The Barát-Thomassen Conjecture

<u>Julien Bensmail</u>, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé

Université Nice-Sophia-Antipolis, France

JCALM 2017 May 5th, 2017

Introduction

- G: (undirected simple) graph.
- *H*: (undirected simple) graph with |E(H)| dividing |E(G)| (implicit).

- G: (undirected simple) graph.
- *H*: (undirected simple) graph with |E(H)| dividing |E(G)| (implicit).

Definition: *H*-decomposition

An *H*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that each $G[E_i]$ is isomorphic to H.

- G: (undirected simple) graph.
- *H*: (undirected simple) graph with |E(H)| dividing |E(G)| (implicit).

Definition: *H*-decomposition

An *H*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that each $G[E_i]$ is isomorphic to H.

- G: (undirected simple) graph.
- *H*: (undirected simple) graph with |E(H)| dividing |E(G)| (implicit).

Definition: *H*-decomposition

An *H*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that each $G[E_i]$ is isomorphic to H.

P₃-decomposition

- G: (undirected simple) graph.
- *H*: (undirected simple) graph with |E(H)| dividing |E(G)| (implicit).

Definition: *H*-decomposition

An *H*-decomposition of G is a partition $E_1, ..., E_k$ of E(G) such that each $G[E_i]$ is isomorphic to H.

P₃-decomposition

When does G admit H-decompositions?

Tree decompositions

What for H being a tree?

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_n admits T-decompositions.

 \Rightarrow Intuitively, need large degree + some edge-connectivity (2nd \Rightarrow 1st).

What for H being a tree?

Theorem [Wilson, 1976]

For every tree T and large enough n, graph K_n admits T-decompositions.

 \Rightarrow Intuitively, need large degree + some edge-connectivity (2nd \Rightarrow 1st). For instance, no P_3 -decomposition of:

Conjecture [Barát, Thomassen, 2006]

For every tree T, there exists k_T such that every k_T -edge-connected graph admits T-decompositions.

General remark:

Large edge-co. \Rightarrow *H*-decompositions (e.g. $H = C_4$: need close cut edges)

Was verified for T being:

- a star [Thomassen, 2012],
- the tree with degree sequence (1, 1, 1, 2, 3) [Barát, Gerbner, 2014],
- a bistar of the form $S_{k,k+1}$ [Thomassen, 2014],
- of diameter at most 4 [Merker, 2017],
- among some family of trees with diameter 5 [Merker, 2017],

and...

- the path of length 3 [Thomassen, 2008],
- the path of length 4 [Thomassen, 2008],
- a path of length 2^k [Thomassen, 2014],
- any path [Botler, Mota, Oshiro, Wakabayashi, 2017].

Theorem [B., Harutyunyan, Le, Merker, Thomassé, 2017]

The Barát-Thomassen Conjecture is true.

Please: Do not ask me about $k_T \odot$.

Proof

Our toy T for today:

First tool:

Idea: Take a max cut and "clean".

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

First tool:

Theorem [Thomassen, 2013]

It is sufficient to prove the conjecture for G bipartite.

Idea: Take a max cut and "clean".

First tool:

Theorem [Thomassen, 2013] It is sufficient to prove the conjecture for *G* bipartite.

Idea: Take a max cut and "clean".

⇒ Use R + cut-edges to make further copies of T. |E(T)| fixed ⇒ constant amount of consumed edge-connectivity.

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

• Decompose G into lots of spanning trees.

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

- Observe the second s
- \bigcirc \Rightarrow Decompose G into G_1, G_2, G_3 with large edge-connectivity.

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

- Occompose G into lots of spanning trees.
- **2** \Rightarrow Decompose *G* into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by |E(T)|, B-degrees in G_2 divisible by |E(T)|.

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1, G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

- Observe Decompose G into lots of spanning trees.
- \bigcirc \Rightarrow Decompose G into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by |E(T)|, B-degrees in G_2 divisible by |E(T)|.

Orient G₃ so that the convenient degrees modulo |E(T)| are attained (i.e. $|E(T)| - d_{G_1}(v)$ for v ∈ G₁, and $|E(T)| - d_{G_2}(v)$ otherwise).

It is sufficient to prove the conjecture for G = (A, B) bipartite, with the further assumption that all degrees in A are divisible by |E(T)|.

Idea. Decompose G into G_1 , G_2 with large edge-connectivity, where the desired property in G_1 (resp. G_2) is fulfilled in A (resp. B).

- Observe the second s
- \bigcirc \Rightarrow Decompose G into G_1, G_2, G_3 with large edge-connectivity.

Want: A-degrees in G_1 divisible by |E(T)|, B-degrees in G_2 divisible by |E(T)|.

- Orient G_3 so that the convenient degrees modulo |E(T)| are attained (i.e. $|E(T)| d_{G_1}(v)$ for $v \in G_1$, and $|E(T)| d_{G_2}(v)$ otherwise).
- Add all arcs from A to B to G_1 , to G_2 otherwise.

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Strategy:

- Edge-colour G with { / , / , / , / , / };
- **2** Repeatedly combine a /, a /, a /, a / and a / to form a copy of T.

Decomposition strategy

G, T bipartite \Rightarrow Make the bipartitions coincide:

Strategy:

- Edge-colour G with { / , / , / , / , / };
- **2** Repeatedly combine a /, a /, a /, a / and a / to form a copy of T.

Problems 🙂 :

- # of /'s , /'s , /'s and /'s should locally be the same.
- **②** We do not necessarily get a copy **isomorphic** to T:

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible = Same side of the bipartitions.

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible = Same side of the bipartitions. To deal with Issue 1:

To deal with Issue 1.

Definition: *T*-equitability

An edge-colouring $E(G) \rightarrow E(T)$ is *T*-equitable if, for every compatible vertices $v \in G$ and $t \in T$, we have $d_i(v) = d_j(v)$ for any two edges i, j of *T* incident to *t*.

Dealing with Issue 1

$v \in V(G)$ and $t \in V(T)$ compatible = Same side of the bipartitions.

To deal with Issue 1:

Definition: *T*-equitability

An edge-colouring $E(G) \rightarrow E(T)$ is *T*-equitable if, for every compatible vertices $v \in G$ and $t \in T$, we have $d_i(v) = d_j(v)$ for any two edges i, j of *T* incident to *t*.

What will save us:

Theorem [Merker, 2017]

If G = (A, B) is a bipartite graph with

- sufficiently large edge-connectivity, and
- all degrees in A are divisible by |E(T)|,
- \Rightarrow T-equitable edge-colouring where all coloured degrees are "huge".

 \Rightarrow May assume G is edge-coloured in a T-equitable way.

Locally, "palettes" of colours are good, now $\ensuremath{\textcircled{\sc 0}}$.

Construct copies of T:

- For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.
- Identify stars to create copies.

Locally, "palettes" of colours are good, now $\ensuremath{\textcircled{\sc 0}}$.

Construct copies of T:

- For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.
- Identify stars to create copies.

Locally, "palettes" of colours are good, now $\ensuremath{\textcircled{\sc 0}}$.

Construct copies of T:

- For each $v \in G$ that can play the role of $t \in T$:
 - choose one edge of each colour;
 - create a star centred at v.
- Identify stars to create copies.

Remember: / + / + / + / + / may not give a "real" copy of T:

Remember: / + / + / + / + / may not give a "real" copy of T:

 \Rightarrow Collection $\mathcal{H} := \mathcal{G} \cup \mathcal{B}$, where \mathcal{G} (resp. \mathcal{B}) contains "real" (resp. "bad") copies.

 \mathcal{G} will be used to "repair" \mathcal{B} .

Let $B \in \mathcal{B}$, and label vertices following a BFS.

In *B*, vertices $v_1, ..., v_5$ are good. Edge v_4v_6 is problematic.

Let $B \in \mathcal{B}$, and label vertices following a BFS.

In *B*, vertices $v_1, ..., v_5$ are good. Edge v_4v_6 is problematic.

Repairing process:

- **9** Pick $R \in \mathcal{G}$ s.t. *B* and *R* intersect only intersect in v_4 ; and
- Switch" the subgraph "rooted" at the edge v_4v_6 .

Illustration

Illustration

Illustration

Schematized:

 $\leftarrow \mathsf{switch} \rightarrow$

Schematized:

Remarks:

• *B* and *R* might be bad (because of later vertices) \odot ...

 \leftarrow switch \rightarrow

Schematized:

Remarks:

• *B* and *R* might be bad (because of later vertices) \odot ...

 \leftarrow switch \rightarrow

 \bullet ... but their first six vertices are good $\ensuremath{\textcircled{}{\odot}}$.

Schematized:

Remarks:

- *B* and *R* might be bad (because of later vertices) \odot ...
- \bullet ... but their first six vertices are good $\ensuremath{\textcircled{}}$.

Whole repairing strategy:

() Repair all bad copies where the edge simulating t_1t_2 is problematic;

 \leftarrow switch \rightarrow

- ⁽²⁾ Then, those where the edge simulating t_1t_3 is problematic;
- etc.

Schematized:

Remarks:

- *B* and *R* might be bad (because of later vertices) \odot ...
- \bullet ... but their first six vertices are good $\ensuremath{\textcircled{}}$.

Whole repairing strategy:

- **(**) Repair all bad copies where the edge simulating t_1t_2 is problematic;
- ⁽²⁾ Then, those where the edge simulating t_1t_3 is problematic;
- etc.

 $|\mathcal{G}| \gg |\mathcal{B}|$ (+ intersection property) \Rightarrow Repair everything.

 \leftarrow switch \rightarrow

Main steps:

- **(**) Combine edges in *G* to get a decomposition $\mathcal{H} := \mathcal{G} \cup \mathcal{B}$.
- **2** Repair bad copies in \mathcal{B} step by step, until none remains.

Main steps:

- **(**) Combine edges in *G* to get a decomposition $\mathcal{H} := \mathcal{G} \cup \mathcal{B}$.
- **2** Repair bad copies in \mathcal{B} step by step, until none remains.

So that Step 2 can be achieved, we need ${\mathcal H}$ to fulfil:

- $|\mathcal{G}| \gg |\mathcal{B}|;$
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.

Main steps:

- **(**) Combine edges in *G* to get a decomposition $\mathcal{H} := \mathcal{G} \cup \mathcal{B}$.
- $\textcircled{O} Repair bad copies in \mathcal{B} step by step, until none remains.$

So that Step 2 can be achieved, we need ${\mathcal H}$ to fulfil:

- $|\mathcal{G}| \gg |\mathcal{B}|;$
- for compatible $v \in V(G)$ and $t \in V(T)$, a wide bunch of copies where v plays the role of t, most of which are good, with many different vertices of G.

\Rightarrow Because

- 1) |E(T)| is fixed, and
- 2) the coloured degrees are arbitrarily large,

such an $\mathcal H$ exists with non-zero probability.

Probabilistic tools

Building a decomposition

Construct copies of *T* randomly:

9 For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
- Identify stars to create copies.

Building a decomposition

Construct copies of *T* randomly:

9 For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
- Identify stars to create copies.

Building a decomposition

Construct copies of *T* randomly:

9 For each $v \in G$ that can play the role of $t \in T$:

- choose one edge of each colour;
- create a star centred at v.
- Identify stars to create copies.

McDiarmid's result

Random variables involved:

 $X_{v}(t_{i}, t_{j}) := \#$ of bad copies with root v, and t_{i}, t_{j} played by a same vertex.

 \Rightarrow Expect such $X_v(t_i, t_j)$'s to be quite small (due to the degrees):

McDiarmid's result

Random variables involved:

 $X_{\nu}(t_i, t_j) := \#$ of bad copies with root ν , and t_i, t_j played by a same vertex.

 \Rightarrow Expect such $X_{\nu}(t_i, t_j)$'s to be quite small (due to the degrees):

(simplified) McDiarmid's Inequality

Let X be a non-negative random variable, determined by m independent random permutations $\Pi_1, ..., \Pi_m$ satisfying, for some d, r > 0:

- **(**) interchanging two elements in any Π_i can affect X by at most d;
- e for any s, if X ≥ s then there is a set of at most rs choices whose outcomes certify that X ≥ s.

Then, for any $0 \le t \le \mathbb{E}[X]$,

$$\mathbb{P}\left[|X - \mathbb{E}[X]| > t + 60d\sqrt{r\mathbb{E}[X]}\right] \le 4e^{-\frac{t^2}{8d^2r\mathbb{E}[X]}}.$$

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine.

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_j)$:

• interchanging two elements in any Π_i can affect $X_v(t_i, t_j)$ by at most d;

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_i)$:

• interchanging two elements in any Π_i can affect $X_v(t_i, t_j)$ by at most d; \Rightarrow Interchanging, say, two \checkmark 's modifies d = 2 copies only.

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_i)$:

- interchanging two elements in any Π_i can affect X_v(t_i, t_j) by at most d;
 ⇒ Interchanging, say, two /'s modifies d = 2 copies only.
- **2** $X_v(t_i, t_j) \ge s$ can be certified by the outcomes of at most rs choices.

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_i)$:

- interchanging two elements in any Π_i can affect X_v(t_i, t_j) by at most d;
 ⇒ Interchanging, say, two /'s modifies d = 2 copies only.
- X_v(t_i, t_j) ≥ s can be certified by the outcomes of at most rs choices.
 ⇒ v_i = v_j can be attested by the outcomes where v_j was chosen. So r = 1.

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_i)$:

- interchanging two elements in any Π_i can affect X_v(t_i, t_j) by at most d;
 ⇒ Interchanging, say, two /'s modifies d = 2 copies only.
- X_v(t_i, t_j) ≥ s can be certified by the outcomes of at most rs choices.
 ⇒ v_i = v_j can be attested by the outcomes where v_j was chosen. So r = 1.

McDiarmid's Inequality applies \Rightarrow There are Π_i 's for which $|\mathcal{G}| \gg |\mathcal{B}|$.

Our random building is all about permutations:

Building stars at v (w.r.t. t) = Permute the l's, l's and l's at v, and combine. Look at McDiarmid's requirements, for $X_v(t_i, t_i)$:

- interchanging two elements in any Π_i can affect X_v(t_i, t_j) by at most d;
 ⇒ Interchanging, say, two /'s modifies d = 2 copies only.
- X_v(t_i, t_j) ≥ s can be certified by the outcomes of at most rs choices.
 ⇒ v_i = v_j can be attested by the outcomes where v_j was chosen. So r = 1.

McDiarmid's Inequality applies \Rightarrow There are Π_i 's for which $|\mathcal{G}| \gg |\mathcal{B}|$.

+ For compatible $v \in G$ and $t \in T$, unlikely that two copies where v plays the role of t have another common vertex (similar reasoning).

We have:

- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$'s.

We have:

- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$'s.

 \Rightarrow By LLL, non-zero probability that all $X_v(t_i, t_j)$'s are small.

We have:

- Any $X_v(t_i, t_j)$ is most likely to be quite small;
- Few dependencies between the $X_v(t_i, t_j)$'s.

 \Rightarrow By LLL, non-zero probability that all $X_v(t_i, t_j)$'s are small.

+ Similar arguments for intersections.

Conclusion

Conclusion and perspectives

• Constructive proof?

Conclusion and perspectives

- Constructive proof?
- What is the least k_T guaranteeing *T*-decompositions?

- Constructive proof?
- What is the least k_T guaranteeing *T*-decompositions?
- Real importance of huge edge-connectivity over huge degree?
- For $T = P_{\ell}$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]

There is a function f such that, for any fixed tree T with maximum degree Δ_T , every $f(\Delta_T)$ -edge-connected graph with sufficiently large minimum degree can be T-decomposed.

- Constructive proof?
- What is the least k_T guaranteeing *T*-decompositions?
- Real importance of huge edge-connectivity over huge degree?
- For $T = P_{\ell}$, we proved that 24-edge-connectivity and huge degree suffice.

Conjecture [B., Harutyunyan, Le, Thomassé, 2016+]

There is a function f such that, for any fixed tree T with maximum degree Δ_T , every $f(\Delta_T)$ -edge-connected graph with sufficiently large minimum degree can be T-decomposed.

Thanks!