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Introduction to Designs: Definitions and Examples

(7,3,1) design: Decompose K7 into Kj

Decomposition: Partition of edges.
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Introduction to Designs: Definitions and Examples

K4 and Ks don't decompose into K3

@ K, doesn’'t decompose into K3:
for all v e V(Ky) and u € V(K3), deg(v) =3 and
deg(u) =2 but 21 3.
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Introduction to Designs: Definitions and Examples

K4 and Ks don't decompose into K3

@ K, doesn’'t decompose into K3:
for all v e V(Ky) and u € V(K3), deg(v) =3 and
deg(u) =2 but 21 3.

@ Ky doesn’t decompose into Kj:
|E(Ks)| = 10 and |E(K3)| = 3 but 31 10.

@ Main question: when do designs exist?
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Introduction to Designs: Definitions and Examples

t-designs

Definition
At —(n, k,\) design is a set of subsets of size k (blocks) of a set

V of n vertices such that all subsets of size t belong to exactly A
blocks.
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Introduction to Designs: Definitions and Examples

t-designs

Definition
At —(n, k,\) design is a set of subsets of size k (blocks) of a set

V of n vertices such that all subsets of size t belong to exactly A
blocks.

@ Abbreviated to (n, k, \) design when t = 2.
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Introduction to Designs: Definitions and Examples

2-designs (t = 2) with A = 1: Decompose K, into Kj

Definition
An (n, k, 1) design is a set of subsets of size k (blocks) of a set V
of n vertices such that any pair of elements belongs to exactly 1

block.

14/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Introduction to Designs: Definitions and Examples

2-designs (t = 2) with A = 1: Decompose K, into Kj

Definition

An (n, k, 1) design is a set of subsets of size k (blocks) of a set V
of n vertices such that any pair of elements belongs to exactly 1
block.

Definition

An (n, k,1) design is a decomposition of K, (edge partition) into
Kk.

14/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Introduction to Designs: Definitions and Examples

2-designs (t = 2) with A = 1: Decompose K, into Kj

Definition
An (n, k, 1) design is a set of subsets of size k (blocks) of a set V

of n vertices such that any pair of elements belongs to exactly 1
block.

Definition

An (n, k,1) design is a decomposition of K, (edge partition) into
Kk.

@ Each block of size k: K.

14/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Introduction to Designs: Definitions and Examples

2-designs (t = 2) with A = 1: Decompose K, into Kj

Definition
An (n, k, 1) design is a set of subsets of size k (blocks) of a set V

of n vertices such that any pair of elements belongs to exactly 1
block.

Definition

An (n, k,1) design is a decomposition of K, (edge partition) into
Kk.

@ Each block of size k: K.

@ Any pair (t = 2) of elements in exactly one (A = 1) block:

each edge of K, in exactly one K.
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Introduction to Designs: Definitions and Examples

(4,2,1) design: Decompose Ky into K

(n,2,1) designs (k = 2) trivially exist (decomposing K, into K3).  15/124
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Introduction to Designs: Definitions and Examples

(7,3,1) design: Decompose K7 into Kj

Decomposition obtained by rotation of Kj.
Bi={{i.i+2.i+3}|ie[7]} (indices (mod 7)).
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Introduction to Designs: Definitions and Examples
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Decomposition obtained by rotation of Kj.
Bi={{i.i+2.i+3}|ie[7]} (indices (mod 7)).
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Decomposition obtained by rotation of Kj.
Bi={{i.i+2.i+3}|ie[7]} (indices (mod 7)).
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Introduction to Designs: Definitions and Examples

(13,3,1) design: Decompose Kis into K3

e RV Y R ENHESN
2 7 i

Decomposition obtained by rotation of two K3.
Bi ={{i,i+2,i+7}|ie[13]} (indices (mod 13)).
Bi={{j,j+1,j+4}]|je€[13]} (indices (mod 13)).
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Introduction to Designs: Definitions and Examples

(13,4,1) design: Decompose Kis into K;
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Decomposition obtained by rotation of Kj.
Bi={{i.i+4,i+5,i+7}]|ie[13]} (indices (mod 13)).
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Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3
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Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3

Blue blocks partition vertices. 27/124
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Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3

Red blocks partition vertices. 28/124
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Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3

Green blocks partition vertices. 20/124
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Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3

Gray blocks partition vertices. 30/124
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(9,3,1) design: Decompose Ky into Kj3




Introduction to Designs: Definitions and Examples

(9,3,1) design: Decompose Ky into Kj3
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Introduction to Designs: Definitions and Examples

Resolvable designs

A design is resolvable if the blocks (Kg) can be grouped into sets
that partition the vertices.
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Introduction to Designs: Definitions and Examples

Resolvable (4,2,1) design:

Resolvable decomposition of Kj into K,

Definition

A design is resolvable if the
blocks (Kk) can be grouped into
sets that partition the vertices.

For n even, K,, decomposes into n — 1 perfect matchings.
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Resolvable (4,2,1) design:

Resolvable decomposition of Kj into K,

Definition

A design is resolvable if the
blocks (Kk) can be grouped into
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Introduction to Designs: Definitions and Examples

Kirkman's Schoolgirl Problem:
Resolvable decomposition of Kis into K3

Kirkman's Schoolgirl Problem

(Reverend Kirkman, 1850)

15 young ladies in a school walk out 3
abreast for 7 days in succession. Is it
possible to arrange them daily, so that no
2 walk twice abreast?

s3pe ~ e = e - Pe
Z e @ Jpe o e e
B Do o e o Pe « e

=
w
=
i
=
o

38/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Introduction to Designs: Definitions and Examples

Kirkman's Schoolgirl Problem:
Resolvable decomposition of Kis into K3

Kirkman's Schoolgirl Problem

(Reverend Kirkman, 1850)

15 young ladies in a school walk out 3
abreast for 7 days in succession. Is it
possible to arrange them daily, so that no
2 walk twice abreast?

@ Seeked actual solution for resolvable
(15,3,1) design.
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Z e @ Jpe o e e
B Do o e o Pe « e

=
w
-
i
=
o

38/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Introduction to Designs: Definitions and Examples

Kirkman's Schoolgirl Problem:
Resolvable decomposition of Kis into K3

Kirkman's Schoolgirl Problem

(Reverend Kirkman, 1850)

15 young ladies in a school walk out 3
abreast for 7 days in succession. Is it
possible to arrange them daily, so that no
2 walk twice abreast?

@ Seeked actual solution for resolvable
(15,3,1) design.

@ Same can be applied to Coati team. 1

s3pe ~ e = e - Pe
Z e @ Jpe o e e
B Do o e o Pe « e

w
-
i
=
o
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 1

d & 4

Michelle Jeanne-Claudia Christine

8 & 4

Nicole N.  Frédérica V. Patricia

4 & 4

Fiona Andrea Stéphanie
Juliana Nicole H. Joanna
Christelle  Frédérica G.  Valentina 39/124
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 2

d & 4

Michelle Nicole N. Christelle

& 4

Fiona Juliana Frédérica V.
# ) 4
Andrea Nicole H. Patricia
) ) )
Frédérica G.  Christine Joanna
4 )
Stép?anie Valentina Jeanne-Claudia 42/124
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 3

' S T

Nicole N. Fiona  Jeanne-Claudia
Juliana Christelle Andrea

4 4 4

Nicole H.  Frédérica G.  Stéphanie

8 % 4

Christine Patricia Valentina
Joanna Michelle Frédérica V. 44/124
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 4

d & 4

Christelle Jeanne-Claudia Nicole H.

& & 4

Frédérica V. Andrea Christine

8 & &

Patricia Stéphanie Michelle

8 % 4

Joanna Valentina Fiona
Nicole N. Juliana Frédérica G. 46/124
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 4

d & 4

Christelle Jeanne-Claudia Nicole H.

& & 4

Frédérica V. Andrea Christine

8 & 4

Patricia Stéphanie Michelle

8 % 4

Joanna Valentina Fiona
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 5

. S T

Fiona Christelle Christine

& & 4

Juliana  Jeanne-Claudia Patricia

& & 4

Frédérica V.  Nicole H. Valentina

8 & 4

Andrea Frédérica G. Michelle

2 & @

Stéphanie Joanna Nicole N. 48/124
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. S T

Fiona Christelle Christine

& & 4
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 6

L

Christelle  Frédérica V.  Stéphanie

4 4

Jeanne-Claudia  Andrea Joanna

4

Nicole H. Christine Nicole N.

4 4

Do S e £ Pe S He

Frédérica G. Patricia Fiona
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L S
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4
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 7

. S S

Christine ~ Stéphanie Juliana
L) ) )
Patricia Joanna Christelle
) 4
Valentina Nicole N. Andrea
) ) )
Michelle Fiona Nicole H.
) ) 4
Jeanne-Claudia Frédérica V. Frédérica G. 52/124
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Introduction to Designs: Definitions and Examples

Coati Schoolgirl Problem - Day 7

8 & 4

Christine  Stéphanie Juliana
L) ) )
Patricia Joanna Christelle
) 4
Valentina Nicole N. Andrea
) ) )
Michelle Fiona Nicole H.
) ) 4
Jeanne-Claudia Frédérica V. Frédérica G. 53/124
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Introduction to Designs: Definitions and Examples

Necessary condition (1) for an (n, k, 1) design:
Decomposition of K, into K

Lemma

If an (n, k, 1) design exists, then n(n —1) =0 (mod k(k — 1)).
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Introduction to Designs: Definitions and Examples

Necessary condition (1) for an (n, k, 1) design:
Decomposition of K, into K

Lemma

If an (n, k, 1) design exists, then n(n —1) =0 (mod k(k — 1)).

|E(K,)| = @ must be a multiple of |E(Kk)| = @ O

Necessary Condition (1)

n(n—1)=0 (mod k(k —1)).

Ks doesn’t decompose into K. 54/124
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Introduction to Designs: Definitions and Examples

Necessary condition (2) for an (n, k, 1) design:
Decomposition of K, into K

If an (n, k,1) design exists, then n—1 =0 (mod k — 1).
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Necessary condition (2) for an (n, k, 1) design:
Decomposition of K, into K

If an (n, k,1) design exists, then n—1 =0 (mod k — 1).

For all v € V(K,) and u € V(Ky), deg(v) = n—1 must be a
multiple of deg(u) = k — 1. O

Necessary condition (2)

n—1=0 (mod k —1).

K4 doesn’t decompose into Kj. 55/124
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Introduction to Designs: Definitions and Examples

Necessary Conditions are Sufficient in General

Necessary Condition (1)
n(n—1)=0 (mod k(k —1)).

Necessary condition (2)
n—1=0 (mod k —1).
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Introduction to Designs: Definitions and Examples

Necessary Conditions are Sufficient in General

Necessary Condition (1)
n(n—1)=0 (mod k(k —1)).

Necessary condition (2)
n—1=0 (mod k —1).

In general, for n large enough, these 2 conditions are sufficient.
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Steiner Triple Systems: Definition and Existence

Steiner Triple Systems: Decomposition of K, into K3

A Steiner Triple System is an (n,3,1) design.
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Steiner Triple Systems: Definition and Existence

Steiner Triple Systems: Decomposition of K, into K3

A Steiner Triple System is an (n,3,1) design.

@ Steiner asked the question if they exist in 1853, without
knowing Kirkman had already proved their existence in 1847.
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Steiner Triple Systems: Definition and Existence

Necessary conditions for Steiner Triple Systems:
Decomposition of K, into K3

If an (n,3,1) design exists, then n =1 or 3 (mod 6).
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Steiner Triple Systems: Definition and Existence

Necessary conditions for Steiner Triple Systems:
Decomposition of K, into K3

Lemma

If an (n,3,1) design exists, then n =1 or 3 (mod 6).

@ NC(2) = n—1=0 (mod2) = nodd=n=1,30r5
(mod 6).

Ol
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Steiner Triple Systems: Definition and Existence

Necessary conditions for Steiner Triple Systems:
Decomposition of K, into K3

Lemma

If an (n,3,1) design exists, then n =1 or 3 (mod 6).

@ NC(2) = n—1=0 (mod2) = nodd=n=1,30r5
(mod 6).

@ NC(1) = n(n—1)=0 (mod 6) = n=1 or 3 (mod 6) since
7 = Gl =B, e n(n6—1) _ 6k+5(66k+4) _ 18k2+§7k+10 ¢ 7.

Ol
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Steiner Triple Systems: Definition and Existence

Necessary Conditions are Sufficient for Steiner Triple
Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1 or 3 (mod 6).

i.e. K, can be decomposed into K3 < n=1or 3 (mod 6).
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>.... 2 = Kms2 can be decomposed into K3.
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>.... 2 = Kms2 can be decomposed into K3.
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>.... 2 = Kms2 can be decomposed into K3.

V4

2m s
() 61/124
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>,... 2 = Kms2 can be decomposed into K3.
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>.... 2 = Kms2 can be decomposed into K3.

V4

om

() 63/124
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Steiner Triple Systems: Definition and Existence

Lemma 1: Ky1 dec. K3 & Ko dec. K3

Kom+1 can be decomposed into K3 <
K>.... 2 = Kms2 can be decomposed into K3.
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Steiner Triple Systems: Definition and Existence

Proof of Lemma 1: K511 dec. K3 <& Ko dec. K3

o Let V(Kom+1) = {vi, -+ ,vomt+1}, D be a decomposition of
Kom+1 into K3, and A be the set of all blocks containing

Vom+1-

Ol
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Steiner Triple Systems: Definition and Existence

Proof of Lemma 1: K511 dec. K3 <& Ko dec. K3

o Let V(Kom+1) = {vi, -+ ,vomt+1}, D be a decomposition of
Kom+1 into K3, and A be the set of all blocks containing
Vom+1-

@ |Al = mso w.l.o.g. suppose A = {Vj, Vitm, Vomy1 | i € [m]}.
Then, D\ A is a decomposition of H into K3 where H is the
graph Ky, with the edges v;viim, i € [m] removed. H is
isomorphic to Kpo.

Ol
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Steiner Triple Systems: Definition and Existence

Proof of Lemma 1: K511 dec. K3 <& Ko dec. K3

o Let V(Kom+1) = {vi, -+ ,vomt+1}, D be a decomposition of
Kom+1 into K3, and A be the set of all blocks containing
Vom+1-

@ |Al = mso w.l.o.g. suppose A = {Vj, Vitm, Vomy1 | i € [m]}.
Then, D\ A is a decomposition of H into K3 where H is the
graph Ky, with the edges v;viim, i € [m] removed. H is
isomorphic to Kpo.

@ In the other direction, if D’ is a decomposition of H into K3,
then D' U A is a decomposition of Ky,41 into K.

Ol
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

Kg,q,9 = K3xg can be decomposed into K3.
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

Kg,q,9 = K3xg can be decomposed into K3.

q q q 66/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs




Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

The
Kg,q,9 = K3xg can be decomposed into K3.

Example g = 2:
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

Theorem 1
Kg,q,9 = K3xg can be decomposed into K3.

dao bg o)
AL

Example g = 2:
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

The
Kg,q,9 = K3xg can be decomposed into K3.

Example g = 2:
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

The
Kg,q,9 = K3xg can be decomposed into K3.

Example g = 2:
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

The
Kg,q,9 = K3xg can be decomposed into K3.

Example g = 2:
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Steiner Triple Systems: Definition and Existence

Theorem 1: Kz,q dec. K3

Theorem 1

Kg,q,9 = K3xg can be decomposed into K3.
4o m Co
M .
®
ai w 5]
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Example g = 2:
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 1: Kz,, dec. K3

Proof.

Let (A, B, C) be the tripartition of K3.q with A= {a; | i € [¢]}
and B and C defined analogously. {{aj, bj,ci;} | i € [q],/ € [q]}
(indices (mod q)) is a decomposition of K3.q into K. O
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Forall g > 3, g # 6, Kq,q,q,¢ = Kaxq can be decomposed into Kj.
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Forall g > 3, g # 6, Kq,q,q,¢ = Kaxq can be decomposed into Kj.

Proof for g odd.

q q q q
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:

a0 @ dy ®
a1 @ d@®
2@ D d®

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
a0 @ by @ dy @
a1 @ b @ d@®
X | > @ d, ®
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:

82/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Theorem 2: Vg > 3, q # 6, Ky.q dec. K,

Theorem 2
For all g >3, g # 6, Kg,q,q,¢ = Kaxq can be decomposed into Kj.

Example g = 3:
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 2: Vq > 3, q # 6, Ku.q dec. Ky

q q q q

Proof. (q odd)

(i,j) and (i’,j') don't exist such that i +j = /" + " (mod q) and
i—j=1i—j (mod q). Such a pair exists = 2/ = 2/’ (mod q)
and 2j =2/’ (mod q) = i =/ and j = j' since g is odd. N
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 2: Vq > 3, q # 6, Ku.q dec. Ky

q q q q

Proof. (q odd)

(i,j) and (i’,j') don't exist such that i +j = /" + " (mod q) and
i—j=1i—j (mod q). Such a pair exists = 2/ = 2/’ (mod q)
and 2j =2/’ (mod q) = i =/ and j = j' since g is odd. N

Doesn't work when g is even: (i,j) and (i + 2,/ + 4).
(0,0,0,0) and (4, £,0,0).

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

If r=0o0r1 (mod 3), then K, can be decomposed into a
combination of K3, Ky, and K.
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

If r=0o0r1 (mod 3), then K, can be decomposed into a
combination of K3, Ky, and K.

We prove by induction. The result is trivially true for r = 3,4,6
and r = 7 we already saw. Suppose r = 9m + j with m € Z* and
j€{0,1,3,4,6,7}.
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

Example: r =9.

Ko = 3K3 U K3’3,3
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

Example: r =9.

K3 K3 K3
Base Case: K3 dec. K3, Ky, Ks.

Ko = 3K3 U K3’3,3

K333
Thm 1: Kz.q dec. Ki. 88/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" and j € {0,1,3,4,6,7}.

K9m = 3K3m U K3m,3m,3m
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" and j € {0,1,3,4,6,7}.

K3m K3m K3m

I.H.: K3m dec. K37K4‘K6.

K9m = 3K3m U K3m,3m,3m @ @ @

K3m,3m,3m
Thm 1: Ksz.q dec. Ks. 89/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ*t and j € {0,1,3,4,6,7}.

Kom+3 = 3K3m4+1 U K3m+1,3m+1,3m+1
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ*t and j € {0,1,3,4,6,7}.

Kom+3 = 3K3m4+1 U K3m+1,3m+1,3m+1

P

Kamy1i  Kamyi  Kamyt
I.H.: K3m+1 dec. K3 K4 K6

HIbIS

K3m+1,3m+1,3m+1
Thm 1: K3,q dec. Ks. 90/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

Example: r = 10.

AN

~\F-ln|']|y ‘.i!‘ﬂl-'>'
‘0 4/»‘%9 oK

::::Z!'!iﬂ Nay
"5!1\ !E" —

R
4 NS

f(lo = 3(!(3 U Z) @] f(3,373

Fionn Mc Inerney

JCALM 2017 Decomposition of Complete Graphs

91/124



Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

Example: r = 10.

3(K3 U Z)

K333
Kio =3(KzUz)U K333 Thm 1: Ks.q dec. K. 91/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" and j € {0,1,3,4,6,7}.

Koms1 = 3(K3m U Z) U K3m,3m,3m
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" and j € {0,1,3,4,6,7}.

Koms1 = 3(K3m U Z) U K3m,3m,3m

3 K3mUZ

I.H.: K3m+1 dec. K3 K4 K6

HEUEH

K3m,3m,3m
Thm 1: Ks.4 dec. K. 92/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" andj €{0,1,3,4,6,7}. he {1,3,4}.

Komi3+h =
3K3m+1 U Kn U K3m41,3m+1,3m+1,h

93/124
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" andj €{0,1,3,4,6,7}. he {1,3,4}.

Komi3+h =
3K3m+1 U Kn U K3m41,3m+1,3m+1,h

HHHY

Kams1 Kamy1 Kam1
I.H.: K3m+1 dec. K3 K47 K6

HHHH

3m+1 3m+1,3m+1,h
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" and j €{0,1,3,4,6,7}. he {1,3,4}.

Kom+43+h =
3K3my1 U Kn U K3mi1,3m+1,3m+1,h

HHHY

K3m+1 K3m+1 K3m+1
I.H.: K3m+1 dec. K3, K4, K6.

HUHH

K3m+1,3m+1,3m+1,3m+1
Thm 2: Kyyq dec. Kj.
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Steiner Triple Systems: Definition and Existence

Theorem 3: For r=0o0r 1 (mod 3), K, dec. K3, Ky, K¢

r=9m+jformeZ" andj €{0,1,3,4,6,7}. he {1,3,4}.

Komy3+h =
3K3m+1 U Knh U K3m41,3m+1,3m+1,h

HHHY

Kams1 Kamy1 Kamy1
I.H.: K3m+1 dec. Kg, K4, K6.

HHHH

K3m+1,3m+1,3m+1,h
K3m+1‘3m+1‘3m+1,h dec. K3., Ky
(omit extra vertices of Ky.q dec. Kj).95/124
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m. Partition V(Kyn,) into three sets Aq, Az, A3
of size 3m.

96/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m. Partition V(Kyn,) into three sets Aq, Az, A3
of size 3m.

@ Decompose Ky, into 3 K3, induced by A;, Az, Az and a
K3x3m with tripartition (A1, Az, A3).
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m. Partition V(Kyn,) into three sets Aq, Az, A3
of size 3m.

@ Decompose Ky, into 3 K3, induced by A;, Az, Az and a
K3x3m with tripartition (A1, Az, A3).

@ By I.H., each K3, decomposes into a combo of K3, Ky, Ks.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m. Partition V(Kyn,) into three sets Aq, Az, A3
of size 3m.

@ Decompose Ky, into 3 K3, induced by A;, Az, Az and a
K3x3m with tripartition (A1, Az, A3).

@ By I.H., each K3, decomposes into a combo of K3, Ky, Ks.
@ K3.3, decomposes into K3 by Thm 1.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m. Partition V(Kyn,) into three sets Aq, Az, A3
of size 3m.

@ Decompose Ky, into 3 K3, induced by A;, Az, Az and a
K3x3m with tripartition (A1, Az, A3).

@ By I.H., each K3, decomposes into a combo of K3, Ky, Ks.
@ K3.3, decomposes into K3 by Thm 1.

@ Suppose r = 9m + 3. Partition V/(Kgpm+3) into three sets of
size 3m + 1.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m + 1. Partition V/(Kgpm1) into three sets of
size 3m and a vertex z.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m + 1. Partition V/(Kgpm1) into three sets of
size 3m and a vertex z.

@ Decompose Kgm+1 into 3 K3my1 induced by
A1 U{z}, Ay U{z}, A3 U {z} and a K3.3m, with tripartition
(A17 A27 A3)
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m + 1. Partition V/(Kgpm1) into three sets of
size 3m and a vertex z.

@ Decompose Kgm+1 into 3 K3my1 induced by
A1 U{z}, Ay U{z}, A3 U {z} and a K3.3m, with tripartition
(A17 A27 A3)

@ By I.H., each K311 decomposes into a combo of K3, Ky, Ks.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r = 9m + 1. Partition V/(Kgpm1) into three sets of
size 3m and a vertex z.

@ Decompose Kgm+1 into 3 K3my1 induced by
A1 U{z}, Ay U{z}, A3 U {z} and a K3.3m, with tripartition
(A17 A27 A3)

@ By I.H., each K311 decomposes into a combo of K3, Ky, Ks.
@ K3.3, decomposes into K3 by Thm 1.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r =9m +4,9m + 6 or 9m + 7. Partition
V(Kom+3+h) into three sets of size 3m+ 1 and a set of h
vertices (h € {1,3,4}).
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r =9m +4,9m + 6 or 9m + 7. Partition
V(Kom+3+h) into three sets of size 3m+ 1 and a set of h
vertices (h € {1,3,4}).

@ Decompose Kgmi3ip into 3 K3mp1 induced by Ag, Ar, Az, a
K3m+1,3m+1,3m+1,n and a K3 or Ky if h=3 or h = 4 resp.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r =9m +4,9m + 6 or 9m + 7. Partition
V(Kom+3+h) into three sets of size 3m+ 1 and a set of h

vertices (h € {1,3,4}).
@ Decompose Kgmi3ip into 3 K3mp1 induced by Ag, Ar, Az, a
K3m+1,3m+1,3m+1,n and a K3 or Ky if h=3 or h = 4 resp.

@ By I.H., each K311 decomposes into a combo of K3, Ky, Ks.
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Steiner Triple Systems: Definition and Existence

Proof of Theorem 3: For r =0 or 1 (mod 3), K, dec.
K3, K4, and K6

@ Suppose r =9m +4,9m + 6 or 9m + 7. Partition
V(Kom+3+h) into three sets of size 3m+ 1 and a set of h
vertices (h € {1,3,4}).

@ Decompose Kgmi3ip into 3 K3mp1 induced by Ag, Ar, Az, a
K3m+1,3m+1,3m+1,n and a K3 or Ky if h=3 or h = 4 resp.

@ By I.H., each K311 decomposes into a combo of K3, Ky, Ks.

@ Ky43m+1 decomposes into Ky by Thm 2. This decomp.
transforms into a decomp. of K3,41,3m+1,3m+1,n iNto a
combo of K3 and K, by omitting the extra vertices (some Kj

become K3).
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple
Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1 or 3 (mod 6).

i.e. K, can be decomposed into K3 < n=1or 3 (mod 6).
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).

K,
Thm 3: K, dec. K3, Ky, Ks.
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).

K,- Kr*2
Thm 3: K,— dec. K3, K4, K6. Kr*2 dec. K3*2, K4*2. K6*2-
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).

OO

Thm 3: K,— dec. K3, K4, K6. Kr*2 dec. K3*2, K4*2. K6*2-
Lemma 1: Kopy1 dec. K3 < Ko dec. K3z,
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).

K,- Kr*2
Thm 3: K,— dec. K3, K4, K6. Kr*2 dec. K3*2, K4*2. K6*2-
Lemma 1: Kopy1 dec. K3 < Ko dec. K3z,
By Lemma 1: K7, Kg, K13 dec. K3 = K3*2, K4*2, Kﬁ*g dec. K3 =

Krso dec. Ks.
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Steiner Triple Systems: Definition and Existence

Necessary conditions are Sufficient for Steiner Triple

Systems: Decomposition of K, into K3

Theorem (Kirkman, 1847)
An (n,3,1) design exists < n=1or 3 (mod 6).

Let r=">1. Then, r=0o0r 1 (mod 3).

Ceo T Q@O®
K,- Kr*2
Thm 3: K, dec. K3, Ky, Ks. K,eo dec. Kse, Kana, Koso.
Lemma 1: Kopy1 dec. K3 < Ko dec. K3z,
By Lemma 1: K7, Kg, K13 dec. K3 = K3*2, K4*2, Kﬁ*g dec. K3 =
Krso dec. Ks.
Kor41 = K, dec. K3 by Lemma 1. 100/124
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Steiner Triple Systems: Definition and Existence

Proof for Steiner Triple Systems:
K, dec. K3 < n=1or 3 (mod 6)

e Suppose r = 251 Then, r=0o0r 1 (mod 3).
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Steiner Triple Systems: Definition and Existence

Proof for Steiner Triple Systems:
K, dec. K3 < n=1or 3 (mod 6)

n—1

@ Suppose r = "5=. Then, r=0or 1 (mod 3).

@ By Thm 3, there's a decomposition D of K, into a combo of
K3, K4, Ks. Replace each vertex of K, by an independent set
of 2 vertices to obtain Ky4».

[] l01/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Steiner Triple Systems: Definition and Existence

Proof for Steiner Triple Systems:
K, dec. K3 < n=1or 3 (mod 6)

n—1

@ Suppose r = "5=. Then, r=0or 1 (mod 3).

@ By Thm 3, there's a decomposition D of K, into a combo of
K3, K4, Ks. Replace each vertex of K, by an independent set
of 2 vertices to obtain Ky4».

@ For i € {3,4,6}, each K; in D corresponds to a Ki.o in Ky.2.
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Steiner Triple Systems: Definition and Existence

Proof for Steiner Triple Systems:
K, dec. K3 < n=1or 3 (mod 6)

n—1

@ Suppose r = "5=. Then, r=0or 1 (mod 3).

@ By Thm 3, there's a decomposition D of K, into a combo of
K3, K4, Ks. Replace each vertex of K, by an independent set
of 2 vertices to obtain Ky4».

@ For i € {3,4,6}, each K; in D corresponds to a Ki.o in Ky.2.

@ Already showed K7, K9 and Ki3 could be decomposed into K3
and so by Lemma 1, K342, Kas2, and Kgso can too. Hence,
K+ can be decomposed into Kj.
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Steiner Triple Systems: Definition and Existence

Proof for Steiner Triple Systems:
K, dec. K3 < n=1or 3 (mod 6)

e Suppose r = 251 Then, r=0o0r 1 (mod 3).

@ By Thm 3, there's a decomposition D of K, into a combo of
K3, K4, Ks. Replace each vertex of K, by an independent set
of 2 vertices to obtain Ky4».

@ For i € {3,4,6}, each K; in D corresponds to a Ki.o in Ky.2.

@ Already showed K7, K9 and Ki3 could be decomposed into K3
and so by Lemma 1, K342, Kas2, and Kgso can too. Hence,
K+ can be decomposed into Kj.

@ Kort+1 = K, can be decomposed into K3 by Lemma 1.
[] l01/124
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Other t-designs, Affine and Projective planes, and Conclusion

Recall t-designs

Definition
At —(n, k,\) design is a set of subsets of size k (blocks) of a set

V of n vertices such that all subsets of size t belong to exactly A
blocks.
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Other t-designs, Affine and Projective planes, and Conclusion

Recall t-designs

Definition
At —(n, k,\) design is a set of subsets of size k (blocks) of a set

V of n vertices such that all subsets of size t belong to exactly A
blocks.

@ Abbreviated to (n, k, \) design when t = 2.
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Other t-designs, Affine and Projective planes, and Conclusion

What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972
)

For A\=1,t=2, and k € {3,4,5}, an (n, k, 1) design exists <
n(n—1)=0 (mod k(k—1)) and n—1=0 (mod k —1).
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What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972
)

For A\=1,t=2, and k € {3,4,5}, an (n, k, 1) design exists <
n(n—1)=0 (mod k(k—1)) and n—1=0 (mod k —1).

For A=1,t=2and k=6, no (36,6,1) design (Tarry, 1901).

103/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

What else do we know?

Theorem (Kirkman, 1847 (k = 3) and Hanani, 1961 (k = 4), 1972
)

For A\=1,t=2, and k € {3,4,5}, an (n, k, 1) design exists <
n(n—1)=0 (mod k(k—1)) and n—1=0 (mod k —1).

For A=1,t=2and k=6, no (36,6,1) design (Tarry, 1901).

36 officers problem (Euler, 1782): possible to arrange 6 regiments
consisting of 6 officers each of different rank in a 6 x 6 square so
that no rank or regiment will be repeated in any row or column.
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Other t-designs, Affine and Projective planes, and Conclusion

All designs exist ... eventually

Theorem (Wilson, 1973 (t = 2) and Keevash, 2014 (all t))

For all k, A\, t, there exists ng such that for all n > ng satisfying the
necessary conditions, there exists a t — (n, k, \) design.
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All designs exist ... eventually

Theorem (Wilson, 1973 (t = 2) and Keevash, 2014 (all t))

For all k, A\, t, there exists ng such that for all n > ng satisfying the
necessary conditions, there exists a t — (n, k, \) design.

@ For k=6,A=1,t=2, np <801.
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Other t-designs, Affine and Projective planes, and Conclusion

All designs exist ... eventually

Theorem (Wilson, 1973 (t = 2) and Keevash, 2014 (all t))

For all k, A\, t, there exists ng such that for all n > ng satisfying the
necessary conditions, there exists a t — (n, k, \) design.

@ For k=6,A=1,t=2, np <801.
e If n€{16,21,36,46} then there is no (n,6,1) design.
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Other t-designs, Affine and Projective planes, and Conclusion

All designs exist ... eventually

Theorem (Wilson, 1973 (t = 2) and Keevash, 2014 (all t))

For all k, A\, t, there exists ng such that for all n > ng satisfying the
necessary conditions, there exists a t — (n, k, \) design.

@ For k=6,A=1,t=2, np <801.
e If n€{16,21,36,46} then there is no (n,6,1) design.

@ For 21 values of n we don't know if an (n,6, 1) design exists.
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Other t-designs, Affine and Projective planes, and Conclusion

One of the few other cases fully solved

Theorem (Hanani, 1960)
A 3 —(n,4,1) design exists < n=2 or 4 (mod 6).
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane ((4,2,1) design)

System of points and lines s.t.

@ Two distinct points belong
to exactly one line.

@ Let p be a point and / a
line not containing p.
Exactly one line parallel to
| intersects p.

@ There exist at least 3
points that are not

collinear. -

Fionn Mc Inerney
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Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:
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Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:

@ All lines contain g points.
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Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:

@ All lines contain g points.

@ All points belong to g + 1 lines.
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Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:

@ All lines contain g points.
@ All points belong to g + 1 lines.
@ There are g° points and g® + g lines.

107/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:

@ All lines contain g points.
@ All points belong to g + 1 lines.
@ There are g° points and g® + g lines.

@ There are g + 1 sets of g parallel lines with each line in each
set passing through all the points in the plane.
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Other t-designs, Affine and Projective planes, and Conclusion

Affine planes and (g2, g, 1) resolvable designs

If in a finite affine plane, a line contains g points, then:

@ All lines contain g points.

@ All points belong to g + 1 lines.

@ There are g° points and g® + g lines.

@ There are g + 1 sets of g parallel lines with each line in each
set passing through all the points in the plane.

An affine plane is equivalent to a (g2, g,1) resolvable design.
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)

-
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((4,2,1) design to (7,3,1) design)

ooP
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)

114/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Affine plane to Projective plane
((9,3,1) design to (13,4,1) design)
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Other t-designs, Affine and Projective planes, and Conclusion

Projective plane

System of points and lines s.t.

117/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Projective plane

System of points and lines s.t.

@ Two distinct points belong to exactly one line.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective plane

System of points and lines s.t.

@ Two distinct points belong to exactly one line.

@ Two lines intersect in exactly one point.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective plane

System of points and lines s.t.

@ Two distinct points belong to exactly one line.
@ Two lines intersect in exactly one point.

@ There exist 4 points such that any 3 of them are not aligned.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (g°> + g + 1,q + 1,1) designs

A projective plane is of order g if each line contains g + 1 points.
It has the following properties:
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (g°> + g + 1,q + 1,1) designs

A projective plane is of order g if each line contains g + 1 points.
It has the following properties:

@ All lines contain g + 1 points.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (g°> + g + 1,q + 1,1) designs

A projective plane is of order g if each line contains g + 1 points.
It has the following properties:

@ All lines contain g + 1 points.

@ All points belong to g + 1 lines.

118/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (g°> + g + 1,q + 1,1) designs

A projective plane is of order g if each line contains g + 1 points.
It has the following properties:

@ All lines contain g + 1 points.
@ All points belong to g + 1 lines.
o There are g° + g + 1 points and g°> + g + 1 lines.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (g°> + g + 1,q + 1,1) designs

A projective plane is of order g if each line contains g + 1 points.
It has the following properties:

@ All lines contain g + 1 points.
@ All points belong to g + 1 lines.
o There are g° + g + 1 points and g°> + g + 1 lines.

A projective plane of order g is equivalent to a
(> +q+1,9+1,1) design.

118/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one
vertex class consists of the points of P and the other the lines of P
has the following properties:
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Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one
vertex class consists of the points of P and the other the lines of P
has the following properties:

o Bipartite.
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Other t-designs, Affine and Projective planes, and Conclusion

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one
vertex class consists of the points of P and the other the lines of P
has the following properties:

o Bipartite.
o High regular degree: g + 1.
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Other t-designs, Affine and Projective planes, and Conclusion

Properties of Graphs obtained from Projective planes

The bipartite graph G(P) for a given projective plane P where one
vertex class consists of the points of P and the other the lines of P
has the following properties:

o Bipartite.

o High regular degree: g + 1.

e High girth: 6.
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (¢>+q+1, g+ 1,1) designs theorem

If q is a prime power, then Kp 4,1 decomposes into Kq1.
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Projective planes and (¢>+q+1, g+ 1,1) designs theorem

If q is a prime power, then Kp 4,1 decomposes into Kq1.

All the same problem:

® Kgo4q41 decomposes into Kqi17?
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Projective planes and (¢>+q+1, g+ 1,1) designs theorem

If q is a prime power, then Kp 4,1 decomposes into Kq1.

All the same problem:

® Kgo4q41 decomposes into Kqi17?
o A(g?>+q+1,q+1,1) design exists?
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Other t-designs, Affine and Projective planes, and Conclusion

Projective planes and (¢>+q+1, g+ 1,1) designs theorem

If q is a prime power, then Kp 4,1 decomposes into Kq1.

All the same problem:

® Kgo4q41 decomposes into Kqi17?
o A(g?>+q+1,q+1,1) design exists?
@ A projective plane of order g exists?
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Other t-designs, Affine and Projective planes, and Conclusion

Non-existence of some designs

Theorem (Bruck-Ryser, 1949)

If g is not a prime power, g is not the sum of two squares, and
g =1 or2 (mod 4), then there does not exist a (g2, g, 1) design.
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Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order g = 10 exists.
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Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order g = 10 exists.

Proven by heavy computer calculations.
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Other t-designs, Affine and Projective planes, and Conclusion

Existence of Projective Planes

Theorem (Lam, 1991)

No projective plane of order g = 10 exists.

Proven by heavy computer calculations.

g = 12 is the first case where we don’t know if it exists.

122/124

Fionn Mc Inerney JCALM 2017 Decomposition of Complete Graphs



Other t-designs, Affine and Projective planes, and Conclusion

Conclusion

@ We know about the existence of designs for large values of n
thanks to Wilson and Keevash.
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Conclusion

@ We know about the existence of designs for large values of n
thanks to Wilson and Keevash.

@ Still many values of n below the threshold of ng where we
don’t know if the designs exist.
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Other t-designs, Affine and Projective planes, and Conclusion

Conclusion

@ We know about the existence of designs for large values of n
thanks to Wilson and Keevash.

@ Still many values of n below the threshold of ng where we
don’t know if the designs exist.

@ While we may know a lot of designs exist, we don't know how
to construct many of them.
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Other t-designs, Affine and Projective planes, and Conclusion

Thank you!
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