
Structured	data	management	on	top	
of	massively	parallel	platforms	

	
	Ioana	Manolescu		

INRIA	Saclay	&	Ecole	Polytechnique	
ioana.manolescu@inria.fr		

http://pages.saclay.inria.fr/ioana.manolescu/	
	

M2	Data	and	Knowledge	
Université	de	Paris	Saclay		

	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 1	

Outline	
•  MapReduce	and	other	massively	parallel	platforms	are	
becoming	the	norm	for	large-scale	computing	

•  How	to	build	Big	Data	management	architectures	based	
on	such	architectures	?	

•  We	will	see:	
–  Improving	data	access	performance	
–  Implementing	algebraic	operations	on	MapReduce	
–  A	few	visible	Big	Data	platforms	implemented	on	top	of	
MapReduce	clusters	

–  Query	optimization	revisited	for	MapReduce	(also	multi-
query	optimization)	

–  Some	open	problems	in	this	area		

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 2	

3	

Recall:	Map/Reduce	outline	

map

map

map

map vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

MergeInput Map
function Sort Shuffle Reduce

function Output

vkvk

vk vk

vk vk vk vk

vk vk vk vk

vk

vk

vk

vk

k v v v v

vk

vk
vk v

vk
vk
vk
vk

vk v v v

vk
vk
vk

vk v v

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Data	management	based	on	
MapReduce	

How	can	a	DBMS	architecture	
be	established	on	top	of	a	
distributed	computing	
platform?		
•  Store	(distribute)	the	data	

in	a	distributed	file	system	
–  How	to	split	it?	
–  How	to	store	it?	

•  Process	queries	in	a	parallel	
fashion	based	on	
MapReduce	
–  How	to	evaluate	operators?	
–  How	to	optimize	queries	

4	

Data	storage	(e.g.	relational)	

1st	logical	query	plan	

Query	optimizer	

Chosen	physical	plan	

Execution	engine	

Query	(e.g.	SQL)	

Recall:		
classical		
query	

processing	
pipeline	
in	a		

database	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

IMPROVING	DATA	ACCESS	
PERFORMANCE	IN	A	DISTRIBUTED	FILE	
SYSTEM	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 5	

Data	access	in	Hadoop	

6	

•  Basic	model:	read	all	the	data	
–  If	the	tasks	are	selective,	we	don't	really	
need	to!	

•  Database	indexes?	But:	
– Map/Reduce	works	on	top	of	a	file	
system	(e.g.	Hadoop	file	system,	HDFS)	

– Data	is	stored	only	once	
– Hard	to	foresee	all	future	processing	

•  "Exploratory	nature"	of	Hadoop	

Data	Load	

Map()	

Local	sort	

Map	write	

Merge	

Reduce	

Final	write	
Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Accelerating	data	access	in	Hadoop	

•  Idea	1:	Hadop++	[JQD2011]	
– Add	header	information	to	each	
data	split,	summarizing	split	
attribute	values	

– Modify	the	RecordReader	of	HDFS,	
used	by	the	Map().		
Make	it	prune	irrelevant	splits	

7	

Data	Load	

Map()	

Local	sort	

Map	write	

Merge	

Reduce	

Final	write	
Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Accelerating	data	access	in	Hadoop	

•  Idea	2:	HAIL	[DQRSJS12]		
– Each	storage	node	builds	an		
in-memory,	clustered	index	of	the	
data	in	its	split	

– There	are	three	copies	of	each	
split	for	reliability	à		
Build	three	different	indexes!			

– Customize	RecordReader		

8	

Data	Load	

Map()	

Local	sort	

Map	write	

Merge	

Reduce	

Final	write	
Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Hadoop,	Hadoop++	and	HAIL	

9	

Data	Load	

Map()	

Local	sort	

Map	write	

Merge	

Reduce	

Final	write	
Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Data	management	based	on	MapReduce	

10	10	

Data	storage:	HDFS	

MapReduce	program	

Parallel	execution	engine	
•  1	master	
•  N	slaves	

Query	(e.g.	SQL)	

10	

Data	storage	(e.g.	relational)	

1st	logical	query	plan	

Query	optimizer	

Chosen	physical	plan	

Execution	engine	

Query	(e.g.	SQL)	
Classical	
database	
setting	

MapReduce	
setting	

First	idea:	translate	each	query	into	a	program		

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

PROCESSING	STRUCTURED	QUERIES	
THROUGH	MAPREDUCE	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 11	

First	idea:	write	a	MapReduce	
program	for	every	query	

What are the MapReduce
•  SELECT	MONTH(c.start_date),	COUNT(*)		
FROM	customer	c	
GROUP BY MONTH(c.start_date)		

•  SELECT	c.name,	o.total		
FROM	customer	c,	order	o		
WHERE	c.id=o.cid		

•  SELECT	c.name,	SUM(o.total)		
FROM	customer	c,	order	o		
WHERE	c.id=o.cid	
GROUP BY c.name		

12	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Chosen	logical	plan	

Recall:	query	processing	stages	in	a	DBMS	
SQL	

Results	

select	driver.name	
from	driver,	car	
where	
driver.ID=car.driver		
and	
car.license=‘123AB’	

name	 ID	

Julie	 1	

Damien	 2	

driver	 license	

1	 ‘123AB’	

2	 ‘171KZ’	

Driver	 Car	

select…	from	driver,	car,	accident	where…	 Query	language	

1st	logical	query	plan	

Query	optimizer	

Chosen	physical	plan	

Chosen	physical	plan	Execution	engine	

Ioana	Manolescu	 13	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Second	idea:	translate	every	physical	operator	into	
a	MapReduce	program	

14	14	

Data	storage:	HDFS	

1st	logical	query	plan	

Query	optimizer	for	MR	

Chosen	MR-based	physical	plan	

Parallel	execution	engine	
•  1	master	
•  N	slaves	

Query	(e.g.	SQL)	

14	

Data	storage	(e.g.	relational)	

1st	logical	query	plan	

Query	optimizer	

Chosen	physical	plan	

Execution	engine	

Query	(e.g.	SQL)	
Classical	
database	
setting	

MapReduce	
setting	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	physical	operators	on	
MapReduce	

•  To	avoid	writing	code	for	each	query!	

•  If	each	operator	is	a	(small)	MapReduce	program,	we	
can	evaluate	queries	by	composing	such	small	
programs	

•  The	optimizer	can	then	chose	the	best	MR	physical	
operators	and	their	orders	(just	like	in	the	traditional	
setting)	

•  Translate:	
–  Unary	operators	(σ	and	π)	
–  Binary	operators	(mostly:								on	equality,	i.e.	equijoin)	
–  N-ary	operators	(complex	join	expressions)	

15	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	unary	operators	on	
MapReduce	

•  Selection	(σpred	(R)):	
– Split	the	R	input	tuples	over	all	the	nodes	
– Map:		
foreach	t	which	satisfies	pred	in	the	input	
partition	

•  Output	(hn(t.toString()),	t);	//	hn	fonction	de	hash	
– Reduce:	

•  Concatenate	all	the	inputs	
	

What	values	should	hn	take?	

16	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	unary	operators	on	
MapReduce	

•  Projection	(π	cols(R)):	
– Split	R	tuples	across	all	nodes	
– Map:		
foreach	t		
	output	(hn(t),	πcols(t))	

– Reduce:		
•  Concatenate	all	the	inputs	

•  Better	idea?		

17	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Recall:	physical	operators	for	binary	
joins	(classical	DBMS	scenario)	

Nested	loops	join:		
foreach	t1	in	R{	
		foreach	t2	in	S	{	
					if	t1.a	=	t2.b	then	output	(t1	||	t2)			
		}	
}	

Merge	join:	//	requires	sorted	inputs	
repeat{	
	while	(!aligned)	{	advance	R	or	S	};	
	while	(aligned)	{	copy	R	into	topR,	S	into	topS	};	
	output	topR	x	topS;		
}	until	(endOf(R)	or	endOf(S));	

Hash	join:	//	builds	a	hash	table	in	memory	
While	(!endOf(R))	{	t	ß	R.next;	put(hash(t.a),	t);	}	
While	(!endOf(S))	{	t	ß	S.next;		
																																			matchingR	=	get(hash(S.b));	
																																			output(matchingR	x	t);	
																																	}	

O(|R|x|S|)	
O(|R|+|S|)	

O(|R|+|S|)	

Example:	equi-join	(R.a=S.b)	
	

Also:		
Block	nested	loops	join	
Index	nested	loops	join	
Hybrid	hash	join	
Hash	groups	/	teams	
…			

Ioana	Manolescu	 18	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	MapReduce	(1)	

Repartition	join	[Blanas	2010]	(~symetric	hash)	
	
Mapper:	
•  Output	(t.a,	(«R»,	t))	for	each	t	in	R	
•  Output	(t.b,	(«S»,	t))	for	each	t	in	S	
Reducer:	
•  Foreach	input	key	k	

–  Resk	=	set	of	all	R	tuples	on	k	×														
												set	of	all	S	tuples	on	k	

•  Output	Resk	

R	 S	
R.a=S.b	

Ioana	Manolescu	 19	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	MapReduce	(1)	
Repartition	join		

•  R(rID,	rVal)	join(rID	=	SID)	S(sID,	sVal)	

20	

2	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	MapReduce	(2)		

•  Semijoin-based	MapReduce	join		
•  Recall:	semijoin	optimization	technique:	

–  R	join	S	=	(R	semijoin	S)	join	S	

	
–  Useful	in	distributed	settings	to	reduce	transfers:	if	the	
distinct	S.b	values	are	smaller	than	the	non-matching	R	
tuples	

–  Symetrical	alternative:	R	join	S	=	R	join	(S	semijoin	R)	

21	

R	 S	
R.a=S.b	 S	

R.a=S.b	

R	 S	

S	
R.a=S.b	

R	 δ(S.b)	

Or	more	
exactly:	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	MapReduce	(2)		

•  Semijoin-based	MapReduce	join		

22	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	MapReduce	(3)	

Broadcast	(map-only)	MapReduce	join	[Blanas2010]		
If	|R|	<<	|S|,	broadcast	R	to	all	nodes!	
•  Example:	S	is	a	log	data	collection	(e.g.	log	table)	
•  R	is	a	reference	table	e.g.	with	user	names,	

countries,	age,	… 		
•  Facebook:	6	TB	of	new	log	data/day	

Map:	Join	a	partition	of	S	with	R.	
Reduce:	nothing	(«	map-only	join	»)	

23	

R	 S	
R.a=S.b	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	equi-joins	on	
MapReduce	(4)	

•  Trojan	Join	[Dittrich	2010]	
•  A	Map	task	is	sufficient	for	the	join	if	relations	are	already	co-

partitioned	by	the	join	key	
–  The	slice	of	R	with	a	given	join	key	is	already	next	to	the	slice	of	S	with	the	

same	join	key		
–  This	can	be	achieved	by	a	MapReduce	job	similar	to	repartition	join	but	

which	builds	co-partitions	at	the	end	

–  Useful	when	the	joins	can	be	known	in	advance	(e.g.	keys	–	foreign	keys)	

24	

Co-partitioned	split	

Co-group	 Co-group	
HR	 DR	 HS	 DS	 HR	 DR	 HS	 DS	…	

Co-partitioned	split	

Co-group	
HR	 DR	 HS	 DS	 …	…	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	binary	equi-joins	in	
MapReduce		

Algorithm	 +	 -		

Repartition	Join	 Most	general	 Not	always	the	most	
efficient	

Semijoin-based	Join	 Efficient	when	semijoin	is	
selective	(has	small	results)	

Requires	several	jobs,	one	
must	first	do	the	semi-join	

Broadcast	Join	 Map-only	 One	table	must	be	very	
small	

Trojan	Join	 Map-only	 The	relations	should	be	co-
partitioned	

25	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	n-ary	(«	multiway	»)		
join	expressions	in	MapReduce	

•  R(RID,	C)	join	T(RID,	SID,	O)	join	S(SID,	L)	
•  «	Mega	»	operator	for	the	whole	join	expression?...	

•  Three	relations,	two	join	attributes	(RID	and	SID)	
•  Split	the	SIDs	into	Ns	groups	and	the	RIDs	in	Nr	groups.	

Assume	Nr	x	Ns	reducers	available.		
•  Hash	T	tuples	according	to	a	composite	key	made	of	the	

two	attributes.	Each	T	tuple	goes	to	one	reducer.	
•  Hash	R	and	S	tuples	on	partial	keys	(RID,	null)	and	(null,	

SID)		
•  Distribute	R	and	S	tuples	to	each	reducer	where	the	non-

null	component	matches	(potentially	multiple	times!)	

26	Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Implementing	multi-way	joins	in	MR:	replicated	joins	

27	

RID=1	SID=1	

RID=1	SID=2	

RID=2	SID=1	

RID=2	SID=2	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

Particular	case	of	multi-way	joins:		
star	joins	on	MapReduce	

•  Same	join	attribute	in	all	relations:		
R(x,	y)	join	S(x,	z)	join	T(x,	u)	

•  If	N	reducers	are	available,	it	suffices	to	
partition	the	space	of	x	values	in	N		

•  Then	co-partition	R,	S,	T	à	map-only	join		

28	

S(Z,		X)	

T(
U
,		
X)
	

Ioana	Manolescu	Big	Data	Architectures	D&K	/	UPSay											2019-2020	

QUERY	OPTIMIZATION	FOR	
MAPREDUCE	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 29	

Query	optimization	for	MapReduce	

•  Given	a	query	over	relations	R1,	R2,	…,	Rn,	
how	to	translate	it	into	a	MapReduce	
program?	
– Use	one	replicated	join.	Pbm:	the	space	of	
composite	join	keys	(Att1|Att2|…|Attk)	is	limited	
by	the	number	of	reducers	à		
may	shuffle	some	tuples	to	many	reducers.		

– Use	n-1	binary	joins	
– Use	n-ary	(multiway)	joins	only	

30	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

A	yardistick	for	MapReduce	query	
optimization:	SPARQL	

•  The	standard	language	for	RDF	
•  Conjunctive	query	=	join	of	triples	
•  Relational	vs.	RDF	data	modeling:		

–  Relational:	2	atoms	
Person(id,	name,	birthdate),	Address(pID,	street,	city,	zipcode,	country)	

–  RDF:	7	atoms	
triple(pID,	hasName,	name),	triple(pID,	bornOn,	birthDate),	triple(pID,	
hasAddress,	aID),	triple(aID,	hasStreet,	street),	triple(aID,	hasCity,	city),	
triple(aID,	hasZip,	zipCode),	triple(aID,	hasCountry,	country)	

–  SPARQL	query	optimization	is	a	stress	test	for	MapReduce	platforms	
Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 31	

pid	

name	

birthdate	

aID	

street	

city	

zipcode	

country	

hasNam
e	

hasAddress	
hasStreet	

hasZip
	

hasCountry	
hasCity	

bornOn	

Query	plans	on	MapReduce	

T3	

T2	T1	

T4	

T5	

T6	

T7	

T8	

T9	

T10	

T11	

– Left	deep	plans	with	binary	joins:	
	[Olston08][Rohloff10][Schatzle11]	
– Left	deep	plans	with	n-ary	joins	

	

Height=10	

		32	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Query	optimization	overview	
– Left	deep	plans	with	binary	joins	
				[Olston08][Rohloff10][Schatzle11]	
– Left	deep	plans	with	n-ary	joins:	
				[Papailiou13]	

	

Height=7	

T3	T2	T1	

T5	T4	

T7	

T6	

T10	T8	

T11	

T9	

T12	

		33	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Query	optimization	overview	
– Left	deep	plans	with	binary	joins	
				[Olston08][Rohloff10][Schatzle11]	
– Left	deep	plans	with	n-ary	joins	
				[Papailiou13]	
– Bushy	plans	with	binary	joins:	
					[Neumann10][Tsialiamanis12][Gubichev14]	

	

Height=5	

T3	T2	T1	 T5	T4	 T7	T6	

T11	

T8	

T9	 T10	

		34	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Query	optimization	overview	
–  Left	deep	plans	with	binary	joins	
					[Olston08][Rohloff10][Schatzle11]	
–  Left	deep	plans	with	n-ary	joins	
				[Papailiou13]	
–  Bushy	plans	with	binary	joins	
				[Neumann10][Tsialiamanis12][Gubichev14]	
–  Bushy	plans	with	n-ary	joins	only	at	leafs:	
					[Wu11][Kim11][Huang11][Ravindra11][Lee13]	

	

	

Height=4	

T3	T2	T1	 T5	T4	 T7	T6	

T1
1	

T8	 T9	

T10	

		35	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Query	optimization	overview	
–  Left	deep	plans	with	binary	joins	
				[Olston08][Rohloff10][Schatzle11]	
–  Left	deep	plans	with	n-ary	joins	
					[Papailiou13]	
–  Bushy	plans	with	binary	joins	
					[Neumann10][Tsialiamanis12][Gubichev14]	
–  Bushy	plans	with	n-ary	joins	only	at	leafs	
					[Wu11][Kim11][Huang11][Ravindra11][Lee13]	
–  Bushy	plans	with	n-ary	joins:	
					[Husain11][Goasdoué2015][Wu2017]	

	
	

Height=3	

T3	T2	T1	 T5	T4	 T7	T6	 T9	T8	 T11	T10	
		36	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Query	optimization	in	MapReduce	
•  Usually,	each	join	layer	is	
translated	into	a	set	of	
parallel	MR	jobs	

•  The	plan	height	=	the	
number	of	successive	jobs		

•  Impacts	execution	time!	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 37	

T3	

T2	T1	

T4	

T5	

T6	

T7	

T8	

T9	

T10	

T11	

Height=10	

		37	

Height=3	

T3	T2	T1	 T5	T4	 T7	T6	 T9	T8	 T11	T10	

CliqueSquare:	flat	plans	for	
massively	parallel	RDF	queries	

•  Focus:	Build	massively	parallel	flat	plans	for	RDF	
queries	by	exploiting	n-ary	(star)	equality	joins.	

•  Publication,	code	at:	
https://team.inria.fr/oak/projects/cliquesquare/		

•  Main	idea:		
•  identify	subsets	of	>=2	triples	that	can	be	joined	through	
an	n-ary	join	on	a	common	variable	at	a	given	moment	

•  reiterate	on	the	intermediary	results	thus	obtained	until	
there	is	only	one	set	of	tuples	left	(nothing	to	join:	the	
query	result	has	been	obtained)	

	
		38	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

CliqueSquare	algorithm:		
Variable	Graphs	

•  Represent	incoming	queries	and	intermediary	
relations	

	

	

SELECT	?x	?y	
WHERE	{	
T1: 	?x	takesCourse	?y	.	
T2: 	?x	member	?z	.	
T3: 	?w	advisor	?x	.	
T4: 	?w	name	?u	.}	

T1	 T2	

T3	

?x	

?x	

?x	

T4	

?w	

Query	 Variable	graph	

Nodes	are	connected	with	an	edge	if	they	share	a	
variable	

		39	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

States	

T3	T2	T1	 T5	T4	 T7	T6	 T9	T8	 T10	T11	

Each	node	of	a	graph	corresponds	to	a	clique	of	
nodes	of	the	previous	graph.		

A	join	operator	corresponds	to	the	"collapsing"	
of	one	clique	(triples	that	all	join	on	the	same	

variables)	into	a	single	node	

		40	

CliqueSquare:	optimization	with	n-
ary	joins	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

From	logical	plan		to	physical	plans	

T3	

T2	T1	 T5	T4	

T7	T6	 T9	T8	

T10	T11	

σ	 σ	 σ	 σ	 σ	 σ	

π	

		41	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Logical	plan	à	physical	plan	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

σ	 σ	 σ	 σ	 σ	 σ	

π	

Ø  Reading	the	triples	from	HDFS	requires	a	Map	Scan	(MS)	operator	

		42	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Logical	plan	à	Physical	plan	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

π	

Ø  Logical	selections	(σ)	are	translated	to	physical	selections	(F)	

		43	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Logical	plan	à	Physical	plan	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

π	

MJ	 MJ	 MJ	 MJ	 MJ	

Ø  First	level	joins	are	translated	to	Map	side	joins	(MJ)	taking	advantage	of	the		
data	partitioning	

		44	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Logical	plan	à	Physical	plan	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

π	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

Ø  All	subsequent	joins	are	translated	to	Reduce	side	joins	(RJ)	

		45	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Physical	plan	à	MapReduce	jobs	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

MS	 MS	

RJ	

π	

Ø  Group	the	physical	operators	into	Map/Reduce	tasks	and	jobs	

		46	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Physical	plan	à	MapReduce	jobs	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

MS	 MS	

RJ	

π	

Ø  Selections	(F)	and	projections	(π)	belong	to	the	same	task	as	their	child	operator	

		47	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Physical	plan	à		MapReduce	jobs	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

MS	 MS	

RJ	

π	

Ø  Map	joins	(MJ)	along	with	all	their	descendants	are	executed	in	the	same	task	

		48	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Physical	plan	à		MapReduce	jobs	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

MS	 MS	

RJ	

π	

Ø  Any	other	operator	(RJ	or	MS)	is	executed	in	a	separate	task	

		49	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Physical	plan	à		MapReduce	jobs	

MS	
[T3]	

MS	
[T2]	

MS	
[T1]	

MS	
[T5]	

MS	
[T4]	

MS	
[T7]	

MS	
[T6]	

MS	
[T9]	

MS	
[T8]	

MS	
[T10]	

MS	
[T11]	

F	 F	 F	 F	 F	 F	

MJ	 MJ	 MJ	 MJ	 MJ	

RJ	 RJ	

MS	 MS	

RJ	

π	

JOB	1	

Ø  Tasks	are	grouped	into	jobs	in	a	bottom-up	traversal	

		50	

JOB	2	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

Structured	DM	on	top	of	MapReduce	

•  We	have	seen:	
–  Techniques	for	improving	data	access	selectivity	in	a	
distributed	file	system	(headers;	multiple	indexes)		

– Algorithms	for	implementing	operators:	select,	
project,	join	

– Query	optimization	for	massively	parallel,	n-ary	joins	
•  Next:	

– A	few	highly	visible	systems		
–  Some	of	their	mechanisms	for	consistency	in	a	
distributed	setting	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 51	

Structured	DM	on	top	of	MapReduce	

Language parser

Big	Data	Architectures																	
2019-2020	 52	

Hadoop
MapReduce

Results

Possibly algebraic
optimizer

MapReduce compiler and optimizer

System-dependent	
scripting	language	

Ioana	Manolescu	

Google	Bigtable	[CDG+06]	

•  One	of	the	earliest	NoSQL	systems	
•  Goal:	store	data	of	varied	form	to	be	used	by	
Google	applications:	
–  	Web	indexing,	Google	Analytics,	Finance	etc.	

•  Approach:		
–  very	large,	heterogeneous-structure	table		

•  Data	model:		
						Row	key	à	column	key	à	timestamp	à	value	
Different	rows	can	have	different	columns,	each	
with	their	own	timestamps	etc.		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 53	

Google	Bigtable	
c0	 c1	 c4	 c7	
…	 …	 …	 …	

c1	 c2	 c3	 c4	 c5	 c6	
ts11:v1	 ts21:v22	

ts22:v22	
ts31:v31	
ts32:v32	
ts33:v33	

ts41:v41	
ts42:v42	

ts22:v51	 ts61:v61	
ts22:v62	

r1	

r2	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 54	

Google	Bigtable	

•  Row	key	à	column	key	à	timestamp	à	value	
•  Rows	stored	sorted	in	lexicographic	order	by	the	key	
•  Row	range	dynamically	partitioned	into	tablets	

–  Tablet	=	distribution	/	partitioning	unit	
•  Writes	to	a	row	key	are	atomic		

–  row	=	concurrency	control	unit	
•  Access	control	unit	=	column	families	

–  Family	=	typically	same-type,	co-occurring	columns	
–  «	At	most	hundreds	for	each	table	»	
–  E.g.	anchor	column	family	in	Webtable	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 55	

Apache	projects	around	Hadoop	

•  Hive:	relational-like	interface	on	top	of	
Hadoop	

•  HiveQL	language:	
CREATE	table	pokes	(foo	INT,	bar	STRING);	
SELECT	a.foo	FROM	invites	a	WHERE	a.ds='2008-08-15’;	
FROM	pokes	t1	JOIN	invites	t2	ON	(t1.bar	=	t2.bar)		
INSERT	OVERWRITE	TABLE	events	SELECT	t1.bar,	t1.foo,	
t2.foo;	
+	possibility	to	plug	own	Map	or	Reduce	function	when	
needed…		

56	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	

Apache	projects	around	Hadoop	

•  HBASE:	very	large	tables	on	top	of	HDFS	(«goal:	billions	of	
rows	x	millions	of	columns	»),	based	on	«	sharding	»	

•  Apache	version	of	Google’s	BigTable	[CDG+06]	(used	for	
Google	Earth,	Web	indexing	etc.)	

•  Main	strong	points:		
–  Fast	access	to	individual	rows	
–  read/write	consistency	
–  Selection	push-down	(~	Hadoop++)	

•  Does	not	have:	column	types,	query	language,	…	

57	Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	

Apache	projects	around	Hadoop	
•  PIG:		rich	dataflow	(«	SQL	+	PL/SQL	»	style)	language	on	

top	of	Hadoop	
•  Suited	for	many-step	data	transformations	(«	extract-

transform-load	»)	

•  Flexible	data	model	(~	nested	relations)	
•  Some	nesting	in	the	language	(<	2	FOREACH	J)	
	

A	=	LOAD	'student'	USING	PigStorage()		
							AS	(name:chararray,	age:int,	gpa:float);		
B	=	FOREACH	A	GENERATE	name;		
DUMP	B;		

π	name	

student	

A	

B	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 58	

Apache	projects	around	Hadoop	
•  PIG:		rich	dataflow	(«	SQL	+	PL/SQL	»	style)	language	

on	top	of	Hadoop	

59	

A	=	LOAD	'data'	AS	(f1:int,f2:int,f3:int);		
DUMP	A;		
(1,2,3)	(4,2,1)	(8,3,4)	(4,3,3)	(7,2,5)	(8,4,3)	
B	=	GROUP	A	BY	f1;		
DUMP	B;		
(1,{(1,2,3)})	(4,{(4,2,1),(4,3,3)})	(7,{(7,2,5)})		
(8,{(8,3,4),(8,4,3)})		
X	=	FOREACH	B	GENERATE	COUNT(A);		
DUMP	X;		
(1L)	(2L)	(1L)	(2L)	

Γ	f1	

data	

A	

B	
count(*)	

X	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	

PigLatin:	repeated	execution	of	some	
computations	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2

Big	Data	Architectures																	2019-2020	 60	Ioana	Manolescu	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin:	repeated	execution	of	some	
computations	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2

r

45% of the original s1 + s2 execution time

Big	Data	Architectures																	2019-2020	 61	Ioana	Manolescu	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin:	repeated	execution	of	some	
computations	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

45% of the original s1 + s2 execution time

Big	Data	Architectures																	2019-2020	 62	

s1 s2

r

Ioana	Manolescu	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin:	repeated	execution	of	some	
computations	

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

Left outer join

45% of the original s1 + s2 execution time

Big	Data	Architectures																	2019-2020	 63	

s1 s2

r

Ioana	Manolescu	

Reuse-based	optimizer	within	Pig	[CCH+16]	

Reuse-based optimizer

Hadoop
MapReduce

Pig Latin parser

Results

Pig Latin logical optimizer

MapReduce compiler and optimizer

Script
2

Script
n...

Script
1 Optimizer:	

•  Translates	PigLatin	
programs	into	
nested	relational	
algebra	for	bags	

•  Applies	equivalence	
laws	to	identify	
repeated	
subexpressions	

•  Replaces	all	but	one	
of	the	
subexpressions,	
reuses	the	result	of	
the	last	

•  Reduced	execution	
time	by	x4	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 64	

Spanner:	A	More	Recent	Google	
Distributed	Database	[CD+12]	

•  A	few	Universes	(e.g.	one	for	production,	one	for	
testing)		

•  Universe	=	set	of	zones	
–  Zone	=	unit	of	administrative	deployment	
– One	or	several	zones	in	a	datacenter		
–  1	zone	=	1	zone	master	+	100s	to	1000s	of	span	servers	
–  The	zone	master	assigns	data	to	span	servers	
–  Each	span	servers	answers	client	requests	
–  Each	span	server	handles	100	to	1000	tablets		

•  Tablet	=	{	key	à	timestamp	à	string	}	
•  Table	=	set	of	tablets.	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 65	

More	on	the	Spanner	data	model		

•  Basic:	key	à	timestamp	à	value	
•  Directory	(or	bucket):	set	of	contiguous	keys	
that	share	a	common	prefix	
– Data	moves	around	by	the	bucket/directory	

•  On	top	of	the	basic	model,	applications	see	a	
surface	relational	model	
– Rows	x	columns	(tables	with	a	schema)	
– Primary	keys:	each	table	must	have	one	or	several	
primary-key	columns	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 66	

Spanner	tables	

•  Tables	can	be	organized	in	hierarchies	
–  Tables	whose	primary	key	extends	the	key	of	the	
parent	can	be	stored	interleaved	with	the	parent	

–  Example:	photo	album	metadata	organized	first	by	
the	user,	then	by	the	album	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 67	

Spanner	replication	

•  Used	for	very	high-availability	storage	
•  Store	data	with	a	replication	factor	(3	to	5)	
•  Applications	can	control:		

– Which	datacenters	control	which	data	
– How	far	data	is	from	users	(to	control	read	latency)	
– How	far	replicas	are	from	each	other	(to	control	write	
latency)	

– How	many	replicas	are	maintained		
•  Concurrency	control	relies	on	a	global	timestamp	
mechanism	called	«	TrueTime	»		(see	next)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 68	

Spanner	TrueTime	service	

•  TT.now()	returns	a	Ttinterval	[earliest;	latest]	
– Uncertainty	interval	made	explicit	
–  The	interval	is	guaranteed	to	contain	the	absolute	
time	during	which	TT.now()	was	invoked	

–  TrueTime	clients	wait	to	avoid	the	uncertainty	
•  Based	on	GPS	and	atomic	clocks	

–  Implemented	by	a	set	of	time	master	machines	per	
datacenter	and	a	time	slave	daemon	per	machine	

–  Every	daemon	polls	a	variety	of	masters	to	reduce	
vulnerability	to	

•  Errors	from	a	single	master	
•  Attacks	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 69	

Spanner	consistency	guarantees	

•  Linearizability:	
If	transaction	T1	commits	before	T2	starts	
Then	the	commit	timestamp	of	T1	is	guaranteed	
to	be	smaller	than	the	commit	timestamp	of	T2	

à	globally	meaningful	commit	timestamps	
à 	globally-consistent	reads	across	the	database	at	
a	timestamp	

May	not	read	the	last	version,	but	one	from	5-10	
seconds	ago!	(Last	globally	committed	version.)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 70	

Spanner	consistency	guarantees	

•  Linearizability:	
If	transaction	T1	commits	before	T2	starts	
Then	the	commit	timestamp	of	T1	is	
guaranteed	to	be	smaller	than	the	commit	
timestamp	of	T2	

	
à	globally	meaningful	commit	timestamps	
à	globally-consistent	reads	across	the	database	
at	a	timestamp	

«	Some	authors	have	 claimed	 that	 general	 two-
phase	 commit	 is	 too	 expensive	 to	 support,	
because	 of	 the	 performance	 or	 availability	
problems	 it	 brings.	 We	 believe	 it	 is	 better	 to	
have	 application	 programmers	 deal	 with	
performance	 problems	 due	 to	 overuse	 of	
transactions	 as	 bottlenecks	 arise,	 rather	 than	
always	coding	around	the	lack	of	transactions.	»	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 71	

F1:	Distributed	Database	from	Google	
[SVS+13]		

•  Built	on	top	of	Spanner	
•  Goals:		

– Scalability,	availability		
– Consistency	(almost	ACID)	
– Usability	(=	full	SQL	+	transactional	indexes	etc.)	

•  F1	from	genetics	«	Filial	1	Hybrid	»	(cross	
mating	of	very	different	parental	types)	
– F1	is	a	hybrid	between	relational	DBs		
and	scalable	NoSQL	systems	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 72	

F1	data	model	
•  Surface	model:	relational	
•  Storage:	Clustered,	inlined	table	hierarchies		(Spanner)	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 73	

Transactions	in	F1	
•  Snapshot	(read-only)	transactions	(no	locks)	

–  Read	at	Spanner's	global	safe	timestamp,	typically	5-10	seconds	
old,	from	a	local	replica	

–  Default	for	SQL	and	MapReduce.	All	clients	see	the	same	data	at	
the	same	timestamp.		

•  Pessimistic	transactions	(provided	by	Spanner)	
–  Shared	or	exclusive	locks;	may	abort	

•  Optimistic	transactions	
–  Read	phase	(no	lock),	then	short	write	phase	
–  Each	row	has	last	modification	timestamp	
–  To	commit	optimistic	T1,	F1	creates	a	short	pessimistic	T2	which	
attempts	to	read	all	of	T1’s	rows.	If	T2	has	a	different	version	
than	T1,	then	T1	is	aborted.	Otherwise,	T1	commits.	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 74	

More	on	transactions	in	F1		
•  Benefits	of	optimistic	transactions:	

–  Reads	never	hold	locks,	never	conflict	with	writes	
•  Avoid	performance	drawback	when	a	read	runs	for	too	long	or	
aborts	

•  Can	run	for	a	long	time	without	hurting	performance	
•  Self-contained:	can	be	retried	(after	abort)	at	the	F1	server,	

hiding	transient	Spanner	errors	
–  Pessimistic	transactions	cannot	be	retried	at	the	server,	because	they	

require	re-running	client	operations	that	took	locks	
•  Drawbacks:		

–  Concurrency	control	through	last	modif	timestamp	only	
works	for	existing	rows	à	insertion	phantoms	

•  The	same	transaction	may	get	different	results	in	two	successive	
reads	of	the	same	data	

–  Low	throughput	if	high	contention	as	many	transactions	will	
abort	(pessimistic	ones	will	also	abort	in	this	case).		

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 75	

Query	
optimization	in	F1	

Big	Data	Architectures																	2019-2020	 Ioana	Manolescu	 76	

OPEN	PROBLEMS	IN	MASSIVELY	
PARALLEL	DATA	MANAGEMENT	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 77	

Open	problems	in	MapReduce-style	
processing	

•  The	performance	of	a	MapReduce	execution	in	a	Hadoop	/	
Spark	cluster	depends	on	a	large	number	of	parameters	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 78	

https://arxiv.org/pdf/1106.0940.pdf		

Open	problems	in	MapReduce-style	
processing	

•  The	performance	of	a	MapReduce	execution	in	a	Hadoop	/	Spark	cluster	
depends	on	a	large	number	of	parameters	

	
•  Even	when	hidden	to	(casual)	users,	these	parameters	impact	the	

performance	of	a	job	
•  ...	while	the	choices	made	also	impact	the	monetary	costs	

•  How	to	automatically	set	the	values	for	these	parameters,	while	
respecting	users'	budget	constraints	and	ensuring	efficient	execution?		
–  Cost-based	optimization	
–  Learning	and	re-setting	parameters	during	execution	

•  Jobs	combine	SQL-style	and	ML	processing	
•  Iterative;	low	response	time	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 79	

https://arxiv.org/pdf/1106.0940.pdf		

Yanlei	Diao	
(Ecole	

Polytechnique)	

Open	problems	in	MapReduce-style	
processing	

•  For	optimization,	we	need	to	understand	when	
two	computations	are	equivalent	
–  Similar	to	algebraic	equivalence	

•  When	can	we	push	a	selection	below	a	classifier?		
– Need	to	reason	about	the	properties	of	ML	operation	

•  When	is	the	partial	result	of	a	(ML+SQL)	job	
reusable	for	future	computations?		
–  Similar	to	view-based	query	rewriting	
– Declarative	data	analytics	[MV19]	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 80	

Declarativeness	criteria	for		
data	analytics	systems	

1.   Data	abstractions:	matrices,	vectors,	tables	etc.	are	
available	as	abstractions	and	independently	from	
their	implementation	(e.g.,	sparse/dense	etc.)	

2.   Data	processing	operators:	join,	group	by	etc.	are	
available	in	the	platform	(do	not	need	to	be	coded)	

3.   Advanced	analytics	operators:	linear	algebra,	
probability	distribution	are	available	in	the	platform	

4.   Plan	optimization:	users'	programs	automatically	
optimized	by	the	system		

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 81	

Declarativeness	criteria	for		
data	analytics	systems	

5.   Lack	of	control	flow:	the	user	does	not	have	
access	to	control	flow	constructs,	which	specify	
a	given	order	of	execution	

6.   Automatic	computation	of	the	solution:	the	
parameters	of	a	machine	learning	model	should	
be	computed	by	the	system	in	a	way	
transparent	to	the	user.		

7.   No	need	for	code	with	unknown	semantics:	
such	code	hinders/breaks	the	optimization	
process	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 82	

Example:	benchmark	task	for	
declarativeness	of	data	analytics	tools	

•  Predict	the	median	value	of	Boston	suburban	houses	based	
on	a	number	of	features	about	a	suburb	
–  e.g.,	crime	rate,	distance	from	employment	centers	etc.	
–  Use	linear	regression	with	gradient	descent	to	minimize	error	
	
	
	
	
	

•  Before	training,	preprocess	(filter)	the	data	to	locations	
very	close	to	Charles	river	

•  How	can	this	be	implemented	in	different	systems?	What	
do	users	still	need	to	do	in	a	non-declarative	fashion?		

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 83	

Example:	PigLatin	on	the	declarative	
analytics	benchmark	

•  Supports:	
– Data	abstractions,	data	processing	operators,	plan	
optimization,	no	control	flow,	UDF-free	operators	

•  Does	not	support:	
– ML	parameter	tuning	
–  Iteration	(loop-until)!	

•  Therefore,	this	had	to	be	coded	outside	the	main	
PigLatin	script	(write	to	file...)	

•  This	compromises	declarativeness	and	performance	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 84	

Example:	Spark	on	the	declarative	
analytics	benchmark	

•  Supports:	
–  Data	processing	operators	
–  At	least	some	linear	algebra	operators	

•  Does	not	(fully)	support:	
–  Linear	algebra,	to	the	extent	that	users	have	to	be	aware,	
e.g.,	of	the	details	of	various	matrix	implementations,	and	
not	all	operations	(e.g.	transpose)	are	available	on	all	of	
them...	

–  Libraries	exist	for	this	(e.g.	Breeze)	but	require	data	
conversion	code		

–  Operators	are	essentially	2nd	order	functions	(invisible	
semantics)	

–  User	isolation	from		the	control	flow	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 85	

Declarative	data	analytics		
benchmark	results		(1)	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 86	

Declarative	data	analytics		
benchmark	results	(2)	

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 87	

Conclusion	

•  Data	management	based	on	MapReduce:	
brave	new	world	
– Large	storage	and	computing	capabilities	
– Re-design/re	thinking	from	scratch	the	multiple	
layers	

– ML	gaining	ground		

Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	 88	

References	
•  [BPERST10]	S.	Blanas,	J.	M.	Patel,	V.	Ercegovac,	J.	Rao,	E.	J.	Shekita	and	Y.	Tian,	

“A	Comparison	of	Join	Algorithms	for	Log	Processing	in	MapReduce,”	in	
SIGMOD	2010.		

•  [LMDMcGS11]	Boduo	Li,	Edward	Mazur,	Yanlei	Diao,	Andrew	McGregor,	and	
Prashant	Shenoy.	"A	Platform	for	Scalable	One-Pass	Analytics	using	
MapReduce",	ACM	SIGMOD	2011	

•  [DQRSJS]	Jens	Dittrich,	Jorge-Arnulfo	Quiané-Ruiz,	Stefan	Richter,	Stefan	Schuh,	
Alekh	Jindal,	Jorg	Schad.	"Only	Aggressive	Elephants	are	Fast	Elephants",	VLDB	
2012	

•  [Goasdoué2015]	F.	Goasdoué,	Z.	Kaoudi,	I.	Manolescu,	J.	Quiané-Ruiz	and	S.	
Zampetakis.	"CliqueSquare:	Flat	plans	for	massively	parallel	RDF	Queries",	ICDE	
2015	

•  [JQD11]	A.Jindal,	J.-A.Quiané-Ruiz	and	J.Dittrich.	"Trojan	Data	Layouts:	Right	
Shoes	for	a	Running	Elephant"	SOCC,	2011	

•  [MW19]	N.	Makrynioti	and	V.	Vassalos.	"Declarative	Data	Analytics:	A	Survey",	
2019	

•  [Wu2017]	Buwen	Wu	;	Yongluan	Zhou	;	Hai	Jin	;	Amol	Deshpande.	"Parallel	
SPARQL	Query	Optimization",	ICDE	2017	

89	Big	Data	Architectures	D&K	/	UPSay											2019-2020	 Ioana	Manolescu	

