JCALM 2017 Introduction to Designs and Steiner Triple Systems

Fionn Mc Inerney

Université Côte d'Azur, Inria, CNRS, I3S, France

May 3, 2017

Fionn Mc Inerney JCALM 2017 Introduction to Designs and Steiner Triple Syste

イロト イヨト イヨト イヨト

1/124

3

JCALM 2017 Decomposition of Complete Graphs

Fionn Mc Inerney

Université Côte d'Azur, Inria, CNRS, I3S, France

May 3, 2017

<ロ> (日) (日) (日) (日) (日)

1 Introduction to Designs: Definitions and Examples

2 Steiner Triple Systems: Definition and Existence

3 Other *t*-designs, Affine and Projective planes, and Conclusion

イロト イポト イヨト イヨト

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

(7,3,1) design: Decompose K_7 into K_3

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(7,3,1) design: Decompose K_7 into K_3

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(7,3,1) design: Decompose K_7 into K_3

Decomposition: Partition of edges.

(ロ) (同) (E) (E) (E)

(7,3,1) design: Decompose K_7 into K_3

Decomposition: Partition of edges.

(日) (部) (注) (注) (言)

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

(7,3,1) design: Decompose K_7 into K_3

Decomposition: Partition of edges.

(ロ) (同) (E) (E) (E)

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

(7,3,1) design: Decompose K_7 into K_3

Decomposition: Partition of edges.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(ロ) (同) (E) (E) (E)

(7,3,1) design: Decompose K_7 into K_3

Decomposition: Partition of edges.

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

K_4 and K_5 don't decompose into K_3

• K_4 doesn't decompose into K_3 : for all $v \in V(K_4)$ and $u \in V(K_3)$, deg(v) = 3 and deg(u) = 2 but $2 \nmid 3$.

イロン イヨン イヨン イヨン

K_4 and K_5 don't decompose into K_3

- K_4 doesn't decompose into K_3 : for all $v \in V(K_4)$ and $u \in V(K_3)$, deg(v) = 3 and deg(u) = 2 but $2 \nmid 3$.
- K_5 doesn't decompose into K_3 : $|E(K_5)| = 10$ and $|E(K_3)| = 3$ but $3 \nmid 10$.

イロト イポト イヨト イヨト

K_4 and K_5 don't decompose into K_3

- K_4 doesn't decompose into K_3 : for all $v \in V(K_4)$ and $u \in V(K_3)$, deg(v) = 3 and deg(u) = 2 but $2 \nmid 3$.
- K_5 doesn't decompose into K_3 : $|E(K_5)| = 10$ and $|E(K_3)| = 3$ but $3 \nmid 10$.
- Main question: when do designs exist?

イロト イポト イヨト イヨト

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

t-designs

Definition

A $t - (n, k, \lambda)$ design is a set of subsets of size k (blocks) of a set V of n vertices such that all subsets of size t belong to exactly λ blocks.

イロト イポト イヨト イヨト 三国

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

t-designs

Definition

A $t - (n, k, \lambda)$ design is a set of subsets of size k (blocks) of a set V of n vertices such that all subsets of size t belong to exactly λ blocks.

• Abbreviated to (n, k, λ) design when t = 2.

・ロン ・回 と ・ ヨ と ・ ヨ と

2-designs (t = 2) with $\lambda = 1$: Decompose K_n into K_k

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V of n vertices such that any pair of elements belongs to exactly 1 block.

イロト イポト イヨト イヨト

2-designs (t = 2) with $\lambda = 1$: Decompose K_n into K_k

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V of n vertices such that any pair of elements belongs to exactly 1 block.

Definition

An (n, k, 1) design is a decomposition of K_n (edge partition) into K_k .

イロト イポト イヨト イヨト 一日

2-designs (t = 2) with $\lambda = 1$: Decompose K_n into K_k

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V of n vertices such that any pair of elements belongs to exactly 1 block.

Definition

An (n, k, 1) design is a decomposition of K_n (edge partition) into K_k .

• Each block of size k: K_k .

イロン イヨン イヨン イヨン

2-designs (t = 2) with $\lambda = 1$: Decompose K_n into K_k

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V of n vertices such that any pair of elements belongs to exactly 1 block.

Definition

An (n, k, 1) design is a decomposition of K_n (edge partition) into K_k .

- Each block of size k: K_k .
- Any pair (t = 2) of elements in exactly one (λ = 1) block: each edge of K_n in exactly one K_k.

(4,2,1) design: Decompose K_4 into K_2

(n, 2, 1) designs (k = 2) trivially exist (decomposing K_n into K_2). 15/124

(7,3,1) design: Decompose K_7 into K_3

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(7,3,1) design: Decompose K_7 into K_3

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(13,3,1) design: Decompose K_{13} into K_3

Decomposition obtained by rotation of two K_3 . $B_i = \{\{i, i+2, i+7\} \mid i \in [13]\} \text{ (indices (mod 13))}.$ $B_j = \{\{j, j+1, j+4\} \mid j \in [13]\} \text{ (indices (mod 13))}.$

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

イロト イポト イヨト イヨト

(13,4,1) design: Decompose K_{13} into K_4

Decomposition obtained by rotation of K_4 . $B_i = \{\{i, i + 4, i + 5, i + 7\} \mid i \in [13]\}$ (indices (mod 13)).

イロト イポト イヨト イヨト

25/124

3

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

(9,3,1) design: Decompose K_9 into K_3

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

27/124

3

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

(9,3,1) design: Decompose K₉ into K₃

28/124

3

(9,3,1) design: Decompose K_9 into K_3

Green blocks partition vertices.

(ロ) (同) (E) (E) (E)

(9,3,1) design: Decompose K_9 into K_3

Gray blocks partition vertices.
(9,3,1) design: Decompose K_9 into K_3

(9,3,1) design: Decompose K_9 into K_3

< □ > < @ > < 注 > < 注 > ... 注

Outline

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Resolvable designs

Definition

A design is **resolvable** if the blocks (K_k) can be grouped into sets that partition the vertices.

<ロ> (日) (日) (日) (日) (日)

Resolvable (4,2,1) design: Resolvable decomposition of K_4 into K_2

Definition

A design is **resolvable** if the blocks (K_k) can be grouped into sets that partition the vertices.

イロト イポト イヨト イヨト

34/124

For *n* even, K_n decomposes into n-1 perfect matchings.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

Resolvable (4,2,1) design: Resolvable decomposition of K_4 into K_2

Definition

A design is **resolvable** if the blocks (K_k) can be grouped into sets that partition the vertices.

イロト イポト イヨト イヨト

35/124

For *n* even, K_n decomposes into n-1 perfect matchings.

Resolvable (4,2,1) design: Resolvable decomposition of K_4 into K_2

Definition

A design is **resolvable** if the blocks (K_k) can be grouped into sets that partition the vertices.

イロト イポト イヨト イヨト

36/124

For *n* even, K_n decomposes into n-1 perfect matchings.

Resolvable (4,2,1) design: Resolvable decomposition of K_4 into K_2

Definition

A design is **resolvable** if the blocks (K_k) can be grouped into sets that partition the vertices.

イロト イポト イヨト イヨト

37/124

For *n* even, K_n decomposes into n-1 perfect matchings.

Kirkman's Schoolgirl Problem: Resolvable decomposition of K_{15} into K_3

Kirkman's Schoolgirl Problem (Reverend Kirkman, 1850)

15 young ladies in a school walk out 3 abreast for 7 days in succession. Is it possible to arrange them daily, so that no 2 walk twice abreast?

Kirkman's Schoolgirl Problem: Resolvable decomposition of K_{15} into K_3

Kirkman's Schoolgirl Problem (Reverend Kirkman, 1850)

15 young ladies in a school walk out 3 abreast for 7 days in succession. Is it possible to arrange them daily, so that no 2 walk twice abreast?

• Seeked actual solution for resolvable (15,3,1) design.

Kirkman's Schoolgirl Problem: Resolvable decomposition of K_{15} into K_3

Kirkman's Schoolgirl Problem (Reverend Kirkman, 1850)

15 young ladies in a school walk out 3 abreast for 7 days in succession. Is it possible to arrange them daily, so that no 2 walk twice abreast?

- Seeked actual solution for resolvable (15,3,1) design.
- Same can be applied to Coati team.

Necessary condition (1) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n(n-1) \equiv 0 \pmod{k(k-1)}$.

イロト イポト イヨト イヨト 一日

Necessary condition (1) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n(n-1) \equiv 0 \pmod{k(k-1)}$.

Proof.
$$|E(K_n)| = \frac{n(n-1)}{2}$$
 must be a multiple of $|E(K_k)| = \frac{k(k-1)}{2}$.

イロト イポト イヨト イヨト

Necessary condition (1) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n(n-1) \equiv 0 \pmod{k(k-1)}$.

Proof.
$$|E(K_n)| = \frac{n(n-1)}{2}$$
 must be a multiple of $|E(K_k)| = \frac{k(k-1)}{2}$.

Necessary Condition (1)

$$n(n-1) \equiv 0 \pmod{k(k-1)}.$$

イロト イポト イヨト イヨト

Necessary condition (1) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n(n-1) \equiv 0 \pmod{k(k-1)}$.

Proof.
$$|E(K_n)| = \frac{n(n-1)}{2}$$
 must be a multiple of $|E(K_k)| = \frac{k(k-1)}{2}$.

Necessary Condition (1)

 $n(n-1) \equiv 0 \pmod{k(k-1)}.$

 K_5 doesn't decompose into K_3 .

イロト イポト イヨト イヨト

Necessary condition (2) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n - 1 \equiv 0 \pmod{k - 1}$.

イロト イポト イヨト イヨト 三国

Necessary condition (2) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n - 1 \equiv 0 \pmod{k - 1}$.

Proof.

For all $v \in V(K_n)$ and $u \in V(K_k)$, deg(v) = n - 1 must be a multiple of deg(u) = k - 1.

イロト イポト イヨト イヨト 一日

Necessary condition (2) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n - 1 \equiv 0 \pmod{k - 1}$.

Proof.

For all $v \in V(K_n)$ and $u \in V(K_k)$, deg(v) = n - 1 must be a multiple of deg(u) = k - 1.

Necessary condition (2)

 $n-1 \equiv 0 \pmod{k-1}$.

(日) (同) (E) (E) (E)

Necessary condition (2) for an (n, k, 1) design: Decomposition of K_n into K_k

Lemma

If an (n, k, 1) design exists, then $n - 1 \equiv 0 \pmod{k - 1}$.

Proof.

For all $v \in V(K_n)$ and $u \in V(K_k)$, deg(v) = n - 1 must be a multiple of deg(u) = k - 1.

Necessary condition (2)

 $n-1 \equiv 0 \pmod{k-1}$.

 K_4 doesn't decompose into K_3 .

イロト イポト イラト イラト 一日

Necessary Conditions are Sufficient in General

Necessary Condition (1)

$$n(n-1) \equiv 0 \pmod{k(k-1)}.$$

Necessary condition (2)

 $n-1 \equiv 0 \pmod{k-1}$.

イロト イポト イヨト イヨト 三国

Necessary Conditions are Sufficient in General

Necessary Condition (1)

$$n(n-1) \equiv 0 \pmod{k(k-1)}.$$

Necessary condition (2)

 $n-1 \equiv 0 \pmod{k-1}$.

In general, for n large enough, these 2 conditions are sufficient.

イロト イポト イヨト イヨト 三国

Steiner Triple Systems: Decomposition of K_n into K_3

Definition

A Steiner Triple System is an (n, 3, 1) design.

イロン イ部ン イヨン イヨン 三日
Steiner Triple Systems: Decomposition of K_n into K_3

Definition

A Steiner Triple System is an (n, 3, 1) design.

• Steiner asked the question if they exist in 1853, without knowing Kirkman had already proved their existence in 1847.

イロト イポト イヨト イヨト 一日

Necessary conditions for Steiner Triple Systems: Decomposition of K_n into K_3

Lemma

If an (n,3,1) design exists, then $n \equiv 1 \text{ or } 3 \pmod{6}$.

イロト イポト イヨト イヨト 三国

Necessary conditions for Steiner Triple Systems: Decomposition of K_n into K_3

Lemma

If an (n,3,1) design exists, then $n \equiv 1$ or $3 \pmod{6}$.

Proof.

NC(2) ⇒ n − 1 ≡ 0 (mod 2) ⇒ n odd ⇒ n ≡ 1, 3 or 5 (mod 6).

<ロ> (日) (日) (日) (日) (日)

Necessary conditions for Steiner Triple Systems: Decomposition of K_n into K_3

Lemma

If an (n,3,1) design exists, then $n \equiv 1$ or $3 \pmod{6}$.

Proof.

- NC(2) $\Rightarrow n-1 \equiv 0 \pmod{2} \Rightarrow n \text{ odd} \Rightarrow n \equiv 1, 3 \text{ or } 5 \pmod{6}.$
- NC(1) $\Rightarrow n(n-1) \equiv 0 \pmod{6} \Rightarrow n \equiv 1 \text{ or } 3 \pmod{6}$ since if n = 6k + 5, then $\frac{n(n-1)}{6} = \frac{6k+5(6k+4)}{6} = \frac{18k^2+27k+10}{3} \notin \mathbb{Z}$.

(日) (同) (E) (E) (E)

Necessary Conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

i.e. K_n can be decomposed into $K_3 \Leftrightarrow n \equiv 1 \text{ or } 3 \pmod{6}$.

イロト イポト イヨト イヨト 一日

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

・ロト ・回ト ・ヨト ・ヨト

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow$ $K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow$ $K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Lemma 1

 K_{2m+1} can be decomposed into $K_3 \Leftrightarrow$ $K_{2,\dots,2} = K_{m*2}$ can be decomposed into K_3 .

Proof of Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Proof.

Let V(K_{2m+1}) = {v₁, · · · , v_{2m+1}}, D be a decomposition of K_{2m+1} into K₃, and A be the set of all blocks containing v_{2m+1}.

イロト イポト イヨト イヨト

Proof of Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Proof.

- Let V(K_{2m+1}) = {v₁, · · · , v_{2m+1}}, D be a decomposition of K_{2m+1} into K₃, and A be the set of all blocks containing v_{2m+1}.
- |A| = m so w.l.o.g. suppose $A = \{v_i, v_{i+m}, v_{2m+1} \mid i \in [m]\}$. Then, $D \setminus A$ is a decomposition of H into K_3 where H is the graph K_{2m} with the edges $v_i v_{i+m}, i \in [m]$ removed. H is isomorphic to K_{m*2} .

イロト イポト イヨト イヨト

Proof of Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3

Proof.

- Let V(K_{2m+1}) = {v₁, · · · , v_{2m+1}}, D be a decomposition of K_{2m+1} into K₃, and A be the set of all blocks containing v_{2m+1}.
- |A| = m so w.l.o.g. suppose $A = \{v_i, v_{i+m}, v_{2m+1} \mid i \in [m]\}$. Then, $D \setminus A$ is a decomposition of H into K_3 where H is the graph K_{2m} with the edges $v_i v_{i+m}, i \in [m]$ removed. H is isomorphic to K_{m*2} .
- In the other direction, if D' is a decomposition of H into K₃, then D' ∪ A is a decomposition of K_{2m+1} into K₃.

イロト イポト イヨト イヨト

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

(日) (同) (E) (E) (E)

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

67/124

Э

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

68/124

Э

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

69/124

3

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

70/124

3

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

71/124

Э

Theorem 1: K_{3*q} dec. K_3

Theorem 1

 $K_{q,q,q} = K_{3*q}$ can be decomposed into K_3 .

Example q = 2:

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

Proof of Theorem 1: K_{3*q} dec. K_3

Proof.

Let (A, B, C) be the tripartition of K_{3*q} with $A = \{a_i \mid i \in [q]\}$ and B and C defined analogously. $\{\{a_i, b_j, c_{i+j}\} \mid i \in [q], j \in [q]\}$ (indices (mod q)) is a decomposition of K_{3*q} into K_3 .

イロト イポト イヨト イヨト

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \geq 3$, $q \neq 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

イロト イポト イヨト イヨト

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \geq 3$, $q \neq 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Proof for q odd.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \geq 3$, $q \neq 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

・ロト ・日本 ・モート ・モート

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

イロン イヨン イヨン イヨン

Theorem 2: $orall q \geq$ 3, q eq 6, K_{4*q} dec. K_4

Theorem 2

For all $q \ge 3$, $q \ne 6$, $K_{q,q,q,q} = K_{4*q}$ can be decomposed into K_4 .

Example q = 3:

(日) (部) (注) (注) (言)
Proof of Theorem 2: $\forall q \geq 3$, $q \neq 6$, K_{4*q} dec. K_4

Proof. (q odd)

(i, j) and (i', j') don't exist such that $i + j = i' + j' \pmod{q}$ and $i - j = i' - j' \pmod{q}$. Such a pair exists $\Rightarrow 2i = 2i' \pmod{q}$ and $2j = 2j' \pmod{q} \Rightarrow i = i'$ and j = j' since q is odd.

イロト イポト イヨト イヨト

Proof of Theorem 2: $\forall q \geq 3, q \neq 6, K_{4*q}$ dec. K_4

Proof. (q odd)

(i,j) and (i',j') don't exist such that $i+j = i'+j' \pmod{q}$ and $i-j = i'-j' \pmod{q}$. Such a pair exists $\Rightarrow 2i = 2i' \pmod{q}$ and $2j = 2j' \pmod{q} \Rightarrow i = i'$ and j = j' since q is odd.

Doesn't work when *q* is even: (i, j) and $(i + \frac{q}{2}, j + \frac{q}{2})$. (0, 0, 0, 0) and $(\frac{q}{2}, \frac{q}{2}, 0, 0)$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Theorem 3

If $r \equiv 0$ or 1 (mod 3), then K_r can be decomposed into a combination of K_3, K_4 , and K_6 .

イロン イヨン イヨン イヨン

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Theorem 3

If $r \equiv 0$ or 1 (mod 3), then K_r can be decomposed into a combination of K_3, K_4 , and K_6 .

Proof.

We prove by induction. The result is trivially true for r = 3, 4, 6and r = 7 we already saw. Suppose r = 9m + j with $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

イロト イポト イヨト イヨト

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Example: r = 9.

 $K_9 = 3K_3 \cup K_{3,3,3}$

イロト イポト イヨト イヨト

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Example: r = 9.

 $K_9 = 3K_3 \cup K_{3,3,3}$

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Example: r = 10.

イロン イヨン イヨン イヨン

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

Example: r = 10. $3(K_3 \cup z)$ Base Case: K_4 dec. K_3 , K_4 , K_6 . K_{3,3,3} $K_{10} = 3(K_3 \cup z) \cup K_{3,3,3}$ Thm 1: K_{3*q} dec. K_3 .

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

イロト イポト イヨト イヨト

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$. $h \in \{1, 3, 4\}$.

- 4 The last

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$. $h \in \{1, 3, 4\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$. $h \in \{1, 3, 4\}$.

Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4, K_6

r = 9m + j for $m \in \mathbb{Z}^+$ and $j \in \{0, 1, 3, 4, 6, 7\}$. $h \in \{1, 3, 4\}$.

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

• Suppose r = 9m. Partition $V(K_{9m})$ into three sets A_1, A_2, A_3 of size 3m.

イロト イヨト イヨト イヨト

96/124

3

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m. Partition $V(K_{9m})$ into three sets A_1, A_2, A_3 of size 3m.
- Decompose K_{9m} into 3 K_{3m} induced by A_1, A_2, A_3 and a K_{3*3m} with tripartition (A_1, A_2, A_3) .

イロト イポト イヨト イヨト

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m. Partition $V(K_{9m})$ into three sets A_1, A_2, A_3 of size 3m.
- Decompose K_{9m} into 3 K_{3m} induced by A_1, A_2, A_3 and a K_{3*3m} with tripartition (A_1, A_2, A_3) .
- By I.H., each K_{3m} decomposes into a combo of K_3, K_4, K_6 .

イロト イポト イヨト イヨト

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m. Partition $V(K_{9m})$ into three sets A_1, A_2, A_3 of size 3m.
- Decompose K_{9m} into 3 K_{3m} induced by A_1, A_2, A_3 and a K_{3*3m} with tripartition (A_1, A_2, A_3) .
- By I.H., each K_{3m} decomposes into a combo of K_3, K_4, K_6 .
- K_{3*3m} decomposes into K_3 by Thm 1.

イロト イポト イヨト イヨト

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m. Partition $V(K_{9m})$ into three sets A_1, A_2, A_3 of size 3m.
- Decompose K_{9m} into 3 K_{3m} induced by A_1, A_2, A_3 and a K_{3*3m} with tripartition (A_1, A_2, A_3) .
- By I.H., each K_{3m} decomposes into a combo of K_3, K_4, K_6 .
- K_{3*3m} decomposes into K_3 by Thm 1.
- Suppose r = 9m + 3. Partition V(K_{9m+3}) into three sets of size 3m + 1.

イロト イヨト イヨト イヨト

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

Suppose r = 9m + 1. Partition V(K_{9m+1}) into three sets of size 3m and a vertex z.

イロン イ部ン イヨン イヨン 三日

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 1. Partition V(K_{9m+1}) into three sets of size 3m and a vertex z.
- Decompose K_{9m+1} into 3 K_{3m+1} induced by $A_1 \cup \{z\}, A_2 \cup \{z\}, A_3 \cup \{z\}$ and a K_{3*3m} with tripartition (A_1, A_2, A_3) .

イロト イポト イラト イラト 一日

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 1. Partition V(K_{9m+1}) into three sets of size 3m and a vertex z.
- Decompose K_{9m+1} into 3 K_{3m+1} induced by $A_1 \cup \{z\}, A_2 \cup \{z\}, A_3 \cup \{z\}$ and a K_{3*3m} with tripartition (A_1, A_2, A_3) .
- By I.H., each K_{3m+1} decomposes into a combo of K_3, K_4, K_6 .

イロト イポト イラト イラト 一日

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 1. Partition V(K_{9m+1}) into three sets of size 3m and a vertex z.
- Decompose K_{9m+1} into 3 K_{3m+1} induced by $A_1 \cup \{z\}, A_2 \cup \{z\}, A_3 \cup \{z\}$ and a K_{3*3m} with tripartition (A_1, A_2, A_3) .
- By I.H., each K_{3m+1} decomposes into a combo of K_3, K_4, K_6 .
- K_{3*3m} decomposes into K_3 by Thm 1.

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

• Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition $V(K_{9m+3+h})$ into three sets of size 3m + 1 and a set of h vertices $(h \in \{1, 3, 4\})$.

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition $V(K_{9m+3+h})$ into three sets of size 3m + 1 and a set of h vertices $(h \in \{1, 3, 4\})$.
- Decompose K_{9m+3+h} into 3 K_{3m+1} induced by A_1, A_2, A_3 , a $K_{3m+1,3m+1,3m+1,h}$, and a K_3 or K_4 if h = 3 or h = 4 resp.

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition $V(K_{9m+3+h})$ into three sets of size 3m + 1 and a set of h vertices $(h \in \{1, 3, 4\})$.
- Decompose K_{9m+3+h} into 3 K_{3m+1} induced by A_1, A_2, A_3 , a $K_{3m+1,3m+1,3m+1,h}$, and a K_3 or K_4 if h = 3 or h = 4 resp.
- By I.H., each K_{3m+1} decomposes into a combo of K_3, K_4, K_6 .

Proof of Theorem 3: For $r \equiv 0$ or 1 (mod 3), K_r dec. K_3, K_4 , and K_6

Proof.

- Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition $V(K_{9m+3+h})$ into three sets of size 3m + 1 and a set of h vertices $(h \in \{1, 3, 4\})$.
- Decompose K_{9m+3+h} into 3 K_{3m+1} induced by A_1, A_2, A_3 , a $K_{3m+1,3m+1,3m+1,h}$, and a K_3 or K_4 if h = 3 or h = 4 resp.
- By I.H., each K_{3m+1} decomposes into a combo of K_3, K_4, K_6 .
- K_{4*3m+1} decomposes into K₄ by Thm 2. This decomp. transforms into a decomp. of K_{3m+1,3m+1,3m+1,h} into a combo of K₃ and K₄ by omitting the extra vertices (some K₄ become K₃).

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

i.e. K_n can be decomposed into $K_3 \Leftrightarrow n \equiv 1 \text{ or } 3 \pmod{6}$.

イロト イポト イヨト イヨト 一日

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).

イロト イポト イヨト イヨト

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).
 K_r

Thm 3: K_r dec. K_3, K_4, K_6 .

イロト イポト イヨト イヨト

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).
 K_r
Thm 3: K_r dec. K_3, K_4, K_6 .
 K_{r*2}
 K_{r*2} dec. $K_{3*2}, K_{4*2}, K_{6*2}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).
 K_r
Thm 3: K_r dec. K_3, K_4, K_6 .
Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m+2}$ dec. K_3 .
 K_{r*2} dec. $K_{3*2}, K_{4*2}, K_{6*2}$.

イロト イポト イヨト イヨト
Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

Т

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).
 K_r
 K_r
 K_r
 K_r
 K_{r*2}
 K_{r*2}
 K_{r*2} dec. $K_{3,2}, K_{4,2}, K_{6,2}$.
Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3 .

By Lemma 1: K_7, K_9, K_{13} dec. $K_3 \Rightarrow K_{3*2}, K_{4*2}, K_{6*2}$ dec. $K_3 \Rightarrow K_{r*2}$ dec. K_3 .

イロト イポト イヨト イヨト

Necessary conditions are Sufficient for Steiner Triple Systems: Decomposition of K_n into K_3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists $\Leftrightarrow n \equiv 1$ or 3 (mod 6).

Let
$$r = \frac{n-1}{2}$$
. Then, $r \equiv 0$ or 1 (mod 3).
 K_r
hm 3: K_r dec. K_3, K_4, K_6 .
Lemma 1: K_{2m+1} dec. $K_3 \Leftrightarrow K_{m*2}$ dec. K_3 .
By Lemma 1: K_7, K_9, K_{13} dec. $K_3 \Rightarrow K_{3*2}, K_{4*2}, K_{6*2}$ dec. $K_3 \Rightarrow K_{r*2}$ dec. K_3 .
 K_{r*2} dec. K_3 .
 K_{r*2} dec. $K_3 \Rightarrow K_{3*2}, K_{4*2}, K_{6*2}$ dec. $K_3 \Rightarrow K_{r*2}$ dec. $K_3 \Rightarrow K_{r*2}$ dec. K_3 .
 K_{r*2} dec. K_3 .

イロト イポト イヨト イヨト

Proof for Steiner Triple Systems: K_n dec. $K_3 \Leftrightarrow n \equiv 1$ or 3 (mod 6)

Proof.

• Suppose $r = \frac{n-1}{2}$. Then, $r \equiv 0$ or 1 (mod 3).

Proof for Steiner Triple Systems: K_n dec. $K_3 \Leftrightarrow n \equiv 1$ or 3 (mod 6)

Proof.

- Suppose $r = \frac{n-1}{2}$. Then, $r \equiv 0$ or 1 (mod 3).
- By Thm 3, there's a decomposition D of K_r into a combo of K₃, K₄, K₆. Replace each vertex of K_r by an independent set of 2 vertices to obtain K_{r*2}.

Proof for Steiner Triple Systems: K_n dec. $K_3 \Leftrightarrow n \equiv 1$ or 3 (mod 6)

Proof.

- Suppose $r = \frac{n-1}{2}$. Then, $r \equiv 0$ or 1 (mod 3).
- By Thm 3, there's a decomposition D of K_r into a combo of K₃, K₄, K₆. Replace each vertex of K_r by an independent set of 2 vertices to obtain K_{r*2}.
- For $i \in \{3, 4, 6\}$, each K_i in D corresponds to a K_{i*2} in K_{r*2} .

Proof for Steiner Triple Systems: K_n dec. $K_3 \Leftrightarrow n \equiv 1$ or 3 (mod 6)

Proof.

- Suppose $r = \frac{n-1}{2}$. Then, $r \equiv 0$ or 1 (mod 3).
- By Thm 3, there's a decomposition D of K_r into a combo of K₃, K₄, K₆. Replace each vertex of K_r by an independent set of 2 vertices to obtain K_{r*2}.
- For $i \in \{3, 4, 6\}$, each K_i in D corresponds to a K_{i*2} in K_{r*2} .
- Already showed K_7 , K_9 and K_{13} could be decomposed into K_3 and so by Lemma 1, K_{3*2} , K_{4*2} , and K_{6*2} can too. Hence, K_{r*2} can be decomposed into K_3 .

Proof for Steiner Triple Systems: K_n dec. $K_3 \Leftrightarrow n \equiv 1$ or 3 (mod 6)

Proof.

- Suppose $r = \frac{n-1}{2}$. Then, $r \equiv 0$ or 1 (mod 3).
- By Thm 3, there's a decomposition D of K_r into a combo of K₃, K₄, K₆. Replace each vertex of K_r by an independent set of 2 vertices to obtain K_{r*2}.
- For $i \in \{3, 4, 6\}$, each K_i in D corresponds to a K_{i*2} in K_{r*2} .
- Already showed K_7 , K_9 and K_{13} could be decomposed into K_3 and so by Lemma 1, K_{3*2} , K_{4*2} , and K_{6*2} can too. Hence, K_{r*2} can be decomposed into K_3 .
- $K_{2r+1} = K_n$ can be decomposed into K_3 by Lemma 1.

Recall *t*-designs

Definition

A $t - (n, k, \lambda)$ design is a set of subsets of size k (blocks) of a set V of n vertices such that all subsets of size t belong to exactly λ blocks.

<ロ> (日) (日) (日) (日) (日)

102/124

Recall *t*-designs

Definition

A $t - (n, k, \lambda)$ design is a set of subsets of size k (blocks) of a set V of n vertices such that all subsets of size t belong to exactly λ blocks.

• Abbreviated to (n, k, λ) design when t = 2.

イロト イポト イヨト イヨト

What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972 (k = 5)) For $\lambda = 1, t = 2$, and $k \in \{3, 4, 5\}$, an (n, k, 1) design exists \Leftrightarrow $n(n-1) \equiv 0 \pmod{k(k-1)}$ and $n-1 \equiv 0 \pmod{k-1}$.

What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972 (k = 5)) For $\lambda = 1, t = 2$, and $k \in \{3, 4, 5\}$, an (n, k, 1) design exists \Leftrightarrow $n(n-1) \equiv 0 \pmod{k(k-1)}$ and $n-1 \equiv 0 \pmod{k-1}$.

For $\lambda = 1$, t = 2 and k = 6, no (36, 6, 1) design (Tarry, 1901).

イロト イポト イラト イラト 一日

What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972 (k = 5))

For $\lambda = 1, t = 2$, and $k \in \{3, 4, 5\}$, an (n, k, 1) design exists \Leftrightarrow $n(n-1) \equiv 0 \pmod{k(k-1)}$ and $n-1 \equiv 0 \pmod{k-1}$.

For $\lambda = 1$, t = 2 and k = 6, no (36, 6, 1) design (Tarry, 1901).

36 officers problem (Euler, 1782): possible to arrange 6 regiments consisting of 6 officers each of different rank in a 6×6 square so that no rank or regiment will be repeated in any row or column.

イロト イポト イラト イラト 一日

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

All designs exist . . . eventually

Theorem (Wilson, 1973 (t=2) and Keevash, 2014 (all t))

For all k, λ, t , there exists n_0 such that for all $n \ge n_0$ satisfying the necessary conditions, there exists a $t - (n, k, \lambda)$ design.

イロト 不得 とくき とくき とうき

All designs exist . . . eventually

Theorem (Wilson, 1973 (t=2) and Keevash, 2014 (all t))

For all k, λ, t , there exists n_0 such that for all $n \ge n_0$ satisfying the necessary conditions, there exists a $t - (n, k, \lambda)$ design.

• For
$$k = 6, \lambda = 1, t = 2, n_0 \le 801$$
.

イロト 不得 とくき とくき とうき

All designs exist ... eventually

Theorem (Wilson, 1973 (t=2) and Keevash, 2014 (all t))

For all k, λ, t , there exists n_0 such that for all $n \ge n_0$ satisfying the necessary conditions, there exists a $t - (n, k, \lambda)$ design.

• For
$$k = 6, \lambda = 1, t = 2, n_0 \le 801$$
.

• If $n \in \{16, 21, 36, 46\}$ then there is no (n, 6, 1) design.

イロト 不得 とくき とくき とうき

All designs exist ... eventually

Theorem (Wilson, 1973 (t=2) and Keevash, 2014 (all t))

For all k, λ, t , there exists n_0 such that for all $n \ge n_0$ satisfying the necessary conditions, there exists a $t - (n, k, \lambda)$ design.

- For $k = 6, \lambda = 1, t = 2, n_0 \le 801$.
- If $n \in \{16, 21, 36, 46\}$ then there is no (n, 6, 1) design.
- For 21 values of n we don't know if an (n, 6, 1) design exists.

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

One of the few other cases fully solved

Theorem (Hanani, 1960)

A 3 –
$$(n, 4, 1)$$
 design exists $\Leftrightarrow n \equiv 2 \text{ or } 4 \pmod{6}$.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

<ロ> (日) (日) (日) (日) (日)

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane ((4,2,1) design)

Definition

System of points and lines s.t.

- Two distinct points belong to exactly one line.
- Let p be a point and l a line not containing p.
 Exactly one line parallel to l intersects p.

イロン イヨン イヨン イヨン

J6/124

• There exist at least 3 points that are not collinear.

Affine planes and $(q^2, q, 1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

イロト イポト イヨト イヨト

107/124

Affine planes and $(q^2, q, 1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

• All lines contain q points.

イロト イポト イヨト イヨト

107/124

Affine planes and $(q^2, q, 1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

- All lines contain q points.
- All points belong to q + 1 lines.

イロト イポト イヨト イヨト

Affine planes and $(q^2,q,1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

- All lines contain q points.
- All points belong to q + 1 lines.
- There are q^2 points and $q^2 + q$ lines.

イロト イポト イヨト イヨト

Affine planes and $(q^2, q, 1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

- All lines contain q points.
- All points belong to q + 1 lines.
- There are q^2 points and $q^2 + q$ lines.
- There are q + 1 sets of q parallel lines with each line in each set passing through all the points in the plane.

イロト イポト イヨト イヨト

Affine planes and $(q^2, q, 1)$ resolvable designs

If in a finite affine plane, a line contains q points, then:

- All lines contain q points.
- All points belong to q + 1 lines.
- There are q^2 points and $q^2 + q$ lines.
- There are q + 1 sets of q parallel lines with each line in each set passing through all the points in the plane.

An affine plane is equivalent to a $(q^2, q, 1)$ resolvable design.

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((4,2,1) design to (7,3,1) design)

イロト イヨト イヨト イヨト

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((4,2,1) design to (7,3,1) design)

イロト イヨト イヨト イヨト

109/124

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((4,2,1) design to (7,3,1) design)

イロト イヨト イヨト イヨト

110/124

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((4,2,1) design to (7,3,1) design)

・ロト ・回ト ・ヨト ・ヨト

111/124

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((4,2,1) design to (7,3,1) design)

Fano Plane

← □ → ← 금 → ← 돈 → ← 돈 → → 돈 → ♡ Q
Fionn Mc Inerney
JCALM 2017 Decomposition of Complete Graphs

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((9,3,1) design to (13,4,1) design)

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((9,3,1) design to (13,4,1) design)

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((9,3,1) design to (13,4,1) design)

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane ((9,3,1) design to (13,4,1) design)

Projective plane

Definition

System of points and lines s.t.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

(ロ) (同) (E) (E) (E)

Projective plane

Definition

System of points and lines s.t.

• Two distinct points belong to exactly one line.

イロト イヨト イヨト イヨト

117/124

Projective plane

Definition

System of points and lines s.t.

- Two distinct points belong to exactly one line.
- Two lines intersect in exactly one point.

<ロ> (日) (日) (日) (日) (日)
Projective plane

Definition

System of points and lines s.t.

- Two distinct points belong to exactly one line.
- Two lines intersect in exactly one point.
- There exist 4 points such that any 3 of them are not aligned.

イロト イポト イヨト イヨト

117/124

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs

A projective plane is of order q if each line contains q + 1 points. It has the following properties:

イロト イポト イヨト イヨト

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs

A projective plane is of order q if each line contains q + 1 points. It has the following properties:

• All lines contain q + 1 points.

소리가 소문가 소문가 소문가

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs

A projective plane is of order q if each line contains q + 1 points. It has the following properties:

- All lines contain q + 1 points.
- All points belong to q + 1 lines.

소리가 소문가 소문가 소문가

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs

A projective plane is of order q if each line contains q + 1 points. It has the following properties:

- All lines contain q + 1 points.
- All points belong to q + 1 lines.
- There are $q^2 + q + 1$ points and $q^2 + q + 1$ lines.

소리가 소문가 소문가 소문가

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs

A projective plane is of order q if each line contains q + 1 points. It has the following properties:

- All lines contain q + 1 points.
- All points belong to q + 1 lines.
- There are $q^2 + q + 1$ points and $q^2 + q + 1$ lines.

A projective plane of order q is equivalent to a $(q^2 + q + 1, q + 1, 1)$ design.

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one vertex class consists of the points of P and the other the lines of P has the following properties:

イロト イポト イヨト イヨト

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one vertex class consists of the points of P and the other the lines of P has the following properties:

• Bipartite.

イロト イポト イヨト イヨト

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one vertex class consists of the points of P and the other the lines of P has the following properties:

- Bipartite.
- High regular degree: q + 1.

イロト イポト イヨト イヨト

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one vertex class consists of the points of P and the other the lines of P has the following properties:

- Bipartite.
- High regular degree: q + 1.
- High girth: 6.

イロト イポト イヨト イヨト

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs theorem

Theorem

If q is a prime power, then K_{q^2+q+1} decomposes into K_{q+1} .

イロト イポト イヨト イヨト 一日

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs theorem

Theorem

If q is a prime power, then K_{q^2+q+1} decomposes into K_{q+1} .

All the same problem:

•
$$K_{q^2+q+1}$$
 decomposes into K_{q+1} ?

イロト イポト イヨト イヨト

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs theorem

Theorem

If q is a prime power, then K_{q^2+q+1} decomposes into K_{q+1} .

All the same problem:

- K_{q^2+q+1} decomposes into K_{q+1} ?
- A $(q^2 + q + 1, q + 1, 1)$ design exists?

イロト イポト イヨト イヨト

Projective planes and $(q^2 + q + 1, q + 1, 1)$ designs theorem

Theorem

If q is a prime power, then K_{q^2+q+1} decomposes into K_{q+1} .

All the same problem:

- K_{q^2+q+1} decomposes into K_{q+1} ?
- A $(q^2 + q + 1, q + 1, 1)$ design exists?
- A projective plane of order q exists?

イロト イポト イヨト イヨト

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Non-existence of some designs

Theorem (Bruck-Ryser, 1949)

If q is not a prime power, q is not the sum of two squares, and $q \equiv 1$ or 2 (mod 4), then there does not exist a $(q^2, q, 1)$ design.

イロト イポト イヨト イヨト

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order q = 10 exists.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

イロン イヨン イヨン イヨン

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order q = 10 exists.

Proven by heavy computer calculations.

イロト イポト イヨト イヨト

Introduction to Designs: Definitions and Examples Steiner Triple Systems: Definition and Existence Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order q = 10 exists.

Proven by heavy computer calculations.

q = 12 is the first case where we don't know if it exists.

イロン イヨン イヨン イヨン

Conclusion

• We know about the existence of designs for large values of *n* thanks to Wilson and Keevash.

イロト イヨト イヨト イヨト

123/124

Conclusion

- We know about the existence of designs for large values of *n* thanks to Wilson and Keevash.
- Still many values of *n* below the threshold of *n*₀ where we don't know if the designs exist.

イロト イポト イヨト イヨト

123/124

Conclusion

- We know about the existence of designs for large values of *n* thanks to Wilson and Keevash.
- Still many values of *n* below the threshold of *n*₀ where we don't know if the designs exist.
- While we may know a lot of designs exist, we don't know how to construct many of them.

イロト イポト イヨト イヨト

123/124

Thank you!

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs

・ロト ・回ト ・ヨト ・ヨト

124/124