
The Rödl Nibble

Frédéric Havet

COATI, INRIA, I3S, CNRS, Univ. Nice Sophia Antipolis
Sophia Antipolis, France

17ème JCALM –Sophia Antipolis – 4-5 mai 2017

F. Havet Rödl Nibble



Beyond design

Design = perfect case BUT do not always exists.

No decomposition of K5 into copies of K3.
( |E (K5)| = 10 and |E (K3)| = 3.)

No decomposition of K
(3)
6 into copies of K

(3)
4 .

(degree in K
(3)
6 = 10 and degree in K

(3)
4 = 3)
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Approximate design

packing of F in G : set of edge-disjoint copies of F in G .

covering of G by F : set of copies of F such that every edge of G
is in one of the copies.
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Approximate design

packing of F in G : set of edge-disjoint copies of F in G .

covering of G by F : set of copies of F such that every edge of G
is in one of the copies.

m(n, k , t) : maximum size of a packing of K
(t)
k in K

(t)
n

M(n, k , t) : minimum size of a covering of K
(t)
n by K

(t)
k .
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Trivial inequalities

m(n, k , t) ≤
(n
t

)(k
t

) ≤ M(n, k , t)

with equalities iff there is a t-(n, k, 1)-design.
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Examples

m(5, 3, 2) = 2 <
(52)
(32)

= 10
3 ≤ M(5, 3, 2) = 4

m(6, 4, 3) = 3 <
(63)
(43)

= 5 < M(6, 4, 3) = 6
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Erdős–Hanani Conjecture

m(n, k , t) ≤
(n
t

)(k
t

) ≤ M(n, k , t)

Conjecture (Erdős–Hanani, 1963)

lim
n→+∞

m(n, k , t)(n
t

)
/
(k
t

) = 1 and lim
n→+∞

M(n, k , t)(n
t

)
/
(k
t

) = 1.

Erdős–Hanani: True for t = 2 (graphs).

F. Havet Rödl Nibble



Rödl Theorem

m(n, k , t) ≤
(n
t

)(k
t

) ≤ M(n, k , t)

Theorem (Rödl, 1985)

lim
n→+∞

m(n, k , t)(n
t

)
/
(k
t

) = 1 and lim
n→+∞

M(n, k , t)(n
t

)
/
(k
t

) = 1.
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The auxiliary hypergraph H

Hypergraph H : vertices = t-subsets of [n]
hyperedges = sets of

(k
t

)
t-subsets of a k-subset of [n].

packing of K
(t)
k in K

(t)
n ↔ matching in H

matching : set of pairwise vertex-disjoint hyperedges.

covering of K
(t)
n by K

(t)
k ↔ cover of H

cover : set of hyperedges s.t. every vertex is in one of them.

Theorem (Rödl, 1985)

H has a matching of size (1− o(1)) N/r N =
(n
t

)
and a cover of size (1− o(1)) N/r r =

(k
t

)
.
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A more general result

H has N vertices with N =
(n
t

)
.

H is r -uniform with r =
(k
t

)
.

H is D-regular with D =
(n−t
k−t
)
.

Observation : The existence of the desired matching and cover
also holds for large class of r -uniform hypergraphs D-regular
graphs.

Frank and Rödl, Pippenger and Spencer 1989, Kahn 1996.
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Equivalence of the two statements

In a D-regular r -uniform hypergraph of order N

matching of size (1− o(1)) N/r ⇔ cover of size (1 + o(1)) N/r

(⇒) matching of size N(1−ε)
r , ⇒ at most εN non-covered vertices

⇒ cover of size at most N(1−ε)
r + εN.

(⇐) cover of size N(1+ε)
r . Each vertex x covered c(x) times.

For each x choose c(x)− 1 hyperedges and remove them.

At most
∑

v∈V (c(x)− 1) = (1+ε)N
r × r − N = εN are removed.

⇒ matching of size at least N(1+ε)
r − εN.
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General idea: nibbling

Fix ε.

Take a random set of εN/r edges. W.h.p. only O(ε2N) vertices
covered more than once. So at least εN −O(ε2N) covered vertices.

Remove the covered vertices.

Choose again a random set of edges covering roughly an ε-fraction
of the vertices wiht almost no overlap.

And so on until at most εN vertices remain.

Cover each of the remaining vertices with a dedicated hyperedge.
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The Theorem

r > 2 fixed.
For κ ≥ 1 and a > 0, there exists γ > 0 and d0 s.t. the following
holds for all N ≥ D ≥ d0.

Every r -uniform hypergraph H = (V , E) on N vertices such that

(0) d(x) > 0 for all x ∈ V .

(1) All vertices x except at most γN satisfy d(x) = (1± γ)D.

(2) For all x ∈ V , d(x) < κD.

(3) For each pair (x , y) of distincts vertices, d(x , y) < γD.

has a cover of size (1 + a)Nr .

d(x , y) : codegree = number of edges containing both x and y .

In H, we have d(x , y) =
(n−t−1
k−t−1

)
= o(D).
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The Nibble Lemma

r > 2 fixed.
For K ≥ 1, ε > 0 and δ′ > 0, there exists δ > 0 and D∗ s.t. the
following holds for all N ≥ D ≥ D∗.

Every r -uniform hypergraph H = (V , E) on N vertices such that

(1) All vertices x except at most δN satisfy d(x) = (1± δ)D.

(2) For all x ∈ V , d(x) < KD.

(3) For each pair (x , y) of distincts vertices, d(x , y) < δD.

contains a set E ′ of hyperedges s.t.

(iv) |E ′| = N
r ε(1± δ′).

(v) V ′ = V \
⋃

S∈E ′ S has size Ne−ε(1± δ′).

(vi) All vertices x of V ′ except at most δ′|V ′| the degree d ′(x) of
x in H[V ′] satisfies d ′(x) = De−ε(r−1)(1± δ′).
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Proving the Theorem with the Nibble Lemma

a > 0. Take δ, ε very small, and p s.t. e−εp < ε.
Ki = κei(r−1), Di = De−εi(r−1) with D ≥ d0.
Choose δ = δp > δp−1 > · · · > δ0 s. t. we can apply the Nibble
Lemma each time and δi−1 ≤ δie−ε(r−1).

Step i : Hi−1  Hi .

(1) All x but at most δi−1Ni−1 satisfy d(x) = (1± δi−1)Di−1.

(2) For all x ∈ Vi−1, d(x) < Ki−1Di−1.

(3) For each pair (x , y) of distincts vertices, d(x , y) < δi−1Di−1.

A set E ′i of hyperedges s.t.

(iv) |E ′i | =
|Vi−1|

r ε(1± δi ).

(v) Vi = Vi−1 \
⋃

S∈Ei S has size |Vi−1|e−ε(1± δi ).

(vi) All vertices x of Vi except at most δi |Vi | the degree of x in Hi

satisfies d(x) = Di−1e
−ε(r−1)(1± δi ) = (1± δi )Di .
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Proving the Theorem with the Nibble Lemma

a > 0. Take δ, ε very small, and p s.t. e−εp < ε.
Ki = κei(r−1), Di = De−i(r−1) with D ≥ d0.

Choose δ = δp > δp−1 > · · · > δ0 s. t. we can apply the Nibble
Lemma each time and δi−1 ≤ δie−ε(r−1).

P =
∏p

i=0(1 + δi ) ≤
∏p

i=0(1 + δe−iε(r−1)) ≤ 1+4δ
1+2δ .

|Vi | ≤ Ne−iεP ≤ Ne−iε(1 + 2δ).

So |E ′i | = ( εr |Vi−1|)(1± δi ) ≤ ε
rNe−(i−1)ε(1 + 2δ)P

≤ ε
rNe−(i−1)ε(1 + 4δ).
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Proving the Theorem with the Nibble Lemma

a > 0. Take δ, ε very small, and p s.t. e−εp < ε.

|Vi | ≤ Ne−iε(1 + 2δ) and |E ′i | ≤
ε
rNe−(i−1)ε(1 + 4δ).

Cover of size
∑p

i=1 |E ′i |+ |Vp|.

(1 + 4δ)
ε

r
N

p−1∑
i=0

e−iε + |Vp| ≤ (1 + 4δ)
εN

r

1

1− e−ε
+ (1 + 2δ)Ne−εp

≤ N

r
(1 + 4δ)

(
1

1− e−ε
+ rε

)
< (1 + a)

N

r
.
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Proving the Nibble Lemma

r > 2 fixed.
For K ≥ 1, ε > 0 and δ′ > 0, there exists δ > 0 and D∗ s.t. the
following holds for all N ≥ D ≥ D∗.

Every r -uniform hypergraph H = (V , E) on N vertices such that

(1) All vertices x except at most δN satisfy d(x) = (1± δ)D.

(2) For all x ∈ V , d(x) < KD.

(3) For each pair (x , y) of distincts vertices, d(x , y) < δD.

contains a set E ′ of hyperedges s.t.

(iv) |E ′| = N
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Proving the Nibble Lemma

E ′ a random subset of E : every e ∈ E is picked randomly,
independently with probability p = ε/D.

With very high probability (say ≥ 0.9) (iv) holds.

With very high probability (say ≥ 0.9) (v) holds.

With very high probability (say ≥ 0.9) (vi) holds.

⇒ with positive probability (≥ 0.7), (iv), (v) and (vi) hold.
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With very high probability, (iv) holds

(iv) |E ′| = N
r ε(1± δ′).

(1): All vertices x except at most δN satisfy d(x) = (1± δ)D.

=⇒ 1
r (1− δ)2DN ≤ |E| ≤ 1

r (1 + δ)DN + δKDN)

|E| = (1± δ1)DN
r .

E(|E ′|) = |E|/p = (1± δ1) εNr

Need to prove that |E ′| is concentrated around its expected
value.
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2nd Moment Method

Variance : Var(X ) = E
(

(X − E (X ))2
)
.

Chebyshev Inequality : For any λ,

Pr
(
|X − E(X )| ≥ λ

√
Var(X )

)
≤ 1

λ2
.

Pr
(
X = E(X )± λ

√
Var(X )

)
≥ 1− 1

λ2
.

F. Havet Rödl Nibble



Variance and covariance

Assume X = X1 + · · ·+ Xm.

Var(X ) =
m∑
i=1

Var(Xi ) +
∑
i 6=j

Cov(Xi ,Xj)

Covariance : Cov(Y ,Z ) = E(YZ )− E(Y )E(Z ).

If Y and Z are independent, then Cov(Y ,Z ) = 0.

If Xi = 1 with probability pi and 0 otherwise, then

Var(Xi ) = pi (1− pi ) ≤ pi = E(Xi )

Var(X ) ≤ E(X ) +
∑
i 6=j

Cov(Xi ,Xj)
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With very high probability, (iv) holds

(iv) |E ′| = N
r ε(1± δ′).

(1): All vertices x except at most δN satisfy d(x) = (1± δ)D.

=⇒ 1
r (1− δ)2DN ≤ |E| ≤ 1

r (1 + δ)DN + δKDN)

|E| = (1± δ1)DN
r .

E(|E ′|) = |E|/p = (1± δ1) εNr

Var(|E ′|) = |E|p(1− p) ≤ (1± δ1) εNr .

By Chebyshev Inequality,

Pr

(
|E ′| = (1± δ2)

εN

r

)
> 0, 9.
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With very high probability, (v) holds

(v) V ′ = V \
⋃

e∈E ′ e has size Ne−ε(1± δ′).

Ix = 1 if x /∈
⋃

e∈E ′ e and Ix = 0 otherwise.

|V ′| =
∑

x∈V Ix .

x good if d(x) = (1± δD), bad otherwise.

x good : E(Ix) = Pr(Ix = 1) = (1− p)d(x) =
(
1− ε

D

)(1±δD)

= e−ε(1± δ3).

x bad: 0 ≤ E(Ix) ≤ 1, but at most δN bad vertices.

Linearity of the Expected Value : E(|V ′|) ≤ Ne−ε(1± δ4).
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With very high probability, (v) holds

Var(|V ′|) =
∑
x∈V

Var(Ix) +
∑

x ,y∈V ,x 6=y

Cov(Ix , Iy )

≤ E(|V ′|) +
∑

x ,y∈V ,x 6=y

Cov(Ix , Iy )

Cov(Ix , Iy ) = E(Ix Iy )− E(Ix)E(Iy )

= (1− p)d(x)+d(y)−d(x ,y) − (1− p)d(x)+d(y)

≤ (1− p)−d(x ,y) − 1 ≤
(

1− ε

D

)−δ(D)
− 1 ≤ δ5.

Var(|V ′|) ≤ E(|V ′|) + δ5N
2 ≤ δ6

(
E(|V ′|)

)2
.

Chebyshev : With proba ≥ 0, 9,
|V ′| = (1± δ7)E(|V ′|) = (1± δ8)Ne−ε .
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