
Big	Data	Architectures	

Ioana	Manolescu		
INRIA	Saclay	&	Ecole	Polytechnique	

ioana.manolescu@inria.fr		
http://pages.saclay.inria.fr/ioana.manolescu/	

	
M2	Data	and	Knowledge	
Université	de	Paris	Saclay		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 1	

Dimensions	of	distributed		
data	management	systems	

•  Data	model:	
–  Relations,	trees	(XML,	JSON),	graphs	(RDF,	others…),	nested	
relations	

–  Query	language	
•  Heterogeneity	(DM,	QL):	none,	some,	a	lot	
•  Scale:	small	(~10-20	sites)	or	large	(~10.000	sites)		
•  ACID	properties	
•  Control:	

–  Single	master	w/complete	control	over	N	slaves	(Hadoop/HDFS)	
–  Sites	publish	independently	and	process	queries	as	directed	by	
single	master/mediator	

–  Many-mediator	systems,	or	peer-to-peer	(P2P)	with	super-peers	
–  Sites	completely	independent	(P2P)	

Ioana	Manolescu	 2	Big	Data	Architectures																	2019-2020	

Today's	lecture	

•  P2P	architectures:		
– highest	degree	of	peer	autonomy	
– high	degree	of	distribution	

•  Cloud	Big	Data	management	architectures	
– Cloud	computing	
– Structured	data	management	on	top	of	cloud	
services	

		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 3	

PEER-TO-PEER	DATA	
MANAGEMENT	ARCHITECTURES	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 4	

Peer-to-peer	architectures	
•  Idea:	easy,	large-scale	sharing	of	data	with	no	central	point	of	

control	
•  All	the	peers	play	identical	roles	
•  Peers	may	join	the	peer	network	or	leave	it	at	any	time	

•  Advantages:	
–  Distribute	work;	preserve	peer	independence	

•  Disadvantages:	
–  Lack	of	control	over	peers	which	may	leave	or	fail	à	need	for	
mechanisms	to	cope	with	peers	joining	or	leaving	(churn)	

–  Schema	unknown	in	advance;	need	for	data	discovery	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 5	

Peer-to-peer	architectures	
•  Large-scale	sharing	of	data	with	no	central	point	of	control	
•  Two	main	families	of	P2P	architectures:		

–  Unstructured	P2P	networks	
•  Each	peer	is	free	to	connect	to	other	peers;		
•  Variant:	super-peer	networks	

–  Structured	P2P	networks	
•  Each	peer	is	connected	to	a	set	of	other	peers	
determined	by	the	system	

•  Also:	hybrid	P2P	architectures	
–  A	"central"	subset	of	the	network	is	structured,	the	rest	is	
unstructured	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 6	

Unstructured	P2P	networks	
A	peer	joins	the	network	by	connecting	to	another	peer		
(«	getting	introduced	»)	
	
	
	
	
	
	
	
	
	
Each	peer	may	advertise	data	that	it	publishesàpeers	«	know	
their	neighbors	»	up	to	some	level	
	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 7	

Unstructured	P2P	networks	

A	peer	joins	the	network	by	connecting	to	another	peer		
(«	getting	introduced	»)	
	
	
	
	
	
	
	
	
	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 8	

I’ve	got:	
«	GoT	season	1»	
«	Mr.	Robot	»			

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	 (p1,	«GoT»)	

(p1,	«MR»)	
(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

Unstructured	P2P	networks	

A	peer	joins	the	network	by	connecting	to	another	peer		
(«	getting	introduced	»)	
	
	
	
	
	
	
	
	
	
Each	peer	may	advertise	data	that	it	publishesàpeers	«	know	
their	neighbors	»	up	to	some	level	
	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 9	

I’ve	got:	
«	GoT	season	1»	
«	Mr.	Robot	»			

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	 (p1,	«GoT»)	

(p1,	«MR»)	
(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

(p1,	«GoT»)	
(p1,	«MR»)	

Unstructured	P2P	networks	
Queries	are	evaluated	by	propagation	from	the	query	peer	to	its	
neighbors	and	so	on	recursively	(flooding)	
	
	
	
	
	
	
	
	
	
	
To	avoid	saturating	the	network,	queries	have	TTL	(time-to-live)	
This	may	lead	to	missing	answers	à	a.	replication;		b.	superpeers	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 10	

Q?	

Q?	
Q?	

Q?	

Q?	
Q?	

Q?	

Hybrid	P2P	network	

•  Small	subset	of	superpeers	all	connected	to	each	other	
•  Specialized	by	data	domain,	e.g.	[Aa—Bw],	[Ca—Dw],	…	or	by	address	space	
•  Each	peer	is	connected	at	least	to	a	superpeer,	which	routes	the	peer’s	queries			

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 11	

Q?	

Q?	

Q?	

Q?	

Structured	P2P	network	
•  Peers	form	a	logical	address	space	0…	2k-1	

–  Some	positions	may	be	empty	
–  The	peer	position	is	obtained	with	the	help	of	a	hash	
function	

–  e.g.,	H(peer	IP	address)=n,	0	<=	n	<=	2k-1	
–  This	also	leads	to	the	name:	distributed	hash	table,	DHT	

•  The	global	data	catalog	is	created	and	distributed	across	the	
peers,	using	the	same	hash	function	(see	next)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 12	

Catalog	construction	(indexing)	in	
structured	P2P	networks	

•  The	catalog	is	built	as	a	set	of	key-value	pairs	
–  Key:	expected	to	occur	in	search	queries,	e.g.	«GoT	»,	«	Mr	
Robot	»			

–  Value:	the	address	of	content	in	the	network	matching	the	key,	
e.g.	«	peer5/Users/a/movies/GoT	»	

•  A	hash	function	is	used	to	map	every	key	into	the	address	space;	
this	distributes	(key,	value)	pairs	
–  H(key)=n	à	the	(key,	value)	pair	is	sent	to	peer	n		
–  If	n	is	empty,	the	next	peer	in	logical	order	is	chosen	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 13	

Catalog	construction	(indexing)	in	
structured	P2P	networks		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 14	

12

Catalog	construction	(indexing)	in	
structured	P2P	networks		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 15	

12

Searching	in	structured	P2P	networks	

Locate	all	items	characterized	by					?	
Hash()=6	
Peer	6	knows	all	the	locations	
	
Locate	all	items	characterized	by					?		
Hash()=14	
Peer	15	knows	all	the	locations	
	
How	do	we	find	peers	6	and	15?		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 16	

Connections	between	peers	in	
structured	P2P	networks	

A	peer's	connections	are	dictated	by	the	network	organization	
and	the	logical	address	of	each	peer	in	the	space	0…	2k-1	
	
Example:	Chord	(MIT,	most	popular)	
Each	peer	n	is	connected	to		
•  n+1,	n+2,	…,	n+2k-1,	or	to	the	first	peer	following	that	position	

in	the	address	space;	
•  The	predecessor	of	n	
The	connections	are	called	fingers	
	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 17	

Connections	between	peers	in	Chord	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 18	

Searching	in	structured	P2P	networks	
Locate	all	items	characterized	by					?	
•  Hash()=6	
•  Peer	6	knows	all	the	locations	
How	does	peer	1	find	peer	6?	
•  6-1=5;	2	<=	log2(5)	<=	3,	thus	6	is	after	1	+	22	
•  Redirect	the	question	to	the	2nd	finger	of	1.		
How	does	peer	10	find	peer	3?		
•  (3	-modulo	16	10)=9;	3	<=	log2(9)	<=	4,	thus	3	is	after	10	+	23	

•  Redirect	the	question	to	the	3rd	finger	of	10.	

Quick	traversals	of	the	ring	(log2(N)	hops)		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 19	

Peers	joining	in	Chord	
To	join,	a	peer	n	must	know	(any)	peer	
n'	already	in	the	network		
	
Procedure	n.join(n'):	

	s	=	n'.findSuccessor(n);	
	buildFingers(s);	 		
	successor=s;	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 20	

Peers	joining	in	Chord	
To	join,	a	peer	n	must	know	(any)	peer	
n'	already	in	the	network		
	
Procedure	n.join(n'):	

	s	=	n'.findSuccessor(n);	
	buildFingers(s);	 		
	successor=s;	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 21	

Peers	joining	in	Chord	
To	join,	a	peer	n	must	know	(any)	peer	n'	
already	in	the	network		
	
Procedure	n.join(n'):	

	s	=	n'.findSuccessor(n);			
	buildFingers(s);			
	successor=s;	

	
If	3	had	some	key-value	pairs	for	
the	key	2,	3	gives	them	over	to	2	
	
The	network	is	not	stabilized	yet…	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 22	

Network	stabilization	in	Chord	
Each	peer	periodically	runs	stabilize()	
	
n.stabilize():	

	x	=	n.succ().pred()	
	if	(n	<	x	<	succ)	then	succ	=	x;					

						succ.notify(n)	

n.notify(p):	
	if	(pred	<	p	<	n)	
	then	pred	=	p	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 23	

Network	stabilization	in	Chord	
First	stabilize()	of	2:	3	learns	its	new	
predecessor	
	
n.stabilize():	

	x	=	n.succ().pred()	
	if	(n	<	x	<	succ)	then	succ	=	x;					

						succ.notify(n)	

n.notify(p):	
	if	(pred	<	p	<	n)	
	then	pred	=	p	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 24	

Network	stabilization	in	Chord	
First	stabilize()	of	1:	1	and	2	connect	
	
n.stabilize():	

	x	=	n.succ().pred()	
	if	(n	<	x	<	succ)	then	succ	=	x;					

						succ.notify(n)	

n.notify(p):	
	if	(pred	<	p	<	n)	
	then	pred	=	p	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 25	

Peer	leaving	the	network	

•  The	peer	leaves	(with	some	advance	notice,	
«	in	good	order	»)	

•  Network	adaptation	to	peer	leave:	
–  (key,	value)	pairs:	those	of	the	leaving	peer	are	
moved	to	its	successor	

– Routing:		P	notifies	successor	and	predecessor,	
which	reconnect	"over	P"	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 26	

Peer	failure	
•  Without	warning	
•  In	the	absence	of	replication,	the	(key,	value)	pairs	held	on	P	

are	lost	
–  Peers	may	also	re-publish	periodically	

Example	Running	stab(),	6	notices	9	is	down	
6	replaces	9	with	its	next	finger	10	à		
all	nodes	have	correct	successors,		
but	fingers	are		wrong	
	
Routing	still	works,	even	if	a		
little	slowed	down	
Fingers	must	be	recomputed	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 27	

Peer	failure	

Chord	uses	successors	to	adjust	to	any	change	
•  Adjustment	may	«	slowly	propagate	»	along	the	ring,	
since	it	is	relatively	rare	

To	prevent	erroneous	routing	due	to	successor	failure,	
each	peer	maintains	a	list	of	its	r	direct	successors	(2	
log2N)	
•  When	the	first	one	fails,	the	next	one	is	used...	
•  All	r	successors	must	fail	simultaneously	in	order	to	
disrupt	search	

	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 28	

Gossip	in	P2P	architectures	
•  Constant,	«	background	»	communication	between	peers		
•  Structured	or	unstructured	networks	
•  Disseminates	information	about	peer	network,	peer	data		

	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 29	

Peer-to-peer	networks:	wrap-up	

•  Data	model:	
– Catalog	and	search	at	a	simple	key	level	

•  Query	language:	keys	
•  Heterogeneity:	not	the	main	issue	
•  Control:		

– peers	are	autonomous	in	storing	and	publishing	
– query	processing	through	symetric	algorithm	
(except	for	superpeers)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 30	

Peer-to-peer	data	management	
•  Extract	key-value	pairs	from	the	data	&	index	them		
•  To	process	queries:	

–  Look	up	relevant	
data	fragments	
in	the	P2P	network	

–  Run	distributed	query		
plan	

Peer	1		

Peer	i		
Local	data	
Local	query	
processor	
	
Indexing	&	look-up	

Peer	n		

Peer	m		Peer	p		

…	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 31	

Example:	storing	relational	data	in	P2P	
data	management	platform	

•  Each	peer	stores	a	horizontal	slice	of	a	table	
•  Catalog	at	the	granularity	of	the	table:	

–  Keys:		table	names,	e.g.	Singer,	Song	
–  Value:	fragment	description,	e.g.,			
peer1:postgres:sch1/Singer&u=u1&p=p1,	

–  Query:		select	Singer.birthday	
														from	Singer,	Song	
														where	Song.title=	«	Come	Away	»	and		
																										Singer.sID=Song.singer	

– What	can	happen?			
•  Try	other	granularities															

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 32	

Modern	P2P	data	management	system:	
Cassandra	

–  Partitioned	row	store,	fully	symetric	structured	P2P	architecture		
–  Based	on	the	Dynamo	K-V	system	[CHG+07]	
–  Some	nesting;	indexes.	Queries:	select,	project.		
Table	songs:	
	
	
	
ALTER	TABLE	songs	ADD	tags	set<text>;	
UPDATE	songs	SET	tags	=	tags	+	{'2007'}	WHERE	id	=	8a172618…;		
UPDATE	songs	SET	tags	=	tags	+	{'covers'}	WHERE	id	=	8a172618…;		
UPDATE	songs	SET	tags	=	tags	+	{'1973'}	WHERE	id	=	a3e64f8f-…;	
SELECT	id,	tags	from	songs;		

33	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	

	
Large	Cassandra	deployments:	
•  Apple:	over	75,000	nodes	storing	over	10	PB	of	data	
•  Netflix:	2,500	nodes,	420	TB,	over	1	trillion	requests	per	day	
	
CAP	trade-off:	timeout	for	deciding	when	a	node	is	dead	
«	During	gossip	exchanges,	every	node	maintains	a	sliding	window	of	inter-
arrival	times	of	gossip	messages	from	other	nodes	in	the	cluster.	Configuring	
the	phi_convict_threshold	property	adjusts	the	sensitivity	of	the	failure	detector.	
Lower	values	increase	the	likelihood	that	an	unresponsive	node	will	be	marked	
as	down,	while	higher	values	decrease	the	likelihood	that	transient	failures	
causing	node	failure.		
Use	the	default	value	for	most	situations,	but	increase	it	to	10	or	12	for	Amazon	
EC2	(due	to	frequently	encountered	network	congestion)	to	help	prevent	false	
failures.		
Values	higher	than	12	and	lower	than	5	are	not	recommended.	»	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 34	

Modern	P2P	data	management	
system:	Cassandra	

STRUCTURED	DATA	MANAGEMENT	
IN	CLOUD	ENVIRONMENTS	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 35	

Cloud	computing	

•  Idea:	delegate	large-scale	storage	and	large-
scale	computing	to	remote	centers		
– Run	by	the	(only)	enterprise	using	them:	"private	
clouds"	

•  Large	companies	can	afford	the	cost	to	own	and	
operate	a	cloud	service:	La	Poste,	Orange,	...	

– Run	by	a	company	who	rents	out	storage	and	
computing	services:	"commercial	clouds"	

•  Main	players:	Amazon	(has	basically	created	the	
industry),	Google,	Microsoft	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 36	

Advantages	of	cloud	computing	
•  Allow	companies	to	focus	on	their	main	business		
not	on	IT	

•  Allow	scaling	the	resource		
usage	up	and	down	according		
to	the	needs	

•  Comes	at	a		cost	
Examples:		
•  Satellite	image	
data	processing	company	which	needs	significant		
computing	resources	(only)	when	it	has	an	order	from	a	
client	

•  Shops	with	more	clients	as	Christmas	approaches	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 37	

https://www.wired.com/2015/03/orbital-insight/		

How	cloud	services	work	(1/3)	
•  Storage	

–  Users	host	files	on	trusted	servers	
–  The	service	is	paid	by	the	GB	and	day	

•  Total	cost	=	sum(file	size	x	file	storage	time)	
•  Computing	

–  Users	buy	virtual	computers	("virtual	machines")	
–  Service	paid	by	the	durage	of	use	of	the	VM	
–  Each	virtual	computer	is	hosted	by	some	physical	
computer	in	the	cloud	provider's	cluster	

–  If	a	physical	machine	fails,	the	virtual	machine	will	be	
recreated	elsewhere	and	the	work	will	restart	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 38	

How	cloud	services	work	(2/3)	
•  Computing	(continued)	

–  There	are	typically	different	sizes	(capacities)	of	virtual	machines		
•  Small	(S),	Medium	(M),	Large	(L),	Extra-Large	(XL)	
•  The	difference	is	in	the	computing	speed	

•  Fast	storage	of	small-granularity	data,	typically	in	memory	in	the	
cloud	
–  For:	metadata	(catalog,	user	management,	...)	
–  Key-value	stores,	document	stores	
–  Pay	per	operation	(put,	get)	

•  Other	services	
–  E.g.	messaging	queues	to	synchronize	different	applications	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 39	

How	cloud	services	work	(3/3):		
cloud	computing	models		

•  Infrastructure-as-a-service	
–  The	vendor	provides	access	to	computing	resources	such	as	
servers,	storage	and	networking.		

–  Clients	use	their	own	platforms	and	applications	within	a	
service	provider’s	infrastructure.	
They	do	not	host	but	they	develop,	deploy	and	administer	in	
the	cloud.		

•  Platform-as-a-service	
–  The	vendor	provides:	storage	and	other	computing	resources,	
prebuilt	tools	to	develop,	customize	and	test	their	own	
applications.	

–  Clients	do	not	host	and	mostly	do	not	administer	either.	They	
still	develop	and	deploy	in	the	cloud.	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 40	

How	cloud	services	work	(3/3):		
cloud	computing	models		

•  Software-as-a-service	
– The	vendor	provides:	storage	and	other	computing	
resources;	software	and	applications	via	a	
subscription	model	(or	pay-per-use...)	

– Clients	access	the	applications	remotely.		
They	do	not	store,	host,	develop	nor	administer.	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 41	

Cloud	services	

Fine-granularity
data store

Virtual
machines

Queue
service

File storage
service

Amazon
Scalable

Storage Service
(S3)

Google Cloud
Storage

Windows Azure
BLOB Storage

Amazon Elastic
Compute Cloud

(EC2)

Google
Compute Engine

Windows Azure
Virtual Machines

Amazon
DynamoDB

Google High
Replication
Datastore

Windows Azure
Tables

Amazon Simple
Queue Service

(SQS)

Google Task
Queues

Windows Azure
Queues

Cloud Platform

Big	Data	Architectures																	2019-2020	 42	Ioana	Manolescu	

Performance	in	large-scale	clusters	

•  On-site	(within	a	company	or	organization)	or	off-site	
(cloud)	

•  There	may	be	variable	latency	across	the	cluster,	i.e.	
some	machine(s)	may	temporarily	be	slow,	due	to	
–  Shared	resources	(CPU,	cache,	memory,	network)	
– Maintenance,	software	upgrade	
–  Global	resource	sharing,	e.g.,	network	switches,	
distributed	file	systems	

–  Garbage	collection	
–  Energy	management	

•  The	variability	gets	amplified	by	scale	(see	next)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 43	

Latency	variations	in	large-scale	clusters	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 44	

Consider	a		setting	where	each	server	responds		
•  in	10ms,	99%	of	the	time	
•  in	1s,	1%	of	the	time	(1	in	100,	blue	curve)	

If	a	client	needs	to	talk	to	100	servers,	
the	probability	of	>1s	latency	is	63%	!	

Source:	Dean	and	Barroso,	"The	Tail	at	Scale",	Communications	of	ACM,	2013	

Structured	data	management	in	cloud	platforms	

•  The	cloud	provides:	
–  Distributed	file	system;	Virtual	machines;	Fine-granularity	(e.g.,	key-value	

or	document)	store;	Distributed	message	queues	

•  Based	on	this,	need	to	propose	architectures	for:	
–  Storing	very	large	volumes	of	fine-granularity	data	(relational,	XML,	JSON,	

graphs...)	and	querying	it	
–  Transactions	
–  Concurrency	control	

Cloud services provider

Big	Data	Architectures																	2019-2020	 45	Ioana	Manolescu	

AMADA:		XML	data	management	
within	the	Amazon	cloud	[CCM13]	

Fine-granularity
data store

Virtual
machines

Queue
service

File storage
service

Amazon
Scalable

Storage Service
(S3)

Google Cloud
Storage

Windows Azure
BLOB Storage

Amazon Elastic
Compute Cloud

(EC2)

Google
Compute Engine

Windows Azure
Virtual Machines

Amazon
DynamoDB

Google High
Replication
Datastore

Windows Azure
Tables

Amazon Simple
Queue Service

(SQS)

Google Task
Queues

Windows Azure
Queues

Cloud Platform

Big	Data	Architectures																	2019-2020	 46	Ioana	Manolescu	

•  Functionality:		
•  XML	and	RDF	storage	and	fine-grain	indexing	in	
the	cloud	

•  Data	storage:	
1.  Blob	storage	in	cloud	file	system	(i.e.,	S3)	
2.  Fine-granularity	indexing	in	k-v	store	

•  Data	querying:	
1.  Consult	the	index	to	delimit	the	documents	(graphs)	

which	must	be	accessed	
2.  Evaluate	query	over	relevant	documents	(graphs)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 47	

AMADA:		XML	data	management	
within	the	Amazon	cloud	[CCM13]	

AMADA:		XML	data	management	
within	the	Amazon	cloud	[CCM13]	

Front-end

① 

⑤ 

② 

④ 

Indexing
module

③ 

Indexing
service

Virtual
machines

Queue
service

File storage
service

Cloud warehouse

Big	Data	Architectures																	2019-2020	 48	Ioana	Manolescu	

AMADA	architecture	

Front-end

Query
processor

① 

⑤ 

② 

④ 

① 
② 

③  ④  ⑤ 

⑥ 
⑦ 

⑧ 

Indexing
module

③ 

Fine-granularity
fast store

Virtual
machines

Queue
service

File storage
service

Cloud warehouse

Big	Data	Architectures																	2019-2020	 49	Ioana	Manolescu	

Cloud warehouse

Indexing	and	storage	costs	

Front-end

① 

⑤ 

② 

④ 

Indexing
module

③ 

Indexing cost depends on:
-  Documents set (D)
-  Indexing strategy (I)

Fine-granularity
fast store

Virtual
machines

Queue
service

File storage
service

Big	Data	Architectures																	2019-2020	 50	Ioana	Manolescu	

Cloud warehouse

Indexing	and	storage	costs	

Front-end

Indexing
module

$r

$r

$putidx

$h

$put

$get

$r

Fine-granularity
fast store

Virtual
machines

Queue
service

File storage
service

Storage cost

Big	Data	Architectures																	2019-2020	 51	Ioana	Manolescu	

Cloud warehouse

Querying	cost	

Front-end

Query
processor

① 
② 

③  ④  ⑤ 

⑥ 
⑦ 

⑧ 

Querying cost depends on:
-  Query (q)
-  Documents set (D)
-  Indexing strategy (I)

Fine-granularity
fast store

Virtual
machines

Queue
service

File storage
service

Big	Data	Architectures																	2019-2020	 52	Ioana	Manolescu	

 table+ item+

 key

 attribute+

 name

 value

Fine-granularity	fast	store		
in	Amazon	cloud:	DynamoDB	

Big	Data	Architectures																	2019-2020	 53	Ioana	Manolescu	

Indexing	fine-granularity	data		
in	the	Amazon	cloud	

Indexing strategy I: Function associating (key,(name,value)+)+
to a document

Big	Data	Architectures																	2019-2020	 54	

DynamoDB data model

Ioana	Manolescu	

 table+ item+

 key

 attribute+

 name

 value

Indexing	fine-granularity	data		
in	the	Amazon	cloud	

•  Four	indexing	strategies	
- Label-URI	(LU)	
- Label-URI-Path	(LUP)	
- Label-URI-ID	(LUI)	
- Label-URI-Path/Label-URI-ID	(2LUPI)	

Big	Data	Architectures																	2019-2020	 55	

Indexing strategy I: Function associating (key,(name,value)+)+
to a document

Ioana	Manolescu	

 table+ item+

 key

 attribute+

 name

 value

XML	indexing:	example	

name

family

‘Smith’

name

brand

car

‘Ford’

‘Audi’

family

model

‘A3’

family

brand ‘Lee’

‘Ford’

model

’330d’

name car car

brand

‘BMW’

name

brand

car

‘Martin’

‘Ford’

family

model

‘Mustang’

doc1.xml doc2.xml doc3.xml doc4.xml

name

brand

car

‘Ford’

family

model

q

Big	Data	Architectures																	2019-2020	 56	Ioana	Manolescu	

XML	indexing:	example	

doc4.xml Martin Mustang

Result:

Big	Data	Architectures																	2019-2020	 57	

name

brand

car

‘Ford’

family

model

q

name

family

‘Smith’

name

brand

car

‘Ford’

‘Audi’

family

model

‘A3’

family

brand ‘Lee’

‘Ford’

model

’330d’

name car car

brand

‘BMW’

name

brand

car

‘Martin’

‘Ford’

family

model

‘Mustang’

doc1.xml doc2.xml doc3.xml doc4.xml

Ioana	Manolescu	

Label-URI	(LU)	strategy	

efamily
doc1.xml doc2.xml doc3.xml doc4.xml

Ø Ø Ø Ø

wFord
doc2.xml doc3.xml doc4.xml

Ø Ø Ø

ename
doc1.xml doc2.xml doc3.xml doc4.xml

Ø Ø Ø Ø

…

Look-up:	Intersection	of	URI	sets	associated	to	each	query	node	

Index: (key, (name, value))

Big	Data	Architectures																	2019-2020	 58	

name

family

‘Smith’

name

brand

car

‘Ford’

‘Audi’

family

model

‘A3’

family

brand ‘Lee’

‘Ford’

model

’330d’

name car car

brand

‘BMW’

name

brand

car

‘Martin’

‘Ford’

family

model

‘Mustang’

doc1.xml doc2.xml doc3.xml doc4.xml
✔ ✖ ✔ ✔

name

brand

car

‘Ford’

family

model

q

Ioana	Manolescu	

Label-URI-ID	(LUI)	strategy	

efamily
doc1.xml doc2.xml doc3.xml doc4.xml

[1 3 0] [1 8 0] [1 11 0] [1 8 0]

wFord
doc2.xml doc3.xml doc4.xml

[3 1 2] [6 3 3] [6 3 2]

ename
doc1.xml doc2.xml doc3.xml doc4.xml

[2 2 1] [2 2 1] [2 2 1] [2 2 1]

…

Look-up:	Structural	join	over	IDs	associated	to	each	query	node	
	

Index: (key, (name, value))

Big	Data	Architectures																	2019-2020	 59	

name

brand

car

‘Ford’

family

model

q

name

family

‘Smith’

name

brand

car

‘Ford’

‘Audi’

family

model

‘A3’

family

brand ‘Lee’

‘Ford’

model

’330d’

name car car

brand

‘BMW’

name

brand

car

‘Martin’

‘Ford’

family

model

‘Mustang’

doc1.xml doc2.xml doc3.xml doc4.xml
✖ ✔ ✖ ✖

Ioana	Manolescu	

Query	answering	(eight	runs)	

0

6000

12000

18000

24000

30000

36000

LU LUP LUI 2LUPI LU LUP LUI 2LUPI
L XL

R
es

po
ns

e
Ti

m
e

(s
)

1 instance
8 instances

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 60	

Query	answering	time	

0,1

1

10

100

1000

10000

L XL

R
es

po
ns

e
Ti

m
e

(s
)

No Index LU LUP LUI 2LUPI
No Index – 20000 docs
LU – 3 docs
LUP – 2 docs
LUI – 1 doc
2LUPI – 1 doc

Q1
Log scale

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 61	

Query	answering	cost	

0

0,2

0,4

0,6

0,8

1

L XL

C
os

t (
$)

No Index
LU
LUP
LUI
2LUPI

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 62	

Query	answering	cost	detail	(XL)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 63	

Index	cost	amortization	

-100

-75

-50

-25

0

25

50

75

100

125

0 2 4 6 8 10 12 14 16 18 20

#r
un

s
x

be
ne

fit
(I,

 W
) -

bu

ild
in

gC
os

t(I
)

runs

LU
LUP
LUI
2LUPI

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 64	

Cloud	Data	Warehouse	Services	

•  Software-as-a-Service	(SaaS)	solutions	
•  Snowflake	in	the	Amazon	Cloud		
•  Google	BigQuery		
(https://cloud.google.com/bigquery/)	

•  Amazon	Redshift		
(https://aws.amazon.com/redshift/)		

•  Microsoft	Azure	SQL	Data	Warehouse		
(https://azure.microsoft.com/)		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 65	

Cloud	Data	Warehouse	Services	
The	need:	efficient	data	processing	at	very	large	scale	à	distributed	
system	
Previous	solution:	share-nothing	architectures	(MapReduce	or	Spark	
clusters)	
•  Each	node	stores	some	data	and	computes	on	it	
•  Storage	and	computations	are	distributed	at	the	same	time	
Limitations:	
1.  Heterogeneous	workload,	e.g.	bulk	loading	(high	I/O,	little	to	no	

CPU)...	intensive	computing	(little	to	no	I/O,	high	CPU)	à	hard	to	
chose	machines!	

2.  Membership	changes	are	frequent	in	the	cloud,	lead	to	data	
shuffles	and	negatively	impact	performance	

3.  Hard	to	do	online	upgrade	in	symetric,	homogeneous	architecture	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 66	

Snowflake:	separating	storage	from	
computations	in	the	cloud	[DGZ+16]	

•  Store	data	in	the	Amazon	S3	service.	
•  Store	metadata	(catalog,	user	
management,	...)	in	high-performance,	
transactional	key-value	store	

•  Perform	computations	in	virtual	warehouses	
(Snowflake	proprietary	software)	
– A	virtual	warehouse	(VW)	has	a	set	of	workers.	It	is	
created	on	demand	by	a	Snowflake	client.	

– A	client	can	have	many	VWs.	
– Each	query	is	handled	within	one	VW.		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 67	

Snowflake	architecture		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 68	

Proprietary	SQL	engine	(with	a	few	more	goodies)	in	each	Virtual	Warehouse	

Snowflake	Virtual	Warehouses	

•  Every	VW	has	access	to	the	same	data	(from	S3)	
•  A	worker	belongs	to	exactly	one	VW	
•  Virtual	Warehouses	come	in	"T-shirt	sizes"	(XS	to	XXL)	

– Hides	cloud	provider	nodes	(even	their	number)	from	
Snowflake	client	

– Allows	independent	Snowflake	pricing	policy	
– Allows	"smart"	investment	of	cloud	services	cost:	for	a	
load	task,	book	a	VW	of	(4	nodes	for	a	15h)	
vs.	(32	nodes	for	2h).	

	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 69	

Snowflake	Virtual	Warehouses	

•  S3	much	slower	access	than	the	local	disk	of	a	
node	à	a	worker's	local	disk	acts	as	cache	
–  LRU	caching	of	the	data	last	needed	on	this	node	
–  Cache	granularity:	table	columns	

•  To	avoid	redundant	caching	of	the	same	data	
fragments	across	the	nodes	of	a	single	VW,	the	
Optimizer	assigns	files	(table)	cache	data	to	nodes	
using	hashing	on	the	the	(table,	column)	name	
–  If	this	data	is	cached,	it	is	only	cached	on	a	specific	VW	
node	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 70	

Query	evaluation	in		Snowflake	
1.  Selective	data	access	

–  Each	table	is	stored	as	as	set	of	shards	
–  Inside	each	shard,	data	is	stored	as	a	set	of	(compressed)	
columns	

–  Headers	built	for	each	column	within	the	shard	
•  Minimum	and	maximum	values	
•  No	need	to	read	a	shard	if	the	query	predicate	is	
incompatible	with	the	header	information	

2.	Query	optimizer	
–  Cost-	and	statistic-based	
–  Headers	computed	even	on	intermediary	results	
–  Some	decisions	taken	at	runtime		

3.	Intermediary	query	results	written	in	node	local	disks,	
then	(if	needed)	to	S3	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 71	

Concurrency	control	in	Snowflake	

•  Handled	globally	using	fine-granularity	data	store	
•  An	update	creates	a	new	version	of	a	table	(multi	
version	concurrency	control):	no	finer-granularity	
update		

•  Each	version	has	a	timestamp	
•  Possible	to	explicitly	query	the	version	at	or	after	
a	certain	timestamp	

•  Each	version	stays	available	90	days	after	
deletion	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 72	

GLOBAL	COURSE	WRAP-UP	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 73	

Big	Data	Architectures	
•  Modern	development	of	distributed	computing	platforms	leads	to	

unprecedented	explosion	in	Big	Data	architectures	and	systems		
•  Dimensions	of	analysis:	

–  Scale	of	distribution	
–  Data	model,	query	language	they	support	
–  CAP	compromise	(which	level	of	consistency)	
–  Performance	influenced	by:		

•  Data	storage,	indexing,	query	evaluation	algorithms...	
•  Query	optimization	
•  Synchronization	operations	

–  Success	influenced	by	performance,	ease	of	use,	killer	
applications	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 74	

References	
•  [CCM13]	Web	data	indexing	in	the	cloud:	efficiency	and	
cost	reductions.	Jesus	Camacho-Rodriguez,	Dario	
Colazzo,	Ioana	Manolescu.	EDBT,	2013	

•  [CHC+07]	G.	De	Candia,	D.	Hastorun,	M.	Jampani	et	al.	
Dynamo:	Amazon's	highly	available	key-value	store,	
ACM	SOSP	2007	

•  [DGZ+16]	The	Snowflake	Elastic	Data	Warehouse.	
Benoît	Dageville,	Thierry	Cruanes,	Marcin	Zukowski	et	
al.,	SIGMOD,	2016	

•  [SMK+01]	Chord:	A	scalable	peer-to-peer	lookup	service	
for	internet	applications,	I.	Stoica,	R.	Morris,	F.	
Kaashoek	et	al.	ACM	SIGCOMM	Computer	
Communication	Review,	2001	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 75	

