The Barát-Thomassen Conjecture

Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé

Université Nice-Sophia-Antipolis, France

JCALM 2017
May 5th, 2017
Introduction
Decomposing graphs

G: (undirected simple) graph.

H: (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_1, \ldots, E_k of $E(G)$ such that each $G[E_i]$ is isomorphic to H.

S_4-decomposition

P_3-decomposition

When does G admit H-decompositions?
Decomposing graphs

G: (undirected simple) graph.
H: (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_1, \ldots, E_k of $E(G)$ such that each $G[E_i]$ is isomorphic to H.
Decomposing graphs

G: (undirected simple) graph.
H: (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_1, \ldots, E_k of $E(G)$ such that each $G[E_i]$ is isomorphic to H.
Decomposing graphs

G: (undirected simple) graph.

H: (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition $E_1, ..., E_k$ of $E(G)$ such that each $G[E_i]$ is isomorphic to H.

![S₄-decomposition](image)

S₄-decomposition

![P₃-decomposition](image)

P₃-decomposition
Decomposing graphs

G: (undirected simple) graph.

H: (undirected simple) graph with $|E(H)|$ dividing $|E(G)|$ (implicit).

Definition: H-decomposition

An H-decomposition of G is a partition E_1, \ldots, E_k of $E(G)$ such that each $G[E_i]$ is isomorphic to H.

S_4-decomposition

P_3-decomposition

When does G admit H-decompositions?
What for H being a tree?
Tree decompositions

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_n admits T-decompositions.

\Rightarrow Intuitively, need large degree + some edge-connectivity (2nd \Rightarrow 1st).
Tree decompositions

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_n admits T-decompositions.

\Rightarrow Intuitively, need large degree + some edge-connectivity (2nd \Rightarrow 1st).

For instance, no P_3-decomposition of:
The Barát-Thomassen Conjecture

Conjecture [Barát, Thomassen, 2006]

For every tree T, there exists k_T such that every k_T-edge-connected graph admits T-decompositions.

General remark:

Large edge-co. $\not\implies H$-decompositions (e.g. $H = C_4$: need close cut edges)
Progress towards the conjecture

Was verified for T being:

- a star [Thomassen, 2012],
- the tree with degree sequence $(1, 1, 1, 2, 3)$ [Barát, Gerbner, 2014],
- a bistar of the form $S_{k,k+1}$ [Thomassen, 2014],
- of diameter at most 4 [Merker, 2017],
- among some family of trees with diameter 5 [Merker, 2017],

and...

- the path of length 3 [Thomassen, 2008],
- the path of length 4 [Thomassen, 2008],
- a path of length 2^k [Thomassen, 2014],
- any path [Botler, Mota, Oshiro, Wakabayashi, 2017].
Main result

Theorem [B., Harutyunyan, Le, Merker, Thomassé, 2017]

The Barát-Thomassen Conjecture is true.

Please: Do not ask me about k_T. 😊
Proof
Say hello

Our toy T for today:
Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and “clean”.

$\text{edge-co: } \sim k_T/2$
Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and “clean”.

edge-co: $\sim k_T/2 \rightarrow$

\[|E(T)| \text{ fixed} \Rightarrow \text{constant amount of consumed edge-connectivity.} \]
Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and “clean”.

![Diagram of bipartite graph elements](image)
Going bipartite

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and “clean”.

$|E(T)|$ fixed \Rightarrow constant amount of consumed edge-connectivity.

\Rightarrow Use $R +$ cut-edges to make further copies of T.

$$\text{edge-co: } \sim k_T/2 \rightarrow$$
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

1. Decompose G into lots of spanning trees.
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

1. Decompose G into lots of spanning trees.
2. \Rightarrow Decompose G into G_1, G_2, G_3 with large edge-connectivity.
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

1. Decompose G into lots of spanning trees.
2. \Rightarrow Decompose G into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by $|E(T)|$, B-degrees in G_2 divisible by $|E(T)|$.
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

1. Decompose G into lots of spanning trees.
2. Decompose G into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by $|E(T)|$, B-degrees in G_2 divisible by $|E(T)|$.

3. Orient G_3 so that the convenient degrees modulo $|E(T)|$ are attained (i.e. $|E(T)| - d_{G_1}(v)$ for $v \in G_1$, and $|E(T)| - d_{G_2}(v)$ otherwise).
Going bipartite (cont’d)

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for $G = (A, B)$ bipartite, with the further assumption that all degrees in A are divisible by $|E(T)|$.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

1. Decompose G into lots of spanning trees.
2. ⇒ Decompose G into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by $|E(T)|$, B-degrees in G_2 divisible by $|E(T)|$.

3. Orient G_3 so that the convenient degrees modulo $|E(T)|$ are attained (i.e. $|E(T)| - d_{G_1}(v)$ for $v \in G_1$, and $|E(T)| - d_{G_2}(v)$ otherwise).
4. Add all arcs from A to B to G_1, to G_2 otherwise.
Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

1. Edge-colour G with $\{\ldots\}$;
2. Repeatedly combine \ldots to form a copy of T.

Problems:
1. # of \ldots should locally be the same.
2. We do not necessarily get a copy isomorphic to T.

12 / 26
Decomposition strategy

\(G, T \) bipartite \(\Rightarrow \) Make the bipartitions coincide:

Strategy:

1. Edge-colour \(G \) with \{ / , / , / , / , / , / \};
2. Repeatedly combine a / , a / , a / , a / and a / to form a copy of \(T \).
Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

![Graph 1](image1)
![Graph 2](image2)

Strategy:
1. Edge-colour G with \{/, /, /, /, /, /, /\};
2. Repeatedly combine a /, a /, a /, a / and a / to form a copy of T.

Problems 😞:
1. # of /'s, /'s, /'s, /'s and /'s should locally be the same.
2. We do not necessarily get a copy **isomorphic** to T:

![Graph 3](image3)
Dealing with Issue 1

\[\nu \in V(G) \text{ and } t \in V(T) \text{ compatible} = \text{Same side of the bipartitions.} \]
Dealing with Issue 1

\(v \in V(G) \) and \(t \in V(T) \) **compatible** = Same side of the bipartitions.

To deal with Issue 1:

Definition: \(T \)-equitability

An edge-colouring \(E(G) \rightarrow E(T) \) is **\(T \)-equitable** if, for every compatible vertices \(v \in G \) and \(t \in T \), we have \(d_i(v) = d_j(v) \) for any two edges \(i, j \) of \(T \) incident to \(t \).
Dealing with Issue 1

\(v \in V(G) \) and \(t \in V(T) \) compatible = Same side of the bipartitions.

To deal with Issue 1:

Definition: \(T \)-equitability

An edge-colouring \(E(G) \to E(T) \) is \(T \)-equitable if, for every compatible vertices \(v \in G \) and \(t \in T \), we have \(d_i(v) = d_j(v) \) for any two edges \(i, j \) of \(T \) incident to \(t \).

What will save us:

Theorem [Merker, 2017]

If \(G = (A, B) \) is a bipartite graph with
- sufficiently large edge-connectivity, and
- all degrees in \(A \) are divisible by \(|E(T)| \),

\(\Rightarrow \) \(T \)-equitable edge-colouring where all coloured degrees are “huge”.

\(\Rightarrow \) May assume \(G \) is edge-coloured in a \(T \)-equitable way.
Locally, “palettes” of colours are good, now 😊.

Construct copies of T:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.

2. Identify stars to create copies.
Locally, “palettes” of colours are good, now 😊.

Construct copies of T:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.
2. Identify stars to create copies.
Locally, “palettes” of colours are good, now 😊.

Construct copies of T:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.

2. Identify stars to create copies.
Dealing with Issue 2

Remember: \(+ + + + + + \) may not give a “real” copy of \(T \):

![Diagram](image-url)
Remember: \(+ / + / + / + / + / \) may not give a “real” copy of \(T \):

\[\text{Collection } \mathcal{H} := \mathcal{G} \cup \mathcal{B}, \text{ where } \mathcal{G} \text{ (resp. } \mathcal{B}) \text{ contains “real” (resp. “bad”) copies.} \]

\(\mathcal{G} \) will be used to “repair” \(\mathcal{B} \).
Let $B \in \mathcal{B}$, and label vertices following a BFS.

In B, vertices v_1, \ldots, v_5 are good. Edge v_4v_6 is problematic.
Let $B \in \mathcal{B}$, and label vertices following a BFS.

In B, vertices $v_1, ..., v_5$ are good. Edge v_4v_6 is problematic.

Repairing process:

1. Pick $R \in \mathcal{G}$ s.t. B and R intersect only intersect in v_4; and
2. “Switch” the subgraph “rooted” at the edge v_4v_6.
Illustration
On the repairing operation

Schematized:

\[B \]

\[v_4 \rightarrow v_5 \rightarrow v_6 \]

\[R \]

\[v_4' \]

Remarks:

B and R might be bad (because of later vertices) / ... but their first six vertices are good.

Whole repairing strategy:

1. Repair all bad copies where the edge simulating \(t_1 \) is problematic;
2. Then, those where the edge simulating \(t_1 \) is problematic;
3. etc.

\(|G| \gg |B|\) (+ intersection property) \(\Rightarrow \) Repair everything.
On the repairing operation

Schematized:

Remarks:
- B and R might be bad (because of later vertices) 😞 ...

\[\text{\small B and R might be bad (because of later vertices) 😞 ...} \]
On the repairing operation

Schematized:

Remarks:
- B and R might be bad (because of later vertices) 😞 ...
- ... but their first six vertices are good 😊 .
On the repairing operation

Schematized:

Remarks:

- \(B \) and \(R \) might be bad (because of later vertices) ☹ ...
- ... but their first six vertices are good ☺ .

Whole repairing strategy:

1. Repair all bad copies where the edge simulating \(t_1 t_2 \) is problematic;
2. Then, those where the edge simulating \(t_1 t_3 \) is problematic;
3. etc.
On the repairing operation

Schematized:

Remarks:
- B and R might be bad (because of later vertices) 😞 ...
- ... but their first six vertices are good ☺.

Whole repairing strategy:
1. Repair all bad copies where the edge simulating $t_1 t_2$ is problematic;
2. Then, those where the edge simulating $t_1 t_3$ is problematic;
3. etc.

$|G| \gg |B|$ (+ intersection property) \Rightarrow Repair everything.
Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.
Proof summary

Assumption: G is edge-coloured in a T-equitable way $+$ Large coloured degrees.

Main steps:
1. Combine edges in G to get a decomposition $\mathcal{H} := G \cup B$.
2. Repair bad copies in B step by step, until none remains.
Proof summary

Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Main steps:
1. Combine edges in G to get a decomposition $\mathcal{H} := G \cup B$.
2. Repair bad copies in B step by step, until none remains.

So that Step 2 can be achieved, we need \mathcal{H} to fulfil:
- $|G| \gg |B|$;
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.
Assumption: G is edge-coloured in a T-equitable way + Large coloured degrees.

Main steps:

1. Combine edges in G to get a decomposition $\mathcal{H} := G \cup B$.
2. Repair bad copies in B step by step, until none remains.

So that Step 2 can be achieved, we need \mathcal{H} to fulfil:

- $|G| \gg |B|$;
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.

⇒ Because

1) $|E(T)|$ is fixed, and
2) the coloured degrees are arbitrarily large,

such an \mathcal{H} exists with non-zero probability.
Probabilistic tools
Building a decomposition

Construct copies of T randomly:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.

2. Identify stars to create copies.
Building a decomposition

Construct copies of T randomly:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.

2. Identify stars to create copies.
Building a decomposition

Construct copies of T randomly:

1. For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.

2. Identify stars to create copies.
McDiarmid’s result

Random variables involved:

\[X_v(t_i, t_j) := \# \text{ of bad copies with root } v, \text{ and } t_i, t_j \text{ played by a same vertex}. \]

⇒ Expect such \(X_v(t_i, t_j) \)’s to be quite small (due to the degrees):
McDiarmid’s result

Random variables involved:

\[X_v(t_i, t_j) := \# \text{ of bad copies with root } v, \text{ and } t_i, t_j \text{ played by a same vertex.} \]

⇒ Expect such \(X_v(t_i, t_j) \)'s to be quite small (due to the degrees):

(simplified) McDiarmid’s Inequality

Let \(X \) be a non-negative random variable, determined by \(m \) independent random permutations \(\Pi_1, \ldots, \Pi_m \) satisfying, for some \(d, r > 0 \):

1. interchanging two elements in any \(\Pi_i \) can affect \(X \) by at most \(d \);
2. for any \(s \), if \(X \geq s \) then there is a set of at most \(r s \) choices whose outcomes certify that \(X \geq s \).

Then, for any \(0 \leq t \leq \mathbb{E}[X] \),

\[\mathbb{P} \left[|X - \mathbb{E}[X]| > t + 60d \sqrt{r \mathbb{E}[X]} \right] \leq 4e^{-\frac{t^2}{8d^2 r \mathbb{E}[X]}}. \]
McDiarmid’s result (cont’d)

Our random building is all about permutations:

Building stars at \(v \) (w.r.t. \(t \)) = Permute the /’s, \(/'s \) and \(/'/s \) at \(v \), and combine.
McDiarmid’s result (cont’d)

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the /’s, \’s and \’s at v, and combine.

Look at McDiarmid’s requirements, for $X_v(t_i, t_j)$:

1. *interchanging two elements in any Π_i can affect $X_v(t_i, t_j)$ by at most d;*
Our random building is all about permutations:

Building stars at \(v \) (w.r.t. \(t \)) = Permute the /’s, /’s and /’s at \(v \), and combine.

Look at McDiarmid’s requirements, for \(X_v(t_i, t_j) \):

1. interchanging two elements in any \(\Pi_i \) can affect \(X_v(t_i, t_j) \) by at most \(d \);
 \[\Rightarrow \text{Interchanging, say, two /’s modifies } d = 2 \text{ copies only.} \]
McDiarmid’s result (cont’d)

Our random building is all about permutations:

Building stars at \(v \) (w.r.t. \(t \)) = Permute the \(/ \)’s, \(\backslash \)’s and \(\mid \)’s at \(v \), and combine.

Look at McDiarmid’s requirements, for \(X_v(t_i, t_j) \):

1. \textit{interchanging two elements in any } \Pi \textit{ can affect } X_v(t_i, t_j) \textit{ by at most } d; \\
 \Rightarrow \text{ Interchanging, say, two } \slash \text{’s modifies } d = 2 \text{ copies only.}

2. \(X_v(t_i, t_j) \geq s \) \textit{ can be certified by the outcomes of at most } rs \textit{ choices.}
McDiarmid’s result (cont’d)

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the /’s, /’s and /’s at v, and combine.

Look at McDiarmid’s requirements, for $X_v(t_i, t_j)$:

1. *interchanging two elements in any Π_i can affect $X_v(t_i, t_j)$ by at most d;*
 ⇒ Interchanging, say, two /’s modifies $d = 2$ copies only.

2. $X_v(t_i, t_j) \geq s$ can be certified by the outcomes of at most rs choices.
 ⇒ $v_i = v_j$ can be attested by the outcomes where v_j was chosen. So $r = 1$.
McDiarmid’s result (cont’d)

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the /’s, \’s and \’s at v, and combine.

Look at McDiarmid’s requirements, for $X_v(t_i, t_j)$:

1. *interchanging two elements in any Π_i can affect $X_v(t_i, t_j)$ by at most d;*
 \[\Rightarrow \text{Interchanging, say, two } /’s \text{ modifies } d = 2 \text{ copies only.} \]

2. *$X_v(t_i, t_j) \geq s$ can be certified by the outcomes of at most rs choices.*
 \[\Rightarrow v_i = v_j \text{ can be attested by the outcomes where } v_j \text{ was chosen. So } r = 1. \]

McDiarmid’s Inequality applies \[\Rightarrow \text{There are Π_i’s for which } |G| \gg |B|. \]
McDiarmid’s result (cont’d)

Our random building is all about permutations:

```
1 2 3 4 5 6 7
1 2 7 5 3 6 4
5 1 7 3 6 2 4
```

Building stars at \(v \) (w.r.t. \(t \)) = Permute the /’s, \(/’ \)'s and \(/’ \)'s at \(v \), and combine.

Look at McDiarmid’s requirements, for \(X_v(t_i, t_j) \):

1. **interchanging two elements in any \(\Pi_i \) can affect \(X_v(t_i, t_j) \) by at most \(d \);
 \(\Rightarrow \) Interchanging, say, two /’s modifies \(d = 2 \) copies only.

2. \(X_v(t_i, t_j) \geq s \) can be certified by the outcomes of at most \(rs \) choices.
 \(\Rightarrow v_i = v_j \) can be attested by the outcomes where \(v_j \) was chosen. So \(r = 1 \).

 McDiarmid’s Inequality applies \(\Rightarrow \) There are \(\Pi_i \)'s for which \(|G| \gg |B| \).

+ For compatible \(v \in G \) and \(t \in T \), unlikely that two copies where \(v \) plays the role of \(t \) have another common vertex (similar reasoning).
Lovász’s Local Lemma

We have:
- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$’s.
Lovász’s Local Lemma

We have:
- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$’s.

\Rightarrow By LLL, non-zero probability that all $X_v(t_i, t_j)$’s are small.
Lovász’s Local Lemma

We have:

- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$’s.

\Rightarrow By LLL, non-zero probability that all $X_v(t_i, t_j)$’s are small.

+ Similar arguments for intersections.
Conclusion
Conclusion and perspectives

- Constructive proof?
Conclusion and perspectives

- Constructive proof?
- What is the least k_T guaranteeing T-decompositions?
Conclusion and perspectives

- Constructive proof?

- What is the least k_T guaranteeing T-decompositions?

- Real importance of huge edge-connectivity over huge degree?

- For $T = P_\ell$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]

There is a function f such that, for any fixed tree T with maximum degree Δ_T, every $f(\Delta_T)$-edge-connected graph with sufficiently large minimum degree can be T-decomposed.
Conclusion and perspectives

- Constructive proof?
- What is the least k_T guaranteeing T-decompositions?
- Real importance of huge edge-connectivity over huge degree?
- For $T = P_\ell$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]

There is a function f such that, for any fixed tree T with maximum degree Δ_T, every $f(\Delta_T)$-edge-connected graph with sufficiently large minimum degree can be T-decomposed.

Thanks!