The Barát-Thomassen Conjecture

Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé
Université Nice-Sophia-Antipolis, France

JCALM 2017
May 5th, 2017

Introduction

Decomposing graphs

G: (undirected simple) graph.
H : (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Decomposing graphs

G: (undirected simple) graph.
H : (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_{1}, \ldots, E_{k} of $E(G)$ such that each $G\left[E_{i}\right]$ is isomorphic to H.

Decomposing graphs

G: (undirected simple) graph.
$H:$ (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_{1}, \ldots, E_{k} of $E(G)$ such that each $G\left[E_{i}\right]$ is isomorphic to H.

Decomposing graphs

G : (undirected simple) graph.
H : (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_{1}, \ldots, E_{k} of $E(G)$ such that each $G\left[E_{i}\right]$ is isomorphic to H.

S_{4}-decomposition

P_{3}-decomposition

Decomposing graphs

G : (undirected simple) graph.
H : (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_{1}, \ldots, E_{k} of $E(G)$ such that each $G\left[E_{i}\right]$ is isomorphic to H.

S_{4}-decomposition

P_{3}-decomposition

When does G admit H-decompositions?

Tree decompositions

What for H being a tree?

Tree decompositions

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_{n} admits T-decompositions.
\Rightarrow Intuitively, need large degree + some edge-connectivity ($2 \mathrm{nd} \Rightarrow 1$ st).

Tree decompositions

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_{n} admits T-decompositions.
\Rightarrow Intuitively, need large degree + some edge-connectivity (2nd \Rightarrow 1st). For instance, no P_{3}-decomposition of:

The Barát-Thomassen Conjecture

Conjecture [Barát, Thomassen, 2006]

For every tree T, there exists k_{T} such that every k_{T}-edge-connected graph admits T-decompositions.

General remark:

Large edge-co. $\nRightarrow H$-decompositions (e.g. $H=C_{4}$: need close cut edges)

Progress towards the conjecture

Was verified for T being:

- a star [Thomassen, 2012],
- the tree with degree sequence (1,1,1,2,3) [Barát, Gerbner, 2014],
- a bistar of the form $S_{k, k+1}$ [Thomassen, 2014],
- of diameter at most 4 [Merker, 2017],
- among some family of trees with diameter 5 [Merker, 2017], and...
- the path of length 3 [Thomassen, 2008],
- the path of length 4 [Thomassen, 2008],
- a path of length 2^{k} [Thomassen, 2014],
- any path [Botler, Mota, Oshiro, Wakabayashi, 2017].

Main result

Theorem [B., Harutyunyan, Le, Merker, Thomassé, 2017]
The Barát-Thomassen Conjecture is true.

Please: Do not ask me about $k_{T}{ }^{\odot}$.

Proof

Say hello

Our toy T for today:

Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

\Rightarrow Use $R+$ cut-edges to make further copies of T.
$|E(T)|$ fixed \Rightarrow constant amount of consumed edge-connectivity.

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).
(1) Decompose G into lots of spanning trees.

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).
(1) Decompose G into lots of spanning trees.
(2) \Rightarrow Decompose G into G_{1}, G_{2}, G_{3} with large edge-connectivity.

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).
(1) Decompose G into lots of spanning trees.
(2) \Rightarrow Decompose G into G_{1}, G_{2}, G_{3} with large edge-connectivity.

Want: A-degrees in G_{1} divisible by $|E(T)|, B$-degrees in G_{2} divisible by $|E(T)|$.

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).
(1) Decompose G into lots of spanning trees.
(2) \Rightarrow Decompose G into G_{1}, G_{2}, G_{3} with large edge-connectivity.

Want: A-degrees in G_{1} divisible by $|E(T)|, B$-degrees in G_{2} divisible by $|E(T)|$.
(0) Orient G_{3} so that the convenient degrees modulo $|E(T)|$ are attained (i.e. $|E(T)|-d_{G_{1}}(v)$ for $v \in G_{1}$, and $|E(T)|-d_{G_{2}}(v)$ otherwise).

Going bipartite (cont'd)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G=(A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_{1}, G_{2} with large edge-connectivity, where the desired property in G_{1} (resp. G_{2}) is fulfilled in A (resp. B).
(1) Decompose G into lots of spanning trees.
(2) \Rightarrow Decompose G into G_{1}, G_{2}, G_{3} with large edge-connectivity.

Want: A-degrees in G_{1} divisible by $|E(T)|, B$-degrees in G_{2} divisible by $|E(T)|$.
(0) Orient G_{3} so that the convenient degrees modulo $|E(T)|$ are attained (i.e. $|E(T)|-d_{G_{1}}(v)$ for $v \in G_{1}$, and $|E(T)|-d_{G_{2}}(v)$ otherwise).
(- Add all arcs from A to B to G_{1}, to G_{2} otherwise.

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Strategy:

(1) Edge-colour G with $\{/, /, /, /, /\}$;
(2) Repeatedly combine a/, a/, a/, a/and a/to form a copy of T.

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Strategy:

(1) Edge-colour G with $\{/, /, /, /, /\}$;
(2) Repeatedly combine a/, a/, a/, a/ and a/toform a copy of T.

Problems : :

(1) \# of /'s, /'s, /'s, /'s and/'s should locally be the same.
(2) We do not necessarily get a copy isomorphic to T :

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible $=$ Same side of the bipartitions.

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible $=$ Same side of the bipartitions.
To deal with Issue 1 :

Definition: T-equitability

An edge-colouring $E(G) \rightarrow E(T)$ is T-equitable if, for every compatible vertices $v \in G$ and $t \in T$, we have $d_{i}(v)=d_{j}(v)$ for any two edges i, j of T incident to t.

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible $=$ Same side of the bipartitions.
To deal with Issue 1 :

Definition: T-equitability

An edge-colouring $E(G) \rightarrow E(T)$ is T-equitable if, for every compatible vertices $v \in G$ and $t \in T$, we have $d_{i}(v)=d_{j}(v)$ for any two edges i, j of T incident to t.

What will save us:

Theorem [Merker, 2017]

If $G=(A, B)$ is a bipartite graph with

- sufficiently large edge-connectivity, and
- all degrees in A are divisible by $|E(T)|$,
$\Rightarrow T$-equitable edge-colouring where all coloured degrees are "huge".
\Rightarrow May assume G is edge-coloured in a T-equitable way.

Building a decomposition

Locally, "palettes" of colours are good, now ${ }^{(\cdot)}$.

Construct copies of T :
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

Building a decomposition

Locally, "palettes" of colours are good, now ${ }^{-3}$.

Construct copies of T :
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

Building a decomposition

Locally, "palettes" of colours are good, now ${ }^{-3}$.

Construct copies of T :
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

Dealing with Issue 2

Remember: $/+/+/+/+/$ may not give a "real" copy of T :

Dealing with Issue 2

Remember: $/+/+/+/+/$ may not give a "real" copy of T :

\Rightarrow Collection $\mathcal{H}:=\mathcal{G} \cup \mathcal{B}$, where \mathcal{G} (resp. \mathcal{B}) contains "real" (resp. "bad") copies.
\mathcal{G} will be used to "repair" \mathcal{B}.

Repairing process

Let $B \in \mathcal{B}$, and label vertices following a BFS.

In B, vertices v_{1}, \ldots, v_{5} are good. Edge $v_{4} v_{6}$ is problematic.

Repairing process

Let $B \in \mathcal{B}$, and label vertices following a BFS.

In B, vertices v_{1}, \ldots, v_{5} are good. Edge $v_{4} v_{6}$ is problematic.

Repairing process:

(1) Pick $R \in \mathcal{G}$ s.t. B and R intersect only intersect in v_{4}; and
(2) "Switch" the subgraph "rooted" at the edge $v_{4} v_{6}$.

Illustration

Illustration

Illustration

On the repairing operation

Schematized:

\leftarrow switch \rightarrow

On the repairing operation

Schematized:

\leftarrow switch \rightarrow

Remarks:

- B and R might be bad (because of later vertices) © ...

On the repairing operation

Schematized:

\leftarrow switch \rightarrow

Remarks:

- B and R might be bad (because of later vertices) © ...
- ... but their first six vertices are good (\cdot).

On the repairing operation

Schematized:

\leftarrow switch \rightarrow

Remarks:

- B and R might be bad (because of later vertices) © ...
- ... but their first six vertices are good $($) .

Whole repairing strategy:

(1) Repair all bad copies where the edge simulating $t_{1} t_{2}$ is problematic;
(2) Then, those where the edge simulating $t_{1} t_{3}$ is problematic;
(3) etc.

On the repairing operation

Schematized:

\leftarrow switch \rightarrow

Remarks:

- B and R might be bad (because of later vertices) © ...
- ... but their first six vertices are good ${ }^{(\cdot)}$.

Whole repairing strategy:

(1) Repair all bad copies where the edge simulating $t_{1} t_{2}$ is problematic;
(2) Then, those where the edge simulating $t_{1} t_{3}$ is problematic;
(0) etc.

$$
|\mathcal{G}| \gg|\mathcal{B}| \text { (+ intersection property) } \Rightarrow \text { Repair everything. }
$$

Proof summary

Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Proof summary

Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Main steps:

(1) Combine edges in G to get a decomposition $\mathcal{H}:=\mathcal{G} \cup \mathcal{B}$.
(2) Repair bad copies in \mathcal{B} step by step, until none remains.

Proof summary

Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Main steps:

(1) Combine edges in G to get a decomposition $\mathcal{H}:=\mathcal{G} \cup \mathcal{B}$.
(2) Repair bad copies in \mathcal{B} step by step, until none remains.

So that Step 2 can be achieved, we need \mathcal{H} to fulfil:

- $|\mathcal{G}| \gg|\mathcal{B}|$;
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.

Proof summary

Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Main steps:

(1) Combine edges in G to get a decomposition $\mathcal{H}:=\mathcal{G} \cup \mathcal{B}$.
(2) Repair bad copies in \mathcal{B} step by step, until none remains.

So that Step 2 can be achieved, we need \mathcal{H} to fulfil:

- $|\mathcal{G}| \gg|\mathcal{B}|$;
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.
\Rightarrow Because

1) $|E(T)|$ is fixed, and
2) the coloured degrees are arbitrarily large,
such an \mathcal{H} exists with non-zero probability.

Probabilistic tools

Building a decomposition

Construct copies of T randomly:
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

Building a decomposition

Construct copies of T randomly:
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

Building a decomposition

Construct copies of T randomly:
(1) For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
(2) Identify stars to create copies.

McDiarmid's result

Random variables involved:
$X_{v}\left(t_{i}, t_{j}\right):=\#$ of bad copies with root v, and t_{i}, t_{j} played by a same vertex.
\Rightarrow Expect such $X_{v}\left(t_{i}, t_{j}\right)$'s to be quite small (due to the degrees):

McDiarmid's result

Random variables involved:
$X_{v}\left(t_{i}, t_{j}\right):=\#$ of bad copies with root v, and t_{i}, t_{j} played by a same vertex.
\Rightarrow Expect such $X_{v}\left(t_{i}, t_{j}\right)$'s to be quite small (due to the degrees):

(simplified) McDiarmid's Inequality

Let X be a non-negative random variable, determined by m independent random permutations Π_{1}, \ldots, Π_{m} satisfying, for some $d, r>0$:
(1) interchanging two elements in any Π_{i} can affect X by at most d;
(2) for any s, if $X \geq s$ then there is a set of at most $r s$ choices whose outcomes certify that $X \geq s$.
Then, for any $0 \leq t \leq \mathbb{E}[X]$,

$$
\mathbb{P}[|X-\mathbb{E}[X]|>t+60 d \sqrt{r \mathbb{E}[X]}] \leq 4 e^{-\frac{t^{2}}{8 d^{2} r \mathbb{E}[\mid]}}
$$

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at v (w.r.t. $t)=$ Permute the /'s, /'s and /'s at v, and combine.

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at $v(w . r . t . t)=$ Permute the /'s, /'s and /'s at v, and combine.
Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d;

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at $v(w . r . t . t)=$ Permute the /'s, /'s and /'s at v, and combine.
Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d; \Rightarrow Interchanging, say, two /'s modifies $d=2$ copies only.

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at $v(w . r . t . t)=$ Permute the $/ / \mathrm{s}, /$'s and $/$'s at v, and combine.
Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d; \Rightarrow Interchanging, say, two /'s modifies $d=2$ copies only.
(2) $X_{v}\left(t_{i}, t_{j}\right) \geq s$ can be certified by the outcomes of at most rs choices.

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at $v(w . r . t . t)=$ Permute the $/ / \mathrm{s}, /$'s and $/$'s at v, and combine. Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d; \Rightarrow Interchanging, say, two /'s modifies $d=2$ copies only.
(2) $X_{v}\left(t_{i}, t_{j}\right) \geq s$ can be certified by the outcomes of at most rs choices. $\Rightarrow v_{i}=v_{j}$ can be attested by the outcomes where v_{j} was chosen. So $r=1$.

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at v (w.r.t. t) $=$ Permute the $/$'s, /'s and /'s at v, and combine. Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d; \Rightarrow Interchanging, say, two /'s modifies $d=2$ copies only.
(2) $X_{v}\left(t_{i}, t_{j}\right) \geq s$ can be certified by the outcomes of at most rs choices. $\Rightarrow v_{i}=v_{j}$ can be attested by the outcomes where v_{j} was chosen. So $r=1$.

$$
\text { McDiarmid's Inequality applies } \Rightarrow \text { There are } \Pi_{i} \text { 's for which }|\mathcal{G}| \gg|\mathcal{B}| \text {. }
$$

McDiarmid's result (cont'd)

Our random building is all about permutations:

Building stars at $v(w . r . t . t)=$ Permute the $/ / \mathrm{s}, /$'s and $/$'s at v, and combine. Look at McDiarmid's requirements, for $X_{v}\left(t_{i}, t_{j}\right)$:
(1) interchanging two elements in any Π_{i} can affect $X_{v}\left(t_{i}, t_{j}\right)$ by at most d; \Rightarrow Interchanging, say, two/'s modifies $d=2$ copies only.
(2) $X_{v}\left(t_{i}, t_{j}\right) \geq s$ can be certified by the outcomes of at most rs choices. $\Rightarrow v_{i}=v_{j}$ can be attested by the outcomes where v_{j} was chosen. So $r=1$.

McDiarmid's Inequality applies \Rightarrow There are Π_{i} 's for which $|\mathcal{G}| \gg|\mathcal{B}|$.

+ For compatible $v \in G$ and $t \in T$, unlikely that two copies where v plays the role of t have another common vertex (similar reasoning).

Lovász's Local Lemma

We have:

- Any $X_{v}\left(t_{i}, t_{j}\right)$ is most likely to be quite small;
- Few dependencies between the $X_{v}\left(t_{i}, t_{j}\right)$'s.

Lovász's Local Lemma

We have:

- Any $X_{v}\left(t_{i}, t_{j}\right)$ is most likely to be quite small;
- Few dependencies between the $X_{v}\left(t_{i}, t_{j}\right)$'s.
\Rightarrow By LLL, non-zero probability that all $X_{v}\left(t_{i}, t_{j}\right)$'s are small.

Lovász's Local Lemma

We have:

- Any $X_{v}\left(t_{i}, t_{j}\right)$ is most likely to be quite small;
- Few dependencies between the $X_{v}\left(t_{i}, t_{j}\right)$'s.

$$
\Rightarrow \text { By LLL, non-zero probability that all } X_{v}\left(t_{i}, t_{j}\right) \text { 's are small. }
$$

+ Similar arguments for intersections.

Conclusion

Conclusion and perspectives

- Constructive proof?

Conclusion and perspectives

- Constructive proof?
- What is the least k_{T} guaranteeing T-decompositions?

Conclusion and perspectives

- Constructive proof?
- What is the least k_{T} guaranteeing T-decompositions?
- Real importance of huge edge-connectivity over huge degree?
- For $T=P_{\ell}$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]
There is a function f such that, for any fixed tree T with maximum degree Δ_{T}, every $f\left(\Delta_{T}\right)$-edge-connected graph with sufficiently large minimum degree can be T-decomposed.

Conclusion and perspectives

- Constructive proof?
- What is the least k_{T} guaranteeing T-decompositions?
- Real importance of huge edge-connectivity over huge degree?
- For $T=P_{\ell}$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]
There is a function f such that, for any fixed tree T with maximum degree Δ_{T}, every $f\left(\Delta_{T}\right)$-edge-connected graph with sufficiently large minimum degree can be T-decomposed.

Thanks!

