *Erdős-Posa* property if there exists a function *f* such that for every graph *G*, $\tau_H(G) \leq f(\nu_H(G))$.

Definition

- Let G and H be two graphs.
- $\nu_H(G) = \text{maximum number of pairwise disjoint } H \text{ minors in } G$.
- $\tau_H(G)$ = minimum size of a subset $X \subseteq V(G)$ such that G X is *H*-minor free.

We clearly have

$$\nu_H(G) \leq \tau_H(G)$$

Definition

We say that *H* has the *Erdős-Posa* property if there exists a function *f* such that for every graph *G*, $\tau_H(G) \leq f(\nu_H(G))$.

Theorem (Robertson, Seymour, 1986)

H has the Erdős-Posa property if and only if H is planar.

(G-SCOP)

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem (Chekuri, Chuzoy, 2013)

For every planar graph H, the EP property holds for H with function $k \log^{c} k$.

3 / 10

Theorem (Chekuri, Chuzoy, 2013)

For every planar graph H, the EP property holds for H with function $k \log^{c} k$.

Conjecture

For every planar graph H, the EP property holds for H with function $k \log k$.

Theorem (Chekuri, Chuzoy, 2013)

For every planar graph H, the EP property holds for H with function $k \log^{c} k$.

Conjecture

For every planar graph H, the EP property holds for H with function $k \log k$.

Our main contribution:

Theorem

The conjecture holds for wheels.

Let *H* be a graph and let $f : \mathbb{N} \to \mathbb{R}$ be a function.

A graph G is a **minimal counterexample** to the EP property for H if the following properties hold:

- $\tau_H(G) > \nu_H(G) \log \nu_H(G)$,
- subject to the above constraint $\nu_H(G)$ is minimum,
- subject to the above constraints, G is minor minimal.

Theorem (Fomin et al. 2012)

For every planar graph H, for every $k \in \mathbb{N}$, every graph G with $\tau_H(G) = k$ satisfies:

 $|V(G)| \leq poly(k)$

Theorem (Fomin et al. 2012)

For every planar graph H, for every $k \in \mathbb{N}$, every graph G with $\tau_H(G) = k$ satisfies:

 $|V(G)| \leq poly(k)$

Lemma

Let H be a planar graph.

A minimal counterexample G to the EP property for H satisfies

 $|V(G)| \leq poly(\nu_H(G))$

Lemma

Let H be a planar graph. A minimal counterexample G to the EP property for H satisfies

 $|V(G)| \leq poly(\nu_H(G))$

Proof.

By Fomin et al, $|V(G)| \leq poly(\tau_H(G))$.

Set $k = \nu_H(G)$. By Chekuri and Chuzoy, $\tau_H(G) = O(k \log^c k)$.

Hence, $|V(G)| \leq poly(klog^{c}k) \leq poly(k)$.

Lemma

Let H be a planar graph and let $f : \mathbb{N} \to \mathbb{R}$ be a function. A minimal counterexample G to the EP property for H does not contain a H-minor of size $O(\log n)$.

Lemma

Let H be a planar graph and let $f : \mathbb{N} \to \mathbb{R}$ be a function. A minimal counterexample G to the EP property for H does not contain a H-minor of size $O(\log n)$.

Proof.

Toward a contradiction, let M be an H-minor on $O(\log n)$ vertices. Set $k = \nu_H(G)$. Since n = poly(k), $\log n = O(k)$. Moreover, since $\nu_H(G - M) \le k - 1$, by minimality of G we have:

$$egin{aligned} & au_{H}(G) \leq |V(M)| + au(G-V(M)) \ & \leq O(\log n) + O((k-1)\log(k-1)) \ & \leq O(k) + O((k-1)\log(k-1)) \ & \leq O(k\log k) \end{aligned}$$

Theorem (Montgomery, 2015)

If an n-vertex graph has average degree at least $O(t\sqrt{\log t})$, then it contains a K_t minor on $O(\log n)$ vertices.

- A I I I A I I I I

Theorem (Montgomery, 2015)

If an n-vertex graph has average degree at least $O(t\sqrt{\log t})$, then it contains a K_t minor on $O(\log n)$ vertices.

Lemma

For every planar graph H, there is a function $g : \mathbb{N} \to \mathbb{N}$ such that, if G is a minimal counterexample, then every H-minor free induced subgraph J of G that has exactly p vertices with a neighbor in V(G - J) satisfies |J| < g(p). Let W_t be the wheel on t vertices and let G be a minimal counterexample for W_t .

Fix some constants: $t\sqrt{\log t} \ll c_1 \ll p \ll c_2$.

- Let C be a maximum collection of vertex disjoint cycles in G whose lengths are in [c₁, c₂],
- let P be a maximum collection of vertex disjoint paths in G C| of length p,
- let *R* be the collection of components in $G (C \cup P)$

Observe that every piece of $C \cup P \cup R$ is *H*-minor free.

イロト イヨト イヨト イヨト

Thank you for your attention

▶ < ∃ ▶ < ∃ ▶</p>