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how can it be applied to




Thesis objective

Caveats of collaborative security*

*From ~200 reviewed papers, including 15 surveys

(a)

(b)

(c)

(d)

There is a lack of collective knowledge
in cybersecurity, and more particularly
in the OT.

Trust and privacy are major hurdle for
stakeholders to share data.

The siloed architecture of detection
systems is an obstacle to their
effectiveness.

Centralized systems represent a
Single Point of Failure and can induce
a communication overhead.

R.Q: How to federate knowledge and
defense between non-trusting parties?

What to collect?
What to share?

How to share it?
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Federated Learning for IDSs
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2. State of the Art

Existing works applying federated learning to
intrusion detection
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State-of-the-Art

_ ML location Data type Local algorithm Aggregation strategy

Pahl and Aubet 2018 (9] On-device Network (middleware)  BIRCH / K-Means Cluster addition
Nguyen et al. 2019 [5] On-gateway Network NN (RNN) Gradient-based
Rathore et al. 2019 [2] On-gateway (fog) Network NN Matrix parameter avg
Schneble et al. 2019 [7] On-gateway Sensors NN (MLP) Matrix parameter avg
Li et al. 2020 [6] On-gateway Network NN (RNN) Matrix parameter avg
Chen et al. 2020 [8] On-gateway Network NN Matrix parameter avg

Zhang et al. 2020 [10] On-gateway Sensors NN Gradient-based



Periodicity-mining and other time—based techniques are only
effective on constrained devices with predictable traffic.

Performance decreases the closer the model is from the
monitored device.

a. Classification can be used to reduce the number of
generated models.

Hyp0theses b. Ponderation can cope with heterogeneous data.

T /Il. The model cannot target features that are specific to the local
network.




3. Future work

System comparison and use cases
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Reproducibility

oo )
&=
Implement Define dataset Compare results
Reimplement the related Run the experiments on the Compare the announced
works with one codebase, same datasets to get results with the obtained
and one ML network. meaningful results. ones, and draw conclusions.

1 TensorFlow < Keras
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IT networks

Detecting threats in typical
IT networks with high traffic
volume.

AIRBUS

Real-world use cases

L

Smart factory

Detecting attacks in
constrained and

heterogeneous context.

.
& SEeDF

Smart building

Detecting anomalies in
sensor—focused
environments.

L
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Conclusion

Federated architectures for knowledge & defense between non-
trusting parties

- Ongoing survey:
- Compare the related works, extract significative features and
future research leads
- Next steps:
- reproduce and compare the state-of-the-art
* build the testbeds to host the experiments

leo.lavaur@imt-atlantique.fr
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