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K4 and K5 don’t decompose into K3

K4 doesn’t decompose into K3:
for all v ∈ V (K4) and u ∈ V (K3), deg(v) = 3 and
deg(u) = 2 but 2 - 3.

K5 doesn’t decompose into K3:
|E (K5)| = 10 and |E (K3)| = 3 but 3 - 10.

Main question: when do designs exist?
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Definition

A t − (n, k, λ) design is a set of subsets of size k (blocks) of a set
V of n vertices such that all subsets of size t belong to exactly λ
blocks.

Abbreviated to (n, k , λ) design when t = 2.
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2-designs (t = 2) with λ = 1: Decompose Kn into Kk

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V
of n vertices such that any pair of elements belongs to exactly 1
block.

Definition

An (n, k , 1) design is a decomposition of Kn (edge partition) into
Kk .

Each block of size k : Kk .

Any pair (t = 2) of elements in exactly one (λ = 1) block:
each edge of Kn in exactly one Kk .
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(4,2,1) design: Decompose K4 into K2
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Bi = {{i , i + 2, i + 3} | i ∈ [7]} (indices (mod 7)).
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(13,3,1) design: Decompose K13 into K3

Decomposition obtained by rotation of two K3.
Bi = {{i , i + 2, i + 7} | i ∈ [13]} (indices (mod 13)).
Bj = {{j , j + 1, j + 4} | j ∈ [13]} (indices (mod 13)).
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(13,4,1) design: Decompose K13 into K4

Decomposition obtained by rotation of K4.
Bi = {{i , i + 4, i + 5, i + 7} | i ∈ [13]} (indices (mod 13)).
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(9,3,1) design: Decompose K9 into K3

1 2 3

4 5 6

7 8 9
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Blue blocks partition vertices.
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Resolvable designs

Definition

A design is resolvable if the blocks (Kk) can be grouped into sets
that partition the vertices.
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Resolvable (4,2,1) design:
Resolvable decomposition of K4 into K2
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Definition

A design is resolvable if the
blocks (Kk) can be grouped into
sets that partition the vertices.

For n even, Kn decomposes into n − 1 perfect matchings.
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Kirkman’s Schoolgirl Problem:
Resolvable decomposition of K15 into K3

Kirkman’s Schoolgirl Problem
(Reverend Kirkman, 1850)

15 young ladies in a school walk out 3
abreast for 7 days in succession. Is it
possible to arrange them daily, so that no
2 walk twice abreast?

Seeked actual solution for resolvable
(15,3,1) design.

Same can be applied to Coati team.

21 3

54 6

87 9

1110 12

1413 15
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Coati Schoolgirl Problem - Day 1

Jeanne-ClaudiaMichelle Christine

Frédérica V.Nicole N. Patricia

AndreaFiona Stéphanie

Nicole H.Juliana Joanna

Frédérica G.Christelle Valentina
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Coati Schoolgirl Problem - Day 2
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Coati Schoolgirl Problem - Day 3
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Coati Schoolgirl Problem - Day 4

Jeanne-ClaudiaChristelle Nicole H.
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Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



47/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Coati Schoolgirl Problem - Day 4

Jeanne-ClaudiaChristelle Nicole H.
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JoannaStéphanie Nicole N.

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



49/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Coati Schoolgirl Problem - Day 5

ChristelleFiona Christine

Jeanne-ClaudiaJuliana Patricia
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Frédérica G.Andrea Michelle
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StéphanieChristine Juliana

JoannaPatricia Christelle

Nicole N.Valentina Andrea

FionaMichelle Nicole H.
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Necessary condition (1) for an (n, k , 1) design:
Decomposition of Kn into Kk

Lemma

If an (n, k , 1) design exists, then n(n − 1) ≡ 0 (mod k(k − 1)).

Proof.

|E (Kn)| = n(n−1)
2 must be a multiple of |E (Kk)| = k(k−1)

2 .

Necessary Condition (1)

n(n − 1) ≡ 0 (mod k(k − 1)).

K5 doesn’t decompose into K3.
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Necessary condition (2) for an (n, k , 1) design:
Decomposition of Kn into Kk

Lemma

If an (n, k , 1) design exists, then n − 1 ≡ 0 (mod k − 1).

Proof.

For all v ∈ V (Kn) and u ∈ V (Kk), deg(v) = n − 1 must be a
multiple of deg(u) = k − 1.

Necessary condition (2)

n − 1 ≡ 0 (mod k − 1).

K4 doesn’t decompose into K3.
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Necessary Conditions are Sufficient in General

Necessary Condition (1)

n(n − 1) ≡ 0 (mod k(k − 1)).

Necessary condition (2)

n − 1 ≡ 0 (mod k − 1).

In general, for n large enough, these 2 conditions are sufficient.
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Steiner Triple Systems: Decomposition of Kn into K3

Definition

A Steiner Triple System is an (n, 3, 1) design.

Steiner asked the question if they exist in 1853, without
knowing Kirkman had already proved their existence in 1847.
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Necessary conditions for Steiner Triple Systems:
Decomposition of Kn into K3

Lemma

If an (n, 3, 1) design exists, then n ≡ 1 or 3 (mod 6).

Proof.

NC(2) ⇒ n − 1 ≡ 0 (mod 2) ⇒ n odd ⇒ n ≡ 1, 3 or 5
(mod 6).

NC(1) ⇒ n(n− 1) ≡ 0 (mod 6) ⇒ n ≡ 1 or 3 (mod 6) since

if n = 6k + 5, then n(n−1)
6 = 6k+5(6k+4)

6 = 18k2+27k+10
3 /∈ Z.
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Necessary Conditions are Sufficient for Steiner Triple
Systems: Decomposition of Kn into K3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists ⇔ n ≡ 1 or 3 (mod 6).

i.e. Kn can be decomposed into K3 ⇔ n ≡ 1 or 3 (mod 6).
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Lemma 1: K2m+1 dec. K3 ⇔ Km∗2 dec. K3

Lemma 1

K2m+1 can be decomposed into K3 ⇔
K2,··· ,2 = Km∗2 can be decomposed into K3.
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Proof of Lemma 1: K2m+1 dec. K3 ⇔ Km∗2 dec. K3

Proof.

Let V (K2m+1) = {v1, · · · , v2m+1}, D be a decomposition of
K2m+1 into K3, and A be the set of all blocks containing
v2m+1.

|A| = m so w.l.o.g. suppose A = {vi , vi+m, v2m+1 | i ∈ [m]}.
Then, D \ A is a decomposition of H into K3 where H is the
graph K2m with the edges vivi+m, i ∈ [m] removed. H is
isomorphic to Km∗2.

In the other direction, if D ′ is a decomposition of H into K3,
then D ′ ∪ A is a decomposition of K2m+1 into K3.
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Theorem 1: K3∗q dec. K3

Theorem 1

Kq,q,q = K3∗q can be decomposed into K3.
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Theorem 1: K3∗q dec. K3

Theorem 1

Kq,q,q = K3∗q can be decomposed into K3.

Example q = 2:
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Proof of Theorem 1: K3∗q dec. K3

Proof.

Let (A,B,C ) be the tripartition of K3∗q with A = {ai | i ∈ [q]}
and B and C defined analogously. {{ai , bj , ci+j} | i ∈ [q], j ∈ [q]}
(indices (mod q)) is a decomposition of K3∗q into K3.
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Theorem 2: ∀q ≥ 3, q 6= 6, K4∗q dec. K4

Theorem 2

For all q ≥ 3, q 6= 6, Kq,q,q,q = K4∗q can be decomposed into K4.

Proof for q odd.
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Proof of Theorem 2: ∀q ≥ 3, q 6= 6, K4∗q dec. K4

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

q q q q

ai
bj

ci+j

ci−j

Proof. (q odd)

(i , j) and (i ′, j ′) don’t exist such that i + j = i ′ + j ′ (mod q) and
i − j = i ′ − j ′ (mod q). Such a pair exists ⇒ 2i = 2i ′ (mod q)
and 2j = 2j ′ (mod q) ⇒ i = i ′ and j = j ′ since q is odd.

Doesn’t work when q is even: (i , j) and (i + q
2 , j + q

2 ).
(0, 0, 0, 0) and (q2 ,

q
2 , 0, 0).
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Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec. K3,K4,K6

Theorem 3

If r ≡ 0 or 1 (mod 3), then Kr can be decomposed into a
combination of K3,K4, and K6.

Proof.

We prove by induction. The result is trivially true for r = 3, 4, 6
and r = 7 we already saw. Suppose r = 9m + j with m ∈ Z+ and
j ∈ {0, 1, 3, 4, 6, 7}.
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Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec. K3,K4,K6

Example: r = 9.
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K9 = 3K3 ∪ K3,3,3
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1

K3 K3 K3

Base Case: K3 dec. K3,K4,K6.

1

1

1

1

1

1

1

1

1

K3,3,3

Thm 1: K3∗q dec. K3.
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r = 9m + j for m ∈ Z+ and j ∈ {0, 1, 3, 4, 6, 7}.
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Thm 1: K3∗q dec. K3.
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Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec. K3,K4,K6

Example: r = 10.
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Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec. K3,K4,K6

r = 9m + j for m ∈ Z+ and j ∈ {0, 1, 3, 4, 6, 7}. h ∈ {1, 3, 4}.
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Thm 2: K4∗q dec. K4.
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Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec. K3,K4,K6

r = 9m + j for m ∈ Z+ and j ∈ {0, 1, 3, 4, 6, 7}. h ∈ {1, 3, 4}.
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K3m+1,3m+1,3m+1,h dec. K3,K4

(omit extra vertices of K4∗q dec. K4).
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Proof of Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec.
K3,K4, and K6

Proof.

Suppose r = 9m. Partition V (K9m) into three sets A1,A2,A3

of size 3m.

Decompose K9m into 3 K3m induced by A1,A2,A3 and a
K3∗3m with tripartition (A1,A2,A3).

By I.H., each K3m decomposes into a combo of K3,K4,K6.

K3∗3m decomposes into K3 by Thm 1.

Suppose r = 9m + 3. Partition V (K9m+3) into three sets of
size 3m + 1.
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K3∗3m decomposes into K3 by Thm 1.
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size 3m + 1.
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Proof of Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec.
K3,K4, and K6

Proof.

Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition
V (K9m+3+h) into three sets of size 3m + 1 and a set of h
vertices (h ∈ {1, 3, 4}).

Decompose K9m+3+h into 3 K3m+1 induced by A1,A2,A3, a
K3m+1,3m+1,3m+1,h, and a K3 or K4 if h = 3 or h = 4 resp.

By I.H., each K3m+1 decomposes into a combo of K3,K4,K6.

K4∗3m+1 decomposes into K4 by Thm 2. This decomp.
transforms into a decomp. of K3m+1,3m+1,3m+1,h into a
combo of K3 and K4 by omitting the extra vertices (some K4

become K3).

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



98/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Proof of Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec.
K3,K4, and K6

Proof.

Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition
V (K9m+3+h) into three sets of size 3m + 1 and a set of h
vertices (h ∈ {1, 3, 4}).

Decompose K9m+3+h into 3 K3m+1 induced by A1,A2,A3, a
K3m+1,3m+1,3m+1,h, and a K3 or K4 if h = 3 or h = 4 resp.

By I.H., each K3m+1 decomposes into a combo of K3,K4,K6.

K4∗3m+1 decomposes into K4 by Thm 2. This decomp.
transforms into a decomp. of K3m+1,3m+1,3m+1,h into a
combo of K3 and K4 by omitting the extra vertices (some K4

become K3).

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



98/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Proof of Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec.
K3,K4, and K6

Proof.

Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition
V (K9m+3+h) into three sets of size 3m + 1 and a set of h
vertices (h ∈ {1, 3, 4}).

Decompose K9m+3+h into 3 K3m+1 induced by A1,A2,A3, a
K3m+1,3m+1,3m+1,h, and a K3 or K4 if h = 3 or h = 4 resp.

By I.H., each K3m+1 decomposes into a combo of K3,K4,K6.

K4∗3m+1 decomposes into K4 by Thm 2. This decomp.
transforms into a decomp. of K3m+1,3m+1,3m+1,h into a
combo of K3 and K4 by omitting the extra vertices (some K4

become K3).

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



98/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Proof of Theorem 3: For r ≡ 0 or 1 (mod 3), Kr dec.
K3,K4, and K6

Proof.

Suppose r = 9m + 4, 9m + 6 or 9m + 7. Partition
V (K9m+3+h) into three sets of size 3m + 1 and a set of h
vertices (h ∈ {1, 3, 4}).

Decompose K9m+3+h into 3 K3m+1 induced by A1,A2,A3, a
K3m+1,3m+1,3m+1,h, and a K3 or K4 if h = 3 or h = 4 resp.

By I.H., each K3m+1 decomposes into a combo of K3,K4,K6.

K4∗3m+1 decomposes into K4 by Thm 2. This decomp.
transforms into a decomp. of K3m+1,3m+1,3m+1,h into a
combo of K3 and K4 by omitting the extra vertices (some K4

become K3).

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



99/124

Outline
Introduction to Designs: Definitions and Examples

Steiner Triple Systems: Definition and Existence
Other t-designs, Affine and Projective planes, and Conclusion

Necessary conditions are Sufficient for Steiner Triple
Systems: Decomposition of Kn into K3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists ⇔ n ≡ 1 or 3 (mod 6).

i.e. Kn can be decomposed into K3 ⇔ n ≡ 1 or 3 (mod 6).
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Necessary conditions are Sufficient for Steiner Triple
Systems: Decomposition of Kn into K3

Theorem (Kirkman, 1847)

An (n, 3, 1) design exists ⇔ n ≡ 1 or 3 (mod 6).

Let r = n−1
2 . Then, r ≡ 0 or 1 (mod 3).

1 1 1

Kr

Thm 3: Kr dec. K3,K4,K6.

→
1 1 1
1 1 1

Kr∗2
Kr∗2 dec. K3∗2,K4∗2,K6∗2.

Lemma 1: K2m+1 dec. K3 ⇔ Km∗2 dec. K3.
By Lemma 1: K7,K9,K13 dec. K3 ⇒ K3∗2,K4∗2,K6∗2 dec. K3 ⇒
Kr∗2 dec. K3.
K2r+1 = Kn dec. K3 by Lemma 1.
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Proof for Steiner Triple Systems:
Kn dec. K3 ⇔ n ≡ 1 or 3 (mod 6)

Proof.

Suppose r = n−1
2 . Then, r ≡ 0 or 1 (mod 3).

By Thm 3, there’s a decomposition D of Kr into a combo of
K3,K4,K6. Replace each vertex of Kr by an independent set
of 2 vertices to obtain Kr∗2.

For i ∈ {3, 4, 6}, each Ki in D corresponds to a Ki∗2 in Kr∗2.

Already showed K7,K9 and K13 could be decomposed into K3

and so by Lemma 1, K3∗2,K4∗2, and K6∗2 can too. Hence,
Kr∗2 can be decomposed into K3.

K2r+1 = Kn can be decomposed into K3 by Lemma 1.
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Recall t-designs

Definition

A t − (n, k, λ) design is a set of subsets of size k (blocks) of a set
V of n vertices such that all subsets of size t belong to exactly λ
blocks.

Abbreviated to (n, k , λ) design when t = 2.
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What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972
(k = 5))

For λ = 1, t = 2, and k ∈ {3, 4, 5}, an (n, k , 1) design exists ⇔
n(n − 1) ≡ 0 (mod k(k − 1)) and n − 1 ≡ 0 (mod k − 1).

For λ = 1, t = 2 and k = 6, no (36, 6, 1) design (Tarry, 1901).

36 officers problem (Euler, 1782): possible to arrange 6 regiments
consisting of 6 officers each of different rank in a 6× 6 square so
that no rank or regiment will be repeated in any row or column.
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All designs exist . . . eventually

Theorem (Wilson, 1973 (t = 2) and Keevash, 2014 (all t))

For all k , λ, t, there exists n0 such that for all n ≥ n0 satisfying the
necessary conditions, there exists a t − (n, k , λ) design.

For k = 6, λ = 1, t = 2, n0 ≤ 801.

If n ∈ {16, 21, 36, 46} then there is no (n, 6, 1) design.

For 21 values of n we don’t know if an (n, 6, 1) design exists.
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All designs exist . . . eventually
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One of the few other cases fully solved

Theorem (Hanani, 1960)

A 3− (n, 4, 1) design exists ⇔ n ≡ 2 or 4 (mod 6).
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Affine plane ((4,2,1) design)

1 1

1

1

Definition

System of points and lines s.t.

Two distinct points belong
to exactly one line.

Let p be a point and l a
line not containing p.
Exactly one line parallel to
l intersects p.

There exist at least 3
points that are not
collinear.
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Affine planes and (q2, q, 1) resolvable designs

If in a finite affine plane, a line contains q points, then:

All lines contain q points.

All points belong to q + 1 lines.

There are q2 points and q2 + q lines.

There are q + 1 sets of q parallel lines with each line in each
set passing through all the points in the plane.

An affine plane is equivalent to a (q2, q, 1) resolvable design.
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Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)

1 1

1

1
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Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)

1 1

1

1

1∞g
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Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)

1 1

1

1

1

1 1

∞r

∞g ∞b

Fano Plane
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Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)
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Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)
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∞b

∞r
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Projective plane

Definition

System of points and lines s.t.

Two distinct points belong to exactly one line.

Two lines intersect in exactly one point.

There exist 4 points such that any 3 of them are not aligned.
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Projective planes and (q2 + q + 1, q + 1, 1) designs

A projective plane is of order q if each line contains q + 1 points.
It has the following properties:

All lines contain q + 1 points.

All points belong to q + 1 lines.

There are q2 + q + 1 points and q2 + q + 1 lines.

A projective plane of order q is equivalent to a
(q2 + q + 1, q + 1, 1) design.
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Properties of Graphs obtained from Projective planes

The bipartite graph G (P) for a given projective plane P where one
vertex class consists of the points of P and the other the lines of P
has the following properties:

Bipartite.

High regular degree: q + 1.

High girth: 6.
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Projective planes and (q2 + q + 1, q + 1, 1) designs theorem

Theorem

If q is a prime power, then Kq2+q+1 decomposes into Kq+1.

All the same problem:

Kq2+q+1 decomposes into Kq+1?

A (q2 + q + 1, q + 1, 1) design exists?

A projective plane of order q exists?
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Non-existence of some designs

Theorem (Bruck-Ryser, 1949)

If q is not a prime power, q is not the sum of two squares, and
q ≡ 1 or 2 (mod 4), then there does not exist a (q2, q, 1) design.
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Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order q = 10 exists.

Proven by heavy computer calculations.

q = 12 is the first case where we don’t know if it exists.
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Conclusion

We know about the existence of designs for large values of n
thanks to Wilson and Keevash.

Still many values of n below the threshold of n0 where we
don’t know if the designs exist.

While we may know a lot of designs exist, we don’t know how
to construct many of them.
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Thank you!
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