
Report of two Works
Analysis of Branch and Bound

The Smoking Robber

ESTEBAN ROMÁN

Universidad Adolfo Ibáñez
INRIA, Sophia Antipolis

October 4, 2014

Contents

I Analysis of Branch and Bound 3

1 Introduction 3

2 Results 3
2.1 First Stop . 6
2.2 Time to stop . 8

2.2.1 Graphs such that the pw(G) is obtained. 10
2.2.2 Graphs such that the pw(G) is not obtained. 11
2.2.3 Graphs such that the first stop is greater than the

pw(G). 13

3 Matlab Codes 14
3.1 working . 14
3.2 Study . 19

II The Smoking Robber 21

4 Introduction 21

1

5 Definitions 21

6 Basic Case 22

7 Generalization 27
7.1 Speed . 27
7.2 Amount of Cops . 27

2

Part I

Analysis of Branch and Bound
NO OLVIDAR LOWER BOUNDS

1 Introduction

In this paper we present the analysis made of the results obtained and pre-
sented in the paper Experimental Evaluation of a Branch and Bound Algorithm
for computing Pathwidth by the authors David Coudert, Dorian Mazauric
and Nicolas Nisse. The program was developed mainly by David Coudert
using Sage, a free open-source mathematics software system licensed under
the GPL. Basically, given a graph G = (V, E), the program calculates the
pathwidth of G, pw(G), within a time T. Depending on the G, it will be
obtaining upper bounds before the final value of pw(G). It also outputs
the time used to obtain each one of these upper bounds. En example of this
output will be given for a big graph.

We begin with a brief description of the graphs analysed. There are
8 types, mainly Rome Graphs, around 87% of all the graphs are this kind.
We then analyse the first upper bound obtained, it will be called First
Stop. The first upper bound value is obtained very fast, in average it takes
approximately 0.002[s]. It is also common to obtain the pw(G) as an upper
bound, before it ends checking the rest of the possibilities. The final analysis
is about the total time needed to stop and obtain (or not) the pathwidth.

Adding results to this, we also present some lower bounds results.
These are obtained in two different ways, the first is an implementation
of brambles, an algorithm presented in Treewidth Lower Bounds with
Brambles by Bodlaender et. al. The second way is a personal criteria of
Esteban Román.

2 Results

In total we run the program on 12564 different graphs. These (most of them)
can be related to eight different types of graphs, the number in parenthesis
is the amount of each graph type. These eight types can be grouped as:

1. Test suites of directed and undirected graphs from the GDToolkit.

3

(http://www.dia.uniroma3.it/∼gdt/gdt4/index.php)

• Rome Graph (11534)

2. Extracted form the TreewidthLIB.

(http://www.cs.uu.nl/research/projects/treewidthlib/)

• TWL (212)

• TWL_tsp (50)

3. Extracted form the VSPLIB.

(http://www.optsicom.es/vsp/, 2012)

• HB (69)

• Tree (45)

• Grids (50)

4. From SAGE

• Sage Named (64)

• Sage Families (463)

We have used max time equal to 200[s], that means that if after this
time the algorithm does not obtain the pathwidth for sure, it declares the
last value found as an upper bound. Of all these 12564 graphs analysed,
the algorithm obtains the pw(G) 11732 times, and declare an upper bound
value the other 832 cases.

As an example of the output, so it can be easier to understand, we
show the first results on the graph u2319.tsp, it has N = 2319 nodes and
M = 6869 edges. This example has not ended searching the pw(G), and
was stopped manually. It was not restricted to 200[s].

SOL: 90 at time 0.22 and nodes 125

SOL: 89 at time 0.23 and nodes 139

SOL: 88 at time 0.24 and nodes 159

SOL: 87 at time 0.28 and nodes 252

SOL: 86 at time 0.33 and nodes 343

SOL: 85 at time 0.37 and nodes 434

SOL: 84 at time 0.42 and nodes 529

SOL: 83 at time 0.48 and nodes 661

4

SOL: 82 at time 0.55 and nodes 793

SOL: 81 at time 0.61 and nodes 929

SOL: 80 at time 0.7 and nodes 1102

SOL: 79 at time 0.78 and nodes 1275

SOL: 78 at time 0.86 and nodes 1450

SOL: 77 at time 0.94 and nodes 1585

SOL: 76 at time 1.01 and nodes 1722

SOL: 75 at time 1.08 and nodes 1857

SOL: 74 at time 1.19 and nodes 2045

SOL: 73 at time 1.3 and nodes 2219

SOL: 72 at time 1.4 and nodes 2386

SOL: 71 at time 1.52 and nodes 2617

SOL: 70 at time 1.64 and nodes 2830

SOL: 69 at time 1.81 and nodes 3144

SOL: 68 at time 1.95 and nodes 3370

SOL: 67 at time 2.14 and nodes 3654

SOL: 66 at time 2.31 and nodes 3921

SOL: 65 at time 13180.34 and nodes 24043895

SOL: 64 at time 19822.74 and nodes 35384943

SOL: 63 at time 20309.35 and nodes 36130610

SOL: 62 at time 20374.09 and nodes 36232475

SOL: 61 at time 179003.68 and nodes 319618255

SOL: 60 at time 309515.02 and nodes 556330573

SOL: 59 at time 440704.21 and nodes 783548003

SOL: 58 at time 558388.34 and nodes 996529598

SOL: 57 at time 660498.87 and nodes 1177339177

SOL: 56 at time 674868.09 and nodes 1201047441

SOL: 55 at time 680349.57 and nodes 1210597948

To interpret this output, we have three parameters:
SOL: P1 at time P2 and nodes P3

• P1: Is the actual upper bound.

• P2: Is the total time required to obtain P1.

• P3: Is the number of checked nodes in the search tree.

It is not slow to obtain the first results, in fact, it obtains and improves
the upper bound 25 times in just 2.31[s], but to obtain the next better upper
bound, it requires 13180.34[s] (more than three hours), the last upper bound

5

obtained required 680349.57[s] (189 hours or 7 days and 21 hours). Its
necessary to take in to account that this is a big graph for this kind of
analysis. In other graphs the last upper bound obtained is indeed the
pw(G) but it still have combinations to check.

2.1 First Stop

As we mentioned before, the first stop is very fast. On average it takes only
2.2393 · 10−3[s]. In 3388 cases, the first upper bound obtained is in fact the
pathwidth of the graph. This fact does not imply that the algorithm stops,
it still has to verify that no better upper bound exists.

Sorting the time of the first stop we show these three plots. The differ-
ence between them is just the amount of graphs plotted so it can be easier
to see. The x-axis represent the id of the graphs ordered by increasing time
required for the first stop, meanwhile the y-axis is the time needed. The
three plots shown in figure 1 differ in the amount of graphs used; the first
one consider them all, the one in the middle consider the fastest 99%, and
the third, consider the fastest 95%.

Figure 1: First stop times

As shown in figure 1, we see that 99% of all graphs need less than
0.025[s] and 95% need less than 0.001[s].

If we analyse the 3388 cases where the first stop gives as a result the
pw(G) and compare the time needed to stop (pw-stop) and the first stop,
we can make a graph of the ratio between these two values. Ideally, we

6

would like to have this ratios near 1, higher values indicate only lost time.
The average value of this ratio is 1293, to understand better this average
value, its helpful to know also the average time of both times, first stop and
pw-stop. The average time for first stop is 2.1 · 10−4[s] and for the pw-stop
is 6.8 · 10−1[s].

Figure 2 shows (in increasing order) all the ratios between pw-stop and
first stop. As before, the x-axis represent the id of the graphs ordered by
increasing ratio, and the y-axis is the ratio. We also show different amount
of graphs used to facilitate understanding of the behaviour. The highest
ratio is near 2 × 105 but more than 90% of these graphs have ratio lower
than 102 and approximately 30% have ratio no more than 101.

Figure 2: Ratio between stop time and first stop

7

2.2 Time to stop

Another way of seeing how the upper bounds converge to the pathwidth
is studying the ratio of the upper bounds about the pathwidth. The main
reason of doing this is to standardize the values obtained. Doing this stan-
dardization, it becomes easier to compare different graphs with different
pathwidth.For example, lets suppose we have two graphs, G1 and G2, with
pw(G) 4 and 20 respectively. We use UB1 as the first upper obtained, UB2
as the second upper obtained and so on. As usual, the pathwidth is pw(G).
As an example, assume that the upper bounds obtained are shown in Table
1.

G1 G2

UB1 6 first stop 0.002 UB1 23 first stop 0.01

UB2 5 t2 0.003 UB2 22 t2 0.02

pw(G1) 4 pw-time 0.08 UB3 21 t3 0.04

pw(G2) 20 pw-time 0.1

Table 1: Example: Original graph data

Then, after the standardization, Table 1 would be looking as Table 2.

G1 G2

ÛB1 1.5 first stop 0.002 ÛB1 1.15 first stop 0.01

ÛB2 1.25 t2 0.003 ÛB2 1.1 t2 0.02̂pw(G1) 1 pw-time 0.08 ÛB3 1.05 t3 0.04̂pw(G2) 1 pw-time 0.1

Table 2: Example: Standardized graph data

We will show the results of convergence for three cases:

• Graphs such that the pw(G) is obtained.

8

• Graphs such that the pw(G) is not obtained.

• Graphs such that the first stop upper bound is greater than the pw(G).

Generally spoken, we will obtain the average convergence value for
each one of these cases and then more specifically, a similar graph showing
convergence for each of the eight classes of graphs.

9

2.2.1 Graphs such that the pw(G) is obtained.

This group consist of 11732 graphs. In average we can see that these graphs
start (t ∼ 10−3) with an upper bound 30% superior to the pw(G). After
approximately 10−2[s] the average upper bound is just 5% above the pw(G).
After 1[s] we have less than a 1% of difference. After 10 seconds, the relative
difference is practically none.

Figure 3: Average upper bound ratio

Figure 4 shows how this behaviour for each of the eight classes. For the
graph class Rome, we see the curve smoother. In other cases the curve looks
more discrete, its for the opposite reason, few graphs. The Tree graphs are
the ones with worst initial upper bound, estimating over 400% the pw(G)
but get near the pw(G) very fast.

10

Figure 4: Average upper bound ratio per class

2.2.2 Graphs such that the pw(G) is not obtained.

This group consist of 832 graphs. In average we can see that these graphs
start (t ∼ 2 · 10−1) with an upper bound 50% superior to the lowest upper
bound obtained. Comparing with graphs that reach theirs pathwidth, at
this time, (figure 3) they were in average only approximately 2% over the
pw(G). After 10 seconds, the difference is around the 1%. As this graphs
did not reach the pw(G) its clear that the convergence (to the last upper
bound) appears at the end time, 200[s].

Figure 5: Average upper bound ratio

Plotting by class, we do not see big differences between classes.

11

The difference between these eight and figure 5 relating the first upper
bound is due to the time partition used.

Figure 6: Average upper bound ratio per class

12

2.2.3 Graphs such that the first stop is greater than the pw(G).

This group consist of 8344 graphs. They all reach the pathwidth. At a
similar starting time as the bigger group of all the graphs that reaches the
pathwidth these start with a lower upper bound ratio, something that may
not make sense at a first look.

Possible reasons because this starting average is less than (2.2.1) may
be:

• Time scaling.

• Not necessary these graphs start with a lower proportional upper
bound, they may be bigger maybe.

Figure 7: Average upper bound ratio

The missing plot is because there is no TWL.tsp graph satisfying the
conditions.

13

Figure 8: Average upper bound ratio per class

3 Matlab Codes

3.1 working

1 func t ion working (dataN)
2 data = dataN ;
3 data (: , 3) = [] ;
4 [a , b]= s i z e (data) ;
5 n=8; % D i f f e r e n t types of graphs
6 % C i n d i c a t e s where each type begins
7 C=ones (1 , n+1) ;
8 f o r i =2:n
9 i f not (isempty (f ind (data (: , 1) ==i , 1)))

10 C(i) =f ind (data (: , 1) ==i , 1) ;
11 e l s e
12 C(i) =C(i −1) ;
13 end
14 end
15 C(n+1)=a +1;
16 % L i n d i c a t e s " amount " of i t e r a t i o n s of each Graph
17 L=zeros (a , 1) ;
18 f o r i =1: a
19 i f isempty (f ind (isnan (data (i , :)) , 1))
20 L (i) =b ;

14

21 e l s e
22 L (i) =f ind (isnan (data (i , :)) , 1) −1;
23 end
24 end
25 % 1 2 3 4 5 6 7

8
26 % Type Graph pw FinalTime N

M − [UB − time]
27 % Type=data (: , 1) ;
28 % Graph=data (: , 2) ;
29 % PW=data (: , 3) ;
30 % FT=data (: , 4) ;
31 N=data (: , 5) ;
32 % M=data (: , 6) ;
33 Lmax=max(L) ;
34 UB=data (: , 7 : 2 : Lmax) ;
35 UB=[N UB] ;
36 time=data (: , 8 : 2 : Lmax) ;
37 c l e a r data
38 time =[zeros (a , 1) time] ;
39 LL=(L−6) /2;
40 LLmax=max(LL) ;
41 f o r i =1: a
42 i f LL (i) <LLmax
43 UB(i , LL (i) +2 : end) =UB(i , LL (i) +1) ;
44 time (i , LL (i) +2 : end) =time (i , LL (i) +1) ;
45 end
46 UBR(i , :) =UB(i , :) /min (UB(i , :)) ;
47 end
48 %%
49 minTsort= s o r t (time (: , 2)) ;
50 maxTsort= s o r t (time (: , end)) ;
51 MinT= minTsort (round (0 . 9 8∗ a)) ;
52 MaxT=max(maxTsort) +10;
53 N=max(1 0 0 , min (a , 5 0 0)) ;
54 LOG=3;
55 i f LOG==3
56 TIME= l i n s p a c e (log10 (MinT) , log10 (MaxT) ,N+1) ;
57 TIMEUSE=10.^TIME ;

15

58 e l s e i f LOG==2
59 TIME= l i n s p a c e (log2 (MinT) , log2 (MaxT) ,N+1) ;
60 TIMEUSE=2.^TIME ;
61 e l s e i f LOG==1
62 TIME= l i n s p a c e (log (MinT) , log (MaxT) ,N+1) ;
63 TIMEUSE=exp (TIME) ;
64 end
65

66 VAL=zeros (a ,N+1) ;
67 f o r i =1: a
68 f o r j =1 :N+1
69 i f not (isempty (f ind (time (i , :) <=TIMEUSE(j) ,

1 , ’ l a s t ’)))
70 VAL(i , j) =UBR(i , f ind (time (i , :) <=TIMEUSE

(j) , 1 , ’ l a s t ’)) ;
71 end
72 end
73 end
74

75 %% Means
76 types { 1 }= ’Rome ’ ; types { 2 }= ’ Sage_Fami l ies ’ ; types

{ 3 } = ’ Sage_Named ’ ; types { 4 } = ’TWL’ ;
77 types { 5 }= ’TWL. tsp ’ ; types { 6 }= ’ Grids ’ ; types { 7 }= ’HB ’ ;

types { 8 } = ’ Tree ’ ;
78 VALMEAN=mean(VAL) ;
79 f i g u r e
80 semilogx (TIMEUSE ,VALMEAN, ’ LineWidth ’ , 2)
81 a x i s ([0 . 8 ∗min (TIMEUSE) 1 . 1∗max(TIMEUSE) 0 . 9 5 1 .05∗

max(VALMEAN)]) ;
82 grid on ;
83 t i t l e (’ Al l Graphs ’) ;
84 x l a b e l (’ time [s] ’) ;
85

86 %% By type
87 f o r i =1:n%length (unique (data (: , 1)))
88 UBDATA{ i }=UBR(C(i) :C(i +1) −1 , :) ;
89 UBDATA{ i } (: , max(LL (C(i) :C(i +1)−1)) +1: end) = [] ;
90 timeDATA{ i }= time (C(i) :C(i +1) −1 , :) ;
91 timeDATA{ i } (: , max(LL (C(i) :C(i +1)−1)) +1: end)

16

= [] ;
92 s i z e s (i , :) = s i z e (UBDATA{ i }) ;
93 end
94 %%
95 f i g u r e
96 f o r i =1:n
97 c l e a r minTsort maxTsort VAL
98 a=C(i +1)−C(i) ;
99 i f a>0

100 minTsort= s o r t (time (C(i) :C(i +1) −1 ,2)) ;
101 % maxTsort= s o r t (time (C(i) :C(i +1)−1,end)) ;
102 MinT= minTsort (round (0 . 9 8∗ a)) ;
103 % MaxT=max(maxTsort) +10;
104 N=max(1 0 0 , min (a , 5 0 0)) ;
105 LOG=3;
106 i f LOG==3
107 TIME= l i n s p a c e (log10 (MinT) , log10 (2 0 0) ,N

+1) ;
108 TIMEUSE=10.^TIME ;
109 e l s e i f LOG==2
110 TIME= l i n s p a c e (log2 (MinT) , log2 (2 0 0) ,N

+1) ;
111 TIMEUSE=2.^TIME ;
112 e l s e i f LOG==1
113 TIME= l i n s p a c e (log (MinT) , log (2 0 0) ,N+1) ;
114 TIMEUSE=exp (TIME) ;
115 end
116 VAL=zeros (a ,N+1) ;
117 f o r k =1: a
118 f o r j =1 :N+1
119 i f not (isempty (f ind (time (k , :) <=

TIMEUSE(j) , 1 , ’ l a s t ’)))
120 VAL(k , j) =UBR(k , f ind (time (k , :)

<=TIMEUSE(j) , 1 , ’ l a s t ’))
;

121 end
122 end
123 end
124 VALMEAN=mean(VAL) ;

17

125 subplot (2 , 4 , i)
126 semilogx (TIMEUSE ,VALMEAN, ’ LineWidth ’ , 2)
127 a x i s ([0 . 8 ∗min (TIMEUSE) 1 . 1∗max(TIMEUSE)

0 . 9 5 1 .05∗max(VALMEAN)]) ;
128 grid on ;
129 t i t l e ({ types { i } ; [’N = ’ , num2str (a)] }) ;
130 x l a b e l (’ time [s] ’) ;
131 end
132 end
133 end

18

3.2 Study

1 func t ion [X , T] = Study (data)
2 % 1 2 3 4 5 6 7

8 9
3 % Type Graph OPT pw FinalTime

N M − [UB − time]
4 DATA = data ;
5 [a , b] = s i z e (DATA) ;
6 UB=DATA(: , 8 : 2 : b) ;
7 Time=DATA(: , 9 : 2 : b) ;
8 Sol_1 = DATA(: , 8) ; % F i r s t s o l u t i o n
9 Time_1 = DATA(: , 9) ; % F i r s t s o l u t i o n Time

10 OptVal = DATA(: , 4) ; % Best Value obtained (pw
or UB)

11 T2Stop = DATA(: , 5) ; % Tota l time to stop
12 f o r i =1: a % Time needed to compute

OptVal
13 T2gPW(i , 1) = DATA(i ,7+2∗ f ind (DATA(i , 8 : 2 : end)

==OptVal (i) , 1)) ;
14 end
15 %% Some Bas ic Analysis
16 %P e r c e n t _ S u c c e s _ F i r s t _ S o l u t i o n =X(8) ;
17 X(1) =sum(T2Stop) ;
18 X(2) =round (X(1) /60) ;
19 X(3) =round (X(1) /3600) ;
20 X(4) =sum(T2Stop−T2gPW) ;
21 X(5) =round (X(4) /60) ;
22 X(6) =round (X(4) /3600) ;
23 X(7) =100∗X(4) /X(1) ;
24 Total_Time_Used_Seconds=X(1) ;
25 Total_Time_Used_Minutes=X(2) ;
26 Total_Time_Used_Hours=X(3) ;
27 Total_Useless_Time_Seconds=X(4) ;
28 Total_Useless_Time_Minutes=X(5) ;
29 Total_Useless_Time_Hours=X(6) ;
30 Percent_Useless_Time=X(7) ;
31 %% Other
32 T=zeros (s i z e (UB, 2) , 2) ;

19

33 f o r i = 1 : s i z e (UB, 2)
34 T (i , 1) = sum(UB (: , i) ==OptVal) ;
35 T (i , 2) = 100∗T (i , 1) /a ;
36 % YesPos = f ind (Sol_1==OptVal) ;
37 % X(8) =100∗ length (YesPos) /a ;
38 end
39 end

20

Part II

The Smoking Robber

4 Introduction

This new problem is similar to the typical Cop − Robber problem, but with
the difference that here the cops does not catch the robber. They just try
to be close enough to the robber, closer than a certain distance. We can
assume for simplicity that the robber is a smoker and wants to smoke, but
he cannot smoke if there is another cop near him. So the cops try to be near
this smoker as much as they can, so the robber do not smoke. They all live
on a ring of length N, and the robber is faster than the cops.

First we will analyze the case where there are 3 cops, one robber and
the robber is twice as fast as the cops; vr = 2vc. Then we will generalize
this problem to M cops and a velocity ratio given by vr = αvc.

5 Definitions

We will define some concepts, so it is easier later to understand the expla-
nations.

Control Distance (v): Distance from the cop where the robber can not
smoke.

Control Zone: Place near the cops where the robber cannot smoke. It is
defined by the control distance.

Freedom: Place outside the Control Zone.

Clock Ordering: A clock ordering (x, y, z) is a clockwise ordering that
means that y is in between x and z. A clock ordering (x, y, z, w)
means that we have (y, z, w) and (x, y, z).

Go By: We say that a robber r goes by a cop c if there are times (t1 < t2 < t3
such that the clock ordering are:

• (r, c) at t = t1 (or (c, r)).

• r and c share position at t = t2.

• (c, r) at t = t3 (or (r, c)).

21

(we assume that the robber does not change move direction)

Pass By: We say that a robber r pass by a cop c if he manages to go by the
cop and find Freedom immediately after.

Guard: We say that c2 guards c1 if given a clock ordering (r, c1, c2), the
robber r cannot pass by c1 because of c2.

Guard Distance Given a clock ordering (r, c1, c2), the guard distance is the
maximum distance between c1 and c2 such that c2 guards c1. This
distance will be a function of:

• the proportional velocity of the robber,

• the distance d(r, c1).

6 Basic Case

As we said, the basic case consists of one robber and three cops. The robbers
is twice as fast as the cops. We have two ways of analyzing this case. The
first one, our Basic Case, and easiest, is when the robber chooses a place
first, and later so do the cops. Given the initial position of the robber, the
three cops can choose the places given by the left image in Figure 9. The
marks on the ring, equals the Control Distance. The ratio of the ring and the
control distance needed so the cops can avoid that the robber never smokes
is 14 : 1. We see that, if the robber tries to pass by cop C1 and runs clockwise,
the cop, C3, standing in a opposite initial place to the robber, C3, can stop
the robber to smoke.

RR

RR

RR

RCRCRCRC1

RCRCRCRC1
RCRCRCRC1

RCRCRCRC2

RCRCRCRC3

RCRCRCRC2
RCRCRCRC2

RCRCRCRC3RCRCRCRC3

RR

RR

RR

RCRCRCRC1

RCRCRCRC1
RCRCRCRC1

RCRCRCRC2

RCRCRCRC3

RCRCRCRC2
RCRCRCRC2

RCRCRCRC3RCRCRCRC3

Figure 9: Basic Case

This is an example for C3 guards C1. In this case the Guard Distance is
equal 6 times the control distance. To calculate this Guard Distance, we can

22

use as help Figure 10, where the robber is red and the two cops are green.
It shows two different times, the first, the robber is at a distance R to his
nearest cop, and the distance, we want to find, between the two cops is D.
The second shows the exact moment when the robber is in the limit of both
control zones.

The control zone is painted in yellow, and its size equals two v, where v
is control distance. So, assuming that both the robber and the left cop move
to the right, and the right cop moves to the left, and that the robber is α

times faster than the cops, then to find D (Guard Distance) as a function of α

and R, we will have:

R +
D
2

= α ·
(

D
2
− v
)

R + α · v =
D
2
(α − 1)

2
(

R + α · v
α − 1

)
= D

R D

D/2
v

Figure 10: Basic Case

In our basic case, α = 2, so we finally get

D = 2R + 4v (1)

If we see Figure 9, the Basic Case, we have that R = v, so the guard
distance should be 6v, which it is. So C3 guards both C1 and C2.

The second way to analyze this problem is when the cops choose initial
place first. To simplify a little bit the numbers, we will assume the length of
the ring N = 42, v = 3 (N/v = 14) and α = 2. We assume that the initial
position for the cops are equidistant from each other. and that the robber
choose an initial position at a distance d to the left from the center of two of

23

the cops. Its illustrated in figure 11. Without loss of generality , we assume
the robber moves to the right (clockwise). It is clear this is not anymore the
basic case. The basic case is all ready solved. Studying the basic case, with
N = 42, v = 3, the positions of the four players can be given by:

R(t) = 2t
C1(t) = 3 + t
C2(t) = −3 − t
C3(t) = 21 − t

C1C2

C3

R

d

Figure 11: Basic Case

To solve the case when the three cops choose initial place first, what we
will do is obtain the same positions, for some τ = max(τ2, τ3). We will be
synchronizing the the positions, one by one, at the times τ1 ≤ τ2, τ3 such that
after each τi one of the cops will be moving with the robber in the same
way he does in the basic case. As this cops, will be synchronizing, they’re
movement equation will change in time. At time zero (we use τ as time for
this case) these four equation for the new case are:

R̂(τ) = −d + 2τ

Ĉ1(τ) = 7 − τ

24

Ĉ2(τ) = −7 + τ

Ĉ3(τ) = 21 − τ

The distance between Ĉ1 and R̂ is dist(Ĉ1, R̂) = 7 + d − 3τ, and if Ĉ1
change its direction when this distance equals 3, which is the control distance,
then we find τ1:

τ1 =
4
3
+

d
3

(2)

After τ ≥ τ1 we can say that Ĉ1 is synchronized and fix it position
equation to:

Ĉ1(τ) =

{
7 − τ ; τ ≤ τ1

17
3 − d

3 + τ ; τ > τ1
(3)

25

To find τ2 ≥ τ1 and fix Ĉ2, we’ll need two equations and two variables.
We will match distances:

C1(t)− R(t) = Ĉ1(τ)− R̂(τ)
R(t)− C2(t) = R̂(τ)− Ĉ2(τ)

This two equations become:

3 − t =
17
3

+
2d
3

− τ

3 + 3t = 7 − d + τ

The solution for τ gives us

τ2 = 6 +
d
2

(4)

and we fix Ĉ2:

Ĉ2(τ) =

{
−7 + τ ; τ ≤ τ2

−1 + d
2 − τ ; τ > τ2

(5)

.
So, for τ ≥ τ2, we will have Ĉ1 and Ĉ2 synchronized. To find τ3, we

want that the distance between Ĉ2 and Ĉ3 is 6. Ĉ3(τ)− Ĉ1(τ) = 6:

21 − τ −
(

17
3

− d
3
+ τ

)
= 6

we obtain:

τ3 =
23
3

+
d
6

(6)

and:

Ĉ3(τ) =

{
21 − τ ; τ ≤ τ3

40
3 − d

6 + τ ; τ > τ3
(7)

.
Now the three cops are synchronized with the robber.

26

7 Generalization

7.1 Speed

Using equation the reasoning to obtain equation (1) for the guard distance
D = 2R + 4v, and using the initial configuration for the basic case, and
using R = v we have the value:

D = 2v
(

p + 1
p − 1

)
And given that the total length of the ring is L = 2D + 2v, we obtain,

the length as a function of the proportional speed as:

L = 2v
(

3p + 1
p − 1

)
and the ratio between this length and the control distance as:

ratio(L/cd) = 2
(

3p + 1
p − 1

)

Figure 12: Ratio between this length and the control distance

Clearly, this ratio converges to 6 when the robber is much faster.

7.2 Amount of Cops

Given N cops, to solve this problem, we can make it the same as if there
where only 3 cops.the nearest two cops, one per each side, represent C1 and
C2 from before. The N − 2 rest of cops, that are not neighbor with the robber,
act as one. We fix the distance between them, so they move all together,
doing this, we can see the problem equal as one where we join together all
of these N − 2 cops.

27

In this case we have:

L = (N − 1)D + 2v = 2v
(

N(p + 1)− 2
p − 1

)
and the ratio:

ratio(L/cd) = 2
(

N(p + 1)− 2
p − 1

)
We see that for big values of α, this ratio converges to 2N, which is logic.

28

