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1. Context

Introduction to federated learning, and 
how can it be applied to 

5



Thesis objective
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Lack of collective knowledge

There is a lack of collective knowledge 
in cybersecurity, and more particularly 
in the OT. [1]

Lack of incentives

Trust and privacy are major hurdle for 
stakeholders to share data. [1]

Insuffisant resiliency

Centralized systems represent a 
Single Point of Failure and can induce 
a communication overhead. [2]

Architectural isolation

The siloed architecture of detection 
systems is an obstacle to their 
effectiveness. [3]

(a)

(b)

(d)

(c)

Caveats of collaborative security*
*From ~200 reviewed papers, including 15 surveys

R.Q: How to federate knowledge and 
defense between non-trusting parties?


● What to collect?


● What to share?


● How to share it?
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Federated Learning for IDSs



9Fig. 1.   FL–based detection in smart factory

➤ Horizontal FL: aggregation of 
homogeneous models


‣ Local collection and 
analysis of data


‣ Better privacy, reduced 
bandwidth


➤ Note: collection of additional 
data could be performed 
using a Honeypot Factory




2. State of the Art

Existing works applying federated learning to 
intrusion detection 
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11
Fig. 2.   Taxonomy of FIDS (provisional)
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Fig. 2.   Taxonomy of FIDS (provisional)

➤ Local algorithm is selected in 
accordance to the type of data


➤ The aggregation depends on the 
local strategy


➤ Architecture reflects the use 
case and its constraints 




12Fig. 3.  Reference architecture

➤ Generic architecture for 
federated or centralized 
learning


➤ Relation with autonomous 
systems (MAPE-K)



State-of-the-Art
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ML location Data type Local algorithm Aggregation strategy

Pahl and Aubet 2018 [9] On-device Network (middleware) BIRCH / K-Means Cluster addition

Nguyen et al. 2019 [5] On-gateway Network NN (RNN) Gradient-based

Rathore et al. 2019 [2] On-gateway (fog) Network NN Matrix parameter avg

Schneble et al. 2019 [7] On-gateway Sensors NN (MLP) Matrix parameter avg

Li et al. 2020 [6] On-gateway Network NN (RNN) Matrix parameter avg

Chen et al. 2020 [8] On-gateway Network NN Matrix parameter avg

Zhang et al. 2020 [10] On-gateway Sensors NN Gradient-based



Hypotheses
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I. Periodicity-mining and other time–based techniques are only 
effective on constrained devices with predictable traffic.


II. Performance decreases the closer the model is from the 
monitored device.


a. Classification can be used to reduce the number of 
generated models.


b. Ponderation can cope with heterogeneous data.


III. The model cannot target features that are specific to the local 
network.



3. Future work

System comparison and use cases 
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Reproducibility
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Implement
Reimplement the related 

works with one codebase, 
and one ML network.

Define dataset
Run the experiments on the 

same datasets to get 
meaningful results.

Compare results
Compare the announced 
results with the obtained 

ones, and draw conclusions.



Real-world use cases
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Smart building
Detecting anomalies in 

sensor–focused 
environments.

Smart factory
Detecting attacks in 

constrained and 
heterogeneous context.

IT networks
Detecting threats in typical 
IT networks with high traffic 

volume.



Conclusion

Federated architectures for knowledge & defense between non-
trusting parties


• Ongoing survey:

• Compare the related works, extract significative features and 

future research leads 

• Next steps:


• reproduce and compare the state-of-the-art

• build the testbeds to host the experiments

18leo.lavaur@imt-atlantique.fr


