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ABSTRACT
For more than three decades, researchers have been developping
generation methods for the weather, energy, and economic domain.
These methods provide generated datasets for reasons like system
evaluation and data availability. However, despite the variety of
approaches, there is no comparative and cross-domain assessment
of generation methods and their expressiveness. We present a simi-
larity measure that analyzes generation methods regarding general
time series features. By this means, users can compare generation
methods and validate whether a generated dataset is considered
similar to a given dataset. Moreover, we propose a feature-based
generation method that evolves cross-domain time series datasets.
This method outperforms other generation methods regarding the
feature-based similarity.

CCS CONCEPTS
•Mathematics of computing→ Time series analysis; • Com-
puting methodologies → Modeling and simulation; • Infor-
mation systems→ Similarity measures;
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1 INTRODUCTION
Exhaustive data gathering and analytics are not novel trends any-
more but can be considered standard practice in many domains. A
major part of this practice deals with time series data from sensor
measurements or other types of monitoring that form the prime
data sources for automation and the "internet of things" vision.
Thus, substantial amounts of research are spent on issues like time
series storage, processing, analysis, forecasting, and many more.
However, past decades have also produced research concerning
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time series generation. While this looks like a paradox considering
the abundance of data that is collected, it is still a very important
task for two major reasons: system evaluation and data availability.

System evaluation is a crucial phase in many industrial and orga-
nizational processes. It is done in order to test and verify component
performance, to assess system robustness, and to estimate the cor-
rect sizing of necessary resources. Generated datasets are key to
this phase by providing comparability and a variety of possible
inputs for the systematic and thorough assessment of a system
[6, 9, 19]. In addition, generated datasets can include user-given
hypotheses. Thus, they allow users to study system behavior and
assess risks in possible future scenarios [13, 23].

Data availability covers the many side conditions that accom-
pany data gathering in general. Often, data might not be available
in the required amount or quality. This can be due to very complex
and expensive measurement procedures or because of sensitive and
error-prone sensors. In addition to these technical issues, data avail-
ability is often restricted by legal regulations concerning privacy
and intellectual property. With generated time series, the impact
of these issues can be lessened, e.g. by compensating missing or
erroneous data and by anonymizing confidential data [3, 8, 14, 16].

Time series generation has been applied in a multitude of do-
mains. It is used for simulating weather parameters such as wind
speed and direction, solar radiation, humidity, and rainfall precipita-
tion [3, 9, 14, 16]. The energy domain utilizes it to assess renewable
energy power plants [8, 9], while industry and economy apply gen-
erated time series for various evaluation purposes [6, 11, 15, 19].

While these approaches are valuable, they represent isolated
solutions tailored to specific domains and applications. Thus, each
approach employs an individual generation method based on in-
dividual time series characteristics arising from domain specifics.
Concerning the importance of time series generation, this poses a
challenge as it makes the topic difficult to access for new users that
want to utilize it in their domain. In the worst case, an interested
user would have to survey existing work before either adapting a
method to his/her respective domain, or starting from scratch.

In this paper we address this issue by proposing a concept for
cross-domain time series generation. We analyze existing gener-
ation methods in Section 2 regarding their properties and their
expressiveness. In Section 3 we propose a feature set that repre-
sents a component-based time series model. Moreover, we describe
a similarity measure based on this feature set. In Section 4, we
introduce our feature-based time series generation approach. Our
dataset-oriented approach not only allows the controlled gener-
ation of time series that abide by the key characteristics of their
originating domain, but also provides a way to evolve new char-
acteristics for hypothetical "what-if" scenarios. We compare the
performance of our approach with existing generation methods in
Section 5 before we conclude the paper in Section 6.

https://doi.org/10.1145/3221269.3221293
https://doi.org/10.1145/3221269.3221293
https://doi.org/10.1145/3221269.3221293


SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Lars Kegel, Martin Hahmann, and Wolfgang Lehner

2 STATE OF THE ART
We review cross-domain generation methods for time series from
the literature and compare them regarding their class, their prop-
erties, and their expressiveness. Moreover, we summarize standard
similarity measures that assess the accuracy of generated time se-
ries. Domain-dependent methods are out of scope because they
take physical information of a given time series into account. Thus,
they cannot be applied to others domains.

We distinguish between two classes: generation methods with
model and without model. The former generates a time series from
a model that captures information from a given dataset. The latter
do not need this intermediate step and take the given data as input.

Beyond this classification, we characterize generation methods
regarding four principal properties that express what they generate
and how. It is desired that a generation method fulfills all of these
properties in order to be comprehensive and to be widely applicable.

Finally, generation methods are reviewed regarding their expres-
siveness, i.e., the time series characteristics they are able to capture
and to reproduce. We aim to derive characteristics that are relevant
across domains and to include them in the feature-based similarity.

2.1 Properties of Generation Methods
We characterize generation methods with four properties that we
define as follows.

Dataset-oriented. There are two different input scopes for a gen-
eration method: either it focuses on one time series at a time or
on the whole dataset at a time. By processing each time series in-
dividually, the method reproduces the characteristics of only one
sequence. Thus, it cannot take the full feature space of a dataset
into account [8, 11]. Dataset-oriented methods take advantage of
the feature space and they are able to take relationships of time
series into account.

Deterministic. A deterministic generation method takes time
series values as is. It reproduces deterministic characteristics of
a time series which are the long-term trend and cyclical seasons.
Random characteristics are shuffled or recombined [8, 19].

Stochastic. A stochastic generation method models the random
characteristics of a time series. This model is then used to simulate
new random values instead of taking the randomness as is [10, 18].

Innovative. There are methods that not only reflect given char-
acteristics but also incorporate new characteristics in a generated
dataset. Such innovative methods are important when it comes to
inflate a dataset or to provide “what-if” scenarios [7, 12, 13].

Generation methods that fulfill all these properties are considered
comprehensive since they are able to evolve time series for a va-
riety of domains. Subsequently, we present generation methods
with model and without model regarding these properties. They
are summarized in Table 1.

2.2 Generation Methods with Model
Three generation methods with model are reviewed: statistical mod-
els,Markov chains, and artificial neural networks. They capture time
series characteristics as scalar values such as, e.g., a series’ variance
or as a matrix such as, e.g., a transition probability matrix.

Statistical Models. Statistical models are generation methods
that reproduce statistical and stochastic characteristics of a given
time series. One example is a random variable that generates a
sequence of independent and identically distributed values with a
characteristic value distribution. Most often, such models generate
normal, Weibull or Reighley distributions [10].

Besides the characteristic value distribution, the correlation be-
tween values of a sequence is important. This cannot be achieved
by the sample of a probability distribution. Autoregressive models,
AR(p), are employed for this characteristic. They are of the form:

yt = ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p +wt (1)

where yt is an autoregressive process, p is the order, and ϕ1, . . . ,ϕp
are the constants of the autoregressive model (ϕ1 , 0). The error
componentwt is assumed to be normally distributed with mean 0
and variance σ 2

w . The correlation can be calculated from the con-
stants such that a simulation of an autoregressive model exhibits
an expected correlation within the generated sequence. Specifically
for anAR(1)model, the autocorrelation of lag 1 equals ϕ1 [20]. Sim-
ulations from autoregressive models rely on a normally distributed
error component wt which is why the value distribution of the
given data may be poorly represented. In summary, these models
are stochastic but they are not deterministic, dataset-oriented, or
innovative.

Markov Chains. With the aim to represent both, correlation and
distribution characteristics, Markov chains are applied in numerous
works. A Markov chain is a stochastic process with a fixed number
of states. From one discrete time instance to another, the state may
change whereas the probability of the new state only depends on
one or more of the past states.

The Markov chain needs to capture the state transitions of a
given time series. Therefore, the continuous time series values are
first transformed to discrete states. Then, the transition probabil-
ity for each combination of states is calculated by counting the
occurrences of corresponding state transitions in the transformed
time series which results in a transition probability matrix. The
generation is carried out by simulating the state transitions with
a sample of uniformly distributed values between 0 and 1. Finally,
the resulting sequence of states is transformed back to real values.

This generation method is able to reproduce the distribution and
correlation characteristics of a time series pretty well [4]. It has
been used since the 1980s [9]. Since then, it was extended to better
capture the autocorrelation of longer lags which is why Markov
chains of second order were applied [10]. Recent research focuses
on finding the best distance for the second lag in order to optimally
fit a Markov chain to a given scenario [18]. The problem of Markov
chains of orders higher than 2 is their increased complexity, there-
fore existing research is generally limited to this order. In summary,
the Markov chain method is not dataset-oriented because it trains
one transition probability matrix per time series. It is stochastic but
not deterministic or innovative.

Artificial Neural Networks. Artificial neural networks (ANNs) are
a family of models inspired by biological neural networks. They are
universal approximators of functions with unknown type. Artificial
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neurons are inter-connected in order to transmit signals. The trans-
mission activity depends on connection weights that are trained
using given data.

While ANNs have been employed for time series generation,
existing literature is scarce. Almonacid et al. [1] use them to learn
characteristics from a dataset and to generate time series for new
combinations of these characteristics. Regarding this reference, an
ANN is dataset-oriented, deterministic and innovative. While ANNs
in general are capable of evolving stochastic characteristics, the
present method is not. Therefore, we classify it as non-stochastic.

2.3 Methods without Model
Generation methods without a model do not need an intermediate
model to generate a dataset. They are based on bootstrapping, mod-
ification, averaging, recombination, or on selection and mutation
with a genetic algorithm.

Bootstrapping. Bootstrapping splits a time series into intervals of
the same length and permutes the values within these intervals [19].
The method can generate several new time series from one given
time series. Obtained results stay similar to the original data as long
as the chosen interval length is reasonably small. We conclude that
bootstrapping is a deterministic but not stochastic method. It only
focuses on one time series at a time and it is not innovative.

Modification. In a previous paper, we applied modification for
generating a new dataset [12]. This method extracts features from
a time series and applies a factor such that each feature is shifted to
an expected target value. It is deterministic and innovative in that it
systematically generates time series with new feature combinations.
However, it is neither dataset-oriented nor stochastic.

Averaging. Averaging evolves new time series by averaging given
time series from a dataset. It can be combined with varying weights
in order to increase variety and in order to follow the characteristics
of the given data [7]. This method is dataset-oriented, deterministic
and innovative. However, since the random characteristics from
the given time series are taken as is we consider this method non-
stochastic.

Recombination. The recombination method first decomposes the
values of time series into a long-term trend, cyclical seasons and
residuals. Then it shuffles these components and finally recombines
them in a new order. Time series generated in that way keep the
characteristics of the original dataset but in new combinations.

Iftikhar et al. [8] brings time series recombination together with
statistical models. The authors cluster components and shuffles
them within their clusters. New residuals are simulated using an
autoregressive model.

Overall, recombination is a dataset-oriented, deterministic gen-
eration method. It is innovative in that it creates new combinations
of characteristics. However, it is not considered stochastic because
the randomness in [8] stems from a statistical model.

Genetic Algorithm. The genetic algorithm generates time series
by combining randomly selected given time series and ensures that
the result is as close as possible to a given set of characteristics.
Combination is carried out by selection, crossover, and mutation
processes that occurwith a specified probability. This methodwhich
was presented by Kang et al. [11] is considered a dataset-oriented

Table 1: Properties of Generation Methods

SM MC ANN BT MD AV RE GA

Dataset-oriented - - X - - X X X

Deterministic - - X X X X X X

Stochastic X X - - - - (X) (X)
Innovative - - X - X X X X

Statistical Model (SM), Markov Chain (MC), Artificial Neural Network (ANN), Bootstrap-
ping (BT), Modification (MD), Averaging (AV), Recombination (RE), Genetic Algorithm (GA)

and deterministic generation method. It is innovative in that it is
able to evolve specific target characteristics. Mutation evolves new
random values even though they are not modeled as in the statisti-
cal model.

Table 1 summarizes the properties of the presented methods. It
can be concluded that none of them fulfills all criteria that we judge
important. Subsequently, we establish our generation method that
focuses on all these criteria. Moreover, we compare it with recently
used approaches, a Markov chain method [18], a recombination
method [8], and a method based on the genetic algorithm [11].

2.4 Assessing Similarity
Generated datasets need to be assessed regarding their similarity
to given datasets. The literature presents visual and numerical sim-
ilarity measures in order to assess the expressiveness of generation
methods.

Most often, the comparison of raw values is applied. It is carried
out visually by providing line plots or scatter plots [1, 3, 4, 6, 8, 11,
14, 18]. In some cases, it is also assessed numerically [1, 3, 4, 19],
most importantly with the root mean squared error measure. The
RMSE is an absolute error measure which is defined as:

rmse(xt , x̃t ) =

√
1
T

·
∑T

t=1
(xt − x̃t )2 (2)

It compares two discrete time series of length T where xt and x̃t
are the given and the generated value at time instance t . RMSE
represents the mean distance between the values of the given and
the generated series, whereas higher distances are more influential
due to squaring. It is not tolerant to time series invariances: It
cannot cope with scaling and translation, unless a time series is
z-normalized. Invariance regarding shifts is not considered in this
work which is why more sophisticated error measures such as
dynamic time warping are out of scope.

A second measure is the value distribution which compares the
frequency of occurrences of each value and thus, rather focuses
on the value domain than on the time domain. Histograms are
an appropriate visualization for this similarity, they plot the esti-
mated probability distribution of given and generated time series
values. Thus, they show the frequency of occurrences bucket-wise
[1, 3, 9, 10, 18]. However, the literature on generation methods that
numerically represent this similarity is scarce. For Markov chains,
it can be shown that the generated time series nearly follow the
probability distribution of the given time series [4]. However, the
comparison of the distribution with a histogram distance or the
comparison of statistical moments [17, 24] is not carried out.
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Finally, the autocorrelation is a property that has often been
assessed [3, 4, 9, 10, 14, 18]. It represents the linear dependence of
a time series on itself, shifted by a sequence of lags. For example,
the autocorrelation of lag 1 is defined by:

ac f1(xt ) =

∑T−1
t=1 (xt+1 − x̄)(xt − x̄)∑T

t=1(xt − x̄)2
(3)

where x̄ is the mean value of time series xt . The autocorrelation can
be visualized by a line plot whose x-axis is the sequence of lags and
whose y-axis represents the corresponding autocorrelation. Thus,
the autocorrelation of a generated time series is similar to a given
time series if their lines are narrow to each other. These lines can
be further assessed numerically by calculating their RMSE [4].

In our work we apply these three measures together (1) to assess
whether a generated time series is similar to a given one and (2)
to assess the expressiveness of generation methods. We combine
them to the feature-based similarity that gathers the deterministic
characteristics of a time series and the distribution and correlation
characteristics of its residuals.

There are a number of other characteristics that may be captured
such as, e.g., similarity in the frequency domain. We focus on the
characteristics of the three presented measures since they are the
most general and allow for comparison of generation methods from
different domains.

3 FEATURE-BASED REPRESENTATION
In this section, we introduce the feature set for a component-based
time series model along with the notion of feature-based similarity.
We start by giving the definition of a time series dataset that we
adopt in this work. Subsequently, we derive key features for the
cross-domain representation of time series characteristics. Based on
these features, we define the feature-based distance that describes
the similarity of two time series in a dataset.

3.1 Prerequisites
Our goal is to provide a feature set for a component-based time
series model. We therefore define a time series as follows:

Definition 1 (Time Series). A time series xt is a sequence of values
x that are measured at discrete time instances t :

[x1,x2, . . . ,xt , . . . ,xT ] where xt ∈ R, t ∈ N>0, t ≤ T (4)

The distance between two time instances is called granularity. We
assume that a time series (1) is finite with a fixed length T , (2) is
complete, i.e., there are no null values, and (3) is equidistant, i.e.,
the distance between two time instances is constant.

These three constraints keep the focus on time series similarity
and generation methods. They assume that time series have been
cleaned beforehand. In this work, we do not focus on this step.

Typically, time series data occurs in the form of datasets contain-
ing numerous individual time series that share a set of character-
istics and can have mutual dependencies. Therefore, we define a
time series dataset as follows:

Definition 2 (Time Series Dataset). A time series dataset X is a
set of I time series:

X = {x1,t ,x2,t , . . . ,xi,t , . . . ,xI,t } (5)

where i is the identifier of a time series. All the time series have been
measured at the same time instances. Thus, they have the same
start and end time instance and they have the same granularity. For
readability, we omit the indexes i and t when they are not needed.

Throughout the paper, we select three datasets for our demon-
strations: an electricity consumption dataset, a wind speed dataset,
and a dataset of macro- and micro-economic time series. They are
called Metering, Wind, and Economy, respectively. Their character-
istics are described in more detail in Section 5.

3.2 Time Series Components
Most time series from the aforementioned domains exhibit deter-
ministic patterns. The wind speed is often stronger in winter than
in other seasons, the solar irradiation has a strong daily season.
Consequently, this season behavior arises in energy production
series of renewables. In long-term studies trends can also be ob-
served. If human behavior comes into play, time series exhibit other
seasonal cycles. For example, weekly patterns can be observed in
energy consumption due to a different behavior of consumer during
weekdays and weekends. Economic time series may exhibit long
term changes due to, for example, an increase in sales of a product.
As a consequence, we argue that extracting these components from
time series is important for their characterization.

A time series consists of base, trend, season, and residual com-
ponents. The base is the long-term mean of the time series while
the trend represents the long-term change of the mean. A season
is behavior that is cyclically repeated. A time series can have sev-
eral seasonal components with different season lengths. For the
remainder of this paper, we refer to the base, trend, and season com-
ponents as deterministic components. Residuals form the stochastic
component of a time series. They are unstructured information
that is usually assumed to be random. Together, these components
describe the time series model which is adopted in this work.

Definition 3 (Time Series Model). A time series is a combination
of components:

xt = bat + trt +
∑S

s=1
seass,t + rest (6)

where bat , trt , seass,t , and rest are the base, trend, season, and
residual component, respectively. The season length Ls , 1 ≤ s ≤ S
as well as the number of seasons S is fixed for every time series
dataset. We adopt an additive combination of components which is
a common assumption in the aforementioned domains.

A decomposition technique extracts these components from a
time series. Knowing the season length, it makes a non-unique
split into trend, season, and residuals which can be further used
for component analysis. Seasonal and Trend decomposition using
Loess (STL) is a widely applied decomposition technique which is
based on Loess smoothing, a locally weighted regression approach
[5]. It is a versatile and robust decomposition technique which can
handle every type of season length. Therefore, we adopt it for our
multi-seasonal decomposition.

Multi-seasonal decomposition de-seasonalizes a time series from
the shortest up to the longest season. As input, a time series, a list
of season lengths, and a list of season granularities are provided. A
season granularityAs determines the aggregation of time instances
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before the time series is de-seasonalized. For instance, a yearly
season is best extracted with monthly values, so the season length
is 12 and the season granularity is “month”. The trend component
is extracted normally.

We shortly explain our algorithm. First, the seasons are extracted
from the time series one by one: (1) the time series is aggregated to
the expected season granularity, (2) STL is used to decompose the
object into trend, season, and residuals, (3) the season is extracted
and (4) stored in the original granularity. From the remainder, this
process is repeated with the longer seasons.

Second, the remaining deterministic components, base and trend,
are extracted from the trend fit. STL yields a trend fit with local
trend changes. We split this trend fit into a base component and a
linear increasing trend component. Local trend changes are not part
of our time series model. The residuals result from the subtraction
of the extracted components and the given time series.

Figure 1 illustrates the multi-seasonal decomposition for a time
series from the Metering dataset. Figure 1a shows the first 20 days
of the time series in a half-hourly granularity. We can observe daily
peaks in consumption, with less intensive consumption on the
week-ends. We assume a half-hour season granularity for the ex-
traction of the daily season, which results in the season component
(Figure 1b). A clear daily pattern with higher consumption during
the day and a small peak at noon can be identified. We further ag-
gregate the remainder to a daily granularity and extract the weekly
season (Figure 1c). The values show that consumption is higher
during the weekdays than the week-end. Finally, we aggregate the
time series to a monthly granularity and extract the yearly season
(Figure 1d). Due to the short time interval of two years, the monthly
values are rather fluctuating. Nevertheless, they show an increased
energy consumption during the winter months. In addition, the
decomposition also yields a base, a trend component, and a residual
component (not shown).

3.3 Time Series Features
Decomposition separates characteristics of a time series and rep-
resents them as components. However, components still have the
same length as the time series itself and they are not easier to
handle. Therefore, they are reduced to features that are defined as
follows:

Definition 4 (Feature, Feature Set). A feature is a mapping
fk : RT → R that transforms a time series of length T into a
scalar. A feature set { fk (xt ), 1 ≤ k ≤ K} is a short representation
of a time series capturing its most important characteristics.

We represent the deterministic components with the determin-
istic features: base value, trend slope, and a season mask for every
available season. Most of the meaningful information is extracted
with the deterministic components. However, there is information
remaining that cannot be described with a long-term or a cyclical
expression. Thus, we consider this information as stochastic and
provide features that capture their characteristics. The stochastic
component is represented by stochastic features which are three
moments: standard deviation, skewness, and kurtosis as well as the
autocorrelation of lag 1. The mean of the residualsm is assumed to
be 0 since it is extracted with the base component.
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Figure 1: Multi-seasonal Decomposition

Base Value. The base value is the overall mean of the time series.
We call this feature θ1 such that:

θ1(xt ) = ba1 (7)

Trend Slope. The trend slope is the overall increase or decrease
of a time series. In an attempt to represent the trend slope as a
feature we assume a linear increase such that:

θ2(xt ) = tr2 − tr1 (8)

Season Mask. The season mask represents the cyclical repeated
behavior of the time series. It is a set of Ls features σs,l (1 ≤ l ≤ Ls )
such that:

σs,l (xt ) = seass,l (9)

for all 1 ≤ l ≤ Ls . The season mask is in line with the season
granularity As . Since we assume a stable season, the season mask
applies to the full time series. Figures 1b - 1d show the season masks
for the daily, weekly, and yearly season.

Standard Deviation. The sample standard deviation is one of the
most general statistical features. It is a measure of dispersion within
the residuals and defined by:

sd(rest ) =

√
1

T − 1
·
∑T

t=1
(rest −m)2 (10)

A low standard deviation means that the values are very narrow
to the mean, whereas a high standard deviation represents a wide
spread of the data.

Skewness. The skewness is the third standardized moment and
represents the degree of asymmetry of the residuals around the
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mean. Is is defined by:

skew(rest ) =
T−1 ∑T

t=1(rest −m)3

(T−1 ∑T
t=1(rest −m)2)3/2

(11)

The skewness ranges around 0: skew = 0 means that the residuals
are symmetric. If skew < 0 , then the left tail of the distribution is
longer, i.e., the residuals are skewed to the left. If skew > 0, then
the right tail is longer, i.e., the residuals are skewed to the right.

Kurtosis. The kurtosis is the fourth standardized moment. It
represents the peakness or flatness relative to the probability density
function of the normal distribution. The estimator of Pearson’s
kurtosis is defined as:

kurt(rest ) =
T ·

∑T
t=1(rest −m)4

(
∑T
t=1(rest −m)2)2

(12)

Kurtosis values range around 3: kurt = 3 means that the distribu-
tion of the residuals is as flat as the normal distribution, i.e., the tails
of the distribution are as thin as the tails of the normal distribution.
If kurt < 3, the distribution has a stronger peak and thinner tails.
If kurt > 3, the distribution is more flat and has thicker tails.

Autocorrelation of Lag 1. The residual autocorrelation of lag 1
represents the linear relationship between the residual component
with itself lagged by one time instance. It measures the linear pre-
dictability of the residual value rest+1 using only the value rest . It
is defined by:

ac f1(rest ) =

∑T−1
t=1 (rest+1 −m)(rest −m)∑T

t=1(rest −m)2
(13)

Autocorrelation values ranges between -1 and +1: ac f1 = 0 means
that there is no linear dependency between a value rest and its suc-
cessor rest+1. If ac f1 > 0, then there is a positive linear dependency
between the values. The maximum correlation, ac f1 = 1 means that
rest perfectly predicts rest+1. If ac f1 < 0, there is a negative linear
dependency between successive values: if rest increases, rest+1
decreases. This leads also to perfect predictability, if ac f1 = −1.

The stochastic component has an important share in the overall
signal. The feature set would lose expressiveness if it were assumed
to be random and simulated with a normal distribution. This finding
is also confirmed in the literature. Theodosiou [22] reported that
autocorrelation remains in the residuals that should be modeled
for better results. Modelers for wind speed generation report that
Weibull distribution yields more realistic results than normal distri-
bution because the given residuals are skewed and not symmetric
[18]. The value distribution has been reduced to moment features
by Nanopoulos in [17]. The autocorrelation of lag 1 has been used
as a feature for time series generation in [11].

The presented features are calculated for each time series of the
Wind and the Metering dataset. They are represented in Figure 2 as
boxplots which show the range of every feature. The features of the
Wind dataset have a small spread which confirms that the dataset is
very homogeneous. The features of the Metering dataset (Figure 2b)
is less homogeneous, the share of extreme outliers (black circles)
ranges between 1 and 8%.

The season masks confirm this observation. While the daily sea-
son of the Wind dataset has a very clear shape (Figure 2c), the
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Figure 2: Unscaled Features

daily season of the Metering dataset is very fluctuating (Figure 2d)
with a share of extreme outliers ranging between 4 and 11%. This
fluctuation is mainly due to different electricity consumption behav-
ior resulting in differently shaped season masks. The other season
masks (weekly, yearly - not shown) also confirm this observation.

Not only are features used for representing a dataset. They also
enable us to assess the expressiveness of a generation method. In
the following subsection we define the feature-based distance that
makes a given and a generated dataset comparable.

3.4 Feature-based Similarity
In order to compare relevant characteristics of a generated dataset
and a given dataset, we propose a similarity measure based on
features. It incorporates standard similarity measures (Section 2) to
some extent: the deterministic features cover the raw-value shape of
the time series while the stochastic features represent the histogram
as well as the autocorrelation. Moreover, it is able to express an
error threshold that defines the expectation of similarity.

To provide a way of characterizing an error threshold, features
have to be scaled to a common range. This range has to (1) stan-
dardize the value range across different features and (2) diminish
the influence of outliers compared to the most frequent feature
values. The boxplot provides an intuitive notion of common values
(represented as box), near outliers (whiskers) and extreme outliers
(points below and above whiskers). We adopt this for our scaling.

Definition 5 (Scaled Feature). Let F = { f (xi ), 1 ≤ i ≤ I } be a
set of one feature value for a time series dataset. Let Q1(F ) be the
value of the lower quartile andQ3(F ) the value of the upper quartile,
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Figure 3: Scaled Features

respectively. Let IQR(F ) = Q3(F )−Q1(F ) be the interquartile range.
Then we define a scaled feature f s (xi ) based on:

lower (F ) = arg max
f (xi )∈F

{ f (xi ) ≥ median(F ) − 1.5 · IQR(F )}

upper (F ) = arg min
f (xi )∈F

{ f (xi ) ≤ median(F ) + 1.5 · IQR(F )}
(14)

as follows:

f s (xi ) = (f (xi ) − lower (F ))/(upper (F ) − lower (F )) (15)

where f s is the scaled feature that maps a time series to a feature
value that mostly ranges between 0 and 1.

Figure 3 illustrates how features are shifted to the same range.
The values we are focusing on, are between 0 and 1, the extreme
outliers are below or above this range. Their share has not changed
compared to the unscaled representation.

Based on the scaled features, we now define the feature-based
distance that measures the similarity in the feature space:

Definition 6 (Feature-based Distance). We define the distance dk
of one feature fk of two time series xi and x j as follows:

dk (xi ,x j ) = | f sk (xi ) − f sk (x j ) | (16)

Thus, the feature-based distance of two time series xi and x j is the
set of distances of every feature fk (1 ≤ k ≤ K).

If a generation method expresses a feature f well, the feature-
based distance of a generated and a given time series will be close to
0, thus expressing a high similarity. If it does not express a feature
well, this distance increases. It is either between 0 and 1, i.e., the
feature value ranges in the usual feature scale (0 to 1) or it is close
to it. If it is greater than 1, i.e., the feature value is not covered by
the usual features of the given dataset.

Based on the feature-based distance, a user defines a lower and an
upper error threshold p and q. The time series xi ,x j ∈ X are similar
if every feature-based distance is within these error thresholds:

p ≤ dk (xi ,x j ) ≤ q for all k (1 ≤ k ≤ K) (17)

With this notion, the user configures the maximum distance that is
considered as similar. This is an important notion for time series
generation. While generation methods from the literature do not
define an upper error threshold on standard distance measures,
they can now be assessed by the feature-based distance.

Likewise, the user defines the lower error threshold p that two
time series shall have. By default, this values is 0, thus ensuring
perfect similarity. When this value is increased, a minimum devi-
ation between two time series is expected which ensures that a
generated time series is not fully equivalent to a given time series.

4 FEATURE-BASED GENERATION
The feature-based generation method described here is based on re-
combination and statistical modeling. Regarding these approaches,
it is similar to Iftikhar et al. [8] but it extends some concepts in
order to be more accurate with respect to feature-based similarity.

Themethod is cross-domain and addresses all required properties
described in Section 2: (1) by recombining time series, it is dataset-
oriented, (2) by reusing base, trend, and season components, it is
deterministic, (3) by simulating residuals, it is stochastic, and (4) by
relying on features that are modifiable, it is innovative.

The method generates time series that adhere to the features
presented in Section 3. By taking thresholds into account, it allows
the generation of time series with an expected similarity to the
original data.

4.1 Recombination of Deterministic
Components

The deterministic part of a time series dett can be reconstructed by
its features as follows:

dett = θ1(xt ) + (t − 1) · θ2(xt ) +
∑S

s=1
σs,(t−1)%Ls+1(xt ) (18)

where % is the modulo operator. We used this relationship in order
to draw recombination candidates. These candidates are similar to a
given time series regarding their deterministic features. Thus, their
recombination is also similar to the given time series.

The recombination comprised (1) the construction of a similar-
ity matrix for each component, (2) a nearest neighbor search to
identify recombination candidates, and (3) the recombination of
components.

For every deterministic feature fk , we calculated the feature-
based distance dk (xi ,x j ) between every pair of given time series.
These distances were then stored in a similarity matrix to identify
neighboring components.

Subsequently, a nearest neighbor search was carried out on the
similarity matrix to identify neighboring features that fulfill the
error thresholds p and q. For every deterministic feature fk , each
given time series (identified by i) was annotated with a set of can-
didates (identified by j) that fulfill the condition p ≤ dk (xi ,x j ) ≤ q.

Finally, we carried out the recombination of components as
follows. From the recombination candidates, we randomly selected
one candidate per feature, i.e., one candidate jϕ1 for the base value,
one candidate jϕ2 for the trend slope and

∑S
s=1 Ls candidates jσs,l

for the season masks. Their recombination yielded the deterministic
part ˜det i of the generated time series x̃i :

˜det i,t = ϕ1(x jϕ1
) + (t − 1) · ϕ2(x jϕ2

)

+
∑S

s=1
σs,(t−1)%Ls+1(x jσs,l )

(19)

Figure 4 illustrates the feature space of the Economy dataset for
two scaled features, base value and trend slope. We assume a lower
error threshold p = 0.10 and an upper error threshold q = 0.25.
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Figure 4: Feature Space of Economy Dataset

For an example time series (red triangle in the center), possible
recombination candidates lie within the error thresholds (black
points between the inner and the outer blue dashed rectangle). They
are recombined and result in new combinations that still fulfill the
feature-based similarity (green crosses). These recombinations are
the deterministic part of generated time series.

If two recombinations contained the same components, they
were considered as duplicates. If a recombination matched the
components of a given time series, it was considered as original
time series. Both anomalies were analyzed in order to make sure
that they did not influence the results of the generation.

4.2 Simulation of Stochastic Component
The stochastic component does not consist of simple shapes such
as trend and season. It includes the remaining random information
that cannot be modeled directly. In order to describe this compo-
nent, its value distribution and the remaining autocorrelation can
be used. Our feature-based approach captures these characteris-
tics with the features: standard deviation, skewness, kurtosis, and
autocorrelation of lag 1.

To generate a component that agrees with these features, we
applied a composite statistical model. It combines a distribution
function that generates random values with a simulation of an
autoregression model. Moreover, we took care that the generated
residuals did not exceed the value limits from the given dataset
by imposing constraints to the generated residuals. These three
elements are explained subsequently.

Distribution Function. The goal is to generate residuals that agree
with the expected moments. A distribution that fits this purpose is
the Pearson Distribution System. It is a set of eight different distri-
bution functions that cover a large space of distribution moments.

For each moment combination {sd, skew,kurt}, a distribution
function has been selected based on its ability to provide a sample
for these moments. The mean was assumed to be 0 since it was
captured by the base value. For a given time series xi and error
thresholdsp andq, a time series has been generated whosemoments
are expected to be in the interval below the given features, [f sk (xi )−
q, f sk (xi ) − p], or the interval above the given features, [f sk (xi ) +
p, f sk (xi ) + q], where f sk is the scaled feature of standard deviation,
skewness, and kurtosis.

Autoregressive Model. In the presence of significant autocorrela-
tion, an autoregressive model was simulated. It weaved autocorrela-
tion into the generated residuals so that the residuals followed both,
the moments and the autocorrelation. As presented in Subsection
2.2, an AR(1) model is of the form:

yt = ϕ1yt−1 +wt (20)

The autocorrelation of lag 1 equals ϕ1. Thus, we generated residuals
rest for the expected feature ac f1(rest ) = ϕ1.

Since the error componentwt is normally distributed, the simu-
lation is normally distributed too. Therefore, we transformed the
simulation to the expected distribution that we defined above. The
simulation was first normalized with a mean of 0 and a standard
deviation of 1. Second, it was transformed to a uniform process us-
ing z = N (y), where N is the cumulative distribution function (cdf)
of the standard normal distribution. Third, by using the inverse of
the distribution function F from the Pearson Distribution System,
˜res = F−1(z) yielded a series that is similar to the moments of the
cdf F and to the autocorrelation from the AR(1) model.

Value Constraints. The simulation of an autoregressive model
provides residuals with stochastic features. However, once the resid-
uals are combined with the deterministic components theymay lead
to unexpectedly low or high time series values. For example, such
combinations may lead to a negative or extremly high wind speed
value. Since these results are unrealistic, they should be avoided.

Therefore, we defined two dataset wide constraints minX and
maxX that express the lowest possible and the highest possible
value in a time series, respectively. The generation of residuals was
aware of these constraints and of the deterministic part of the time
series they were combined with. It ensured that evolved residuals
never exceed these constraints as follows.

An error componentw was generated which was a set of samples
from a normal distribution. For a time instance t , a new value yt
from the autoregressive process was simulated using wt . If the
resulting residual value ˜rest did not fulfill the conditions:

minX − ˜det t ≤ ˜rest ∧ ˜rest ≤ maxX − ˜det t (21)

it was rejected and another sample forwt was drawn. The originally
selected valuewt was used at another future time instance. Thus,
it ensured the distribution properties of the sample.

5 EVALUATION AND DISCUSSION
We evaluate that (1) the feature-based generation method evolves
a dataset that is highly similar to a given dataset regarding the
feature-based distance, and (2) the feature-based distance is able to
compare generation methods regarding their expressiveness.

5.1 Example Datasets
We evaluated our approach with three time series datasets from
the energy, weather, and economic domain:

Example 1 (Metering). The Irish Commission for Energy Regu-
lation initiated the Smart Metering Project in order to assess the
performance of smart meters in Ireland [21]. The dataset contains
the electricity consumption of households and small or medium
businesses between July 2009 and December 2010. The consump-
tion has been measured in kilowatt hour at a half-hour granularity.
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Table 2: Example Datasets

Dataset Dataset Size I Time Instances Length T

Metering 6089 2 years, half-hourly 35040
Wind 16 7 years, half-hourly 122736
Economy 217 11 years, monthly 132

The data is available in an anonymized form, indicating smart meter
ID, timestamp, and consumption. All recorded time series show sea-
sonal components (daily, weekly, yearly) but lack a strong trend. In
order to extract the yearly season (which needs at least two cycles),
six months (January 2010 until June 2010) have been appended to
the end of the dataset.

Example 2 (Wind). To represent the weather domain, we selected
a dataset that contains time series of wind speed from 16 German
airports between 2010 and 2016. The wind speed has been measured
in meters per second at a half-hour granularity. In order to fulfill
Definition 2, gaps in the time series had to be interpolated. There
are at most 2 % interpolated values per time series.

Example 3 (Economy). The M3-Competition is the third of four
M-Competitions [15]. Its goal is the systematic evaluation of fore-
cast method accuracy on a defined dataset. The dataset contains
about 3000 time series from different domains (industry, finance,
demographic, macro-/microeconomic, other). The values of each
time series have a defined interval (year, quarter, month, other) and
exhibit a trend and a seasonal component. In compliance with the
time series dataset (Definition 2), we only selected time series with
the same time interval and granularity. Thus, we focused on ca.
200 macro- and microeconomic time series from January 1983 to
December 1993 with monthly granularity.

The Metering and Economy datasets have already been used for
assessing generationmethods by [8, 11]. TheWind dataset is similar
to the dataset used in [18]. Table 2 recaps the dataset dimensions.

5.2 Experimental Setting
We compared the feature-based generation method (FBG) to three
generation methods that have been recently cited in the literature
(Table 3). For each example dataset X , each method generated one
dataset X̃ . For each time series xi ∈ X , we generated one time series
x̃i ∈ X̃ . The size of the generated dataset was equal to the size of
the given dataset with one exception: only 100 time series were
generated for the Metering dataset which is due to time limitations
of the genetic algorithm. The comparison was carried out regarding
similarity, the comparison on computational performance is de-
ferred to future work. In order to reproduce the results, we shortly
summarize the configuration of the selected methods.

The generation method from Iftikhar et al. [8] is based on recom-
bination. It splits a time series into a seasonmask, a base component,
and a remainder. The season masks are then clustered, shuffled,
and assigned to another base component and remainder from the
same cluster. We carried out a k-means clustering of the daily sea-
son masks with the Euclidean distance measure. The number of
clusters was 20 as proposed by the Iftikhar et al. We applied this
setting to the Metering and the Economy dataset. We created only

Table 3: Experimental Setting

Generation Method Dataset Relevant Features

Recombination Metering All without θ2

Markov chain Wind Speed Stochastic
Genetic algorithm Economy All
FBG All All

5 clusters for the Wind dataset because it contains less time series.
The residuals were generated with an AR(3) model as suggested
by Iftikhar et al. Since the trend component was not considered by
this method, we excluded the trend slope from the feature-based
comparison and we added the original trend for comparing the
raw-value distance.

A second comparison was carried out for Markov chains. The
generation method of Pesch et al. [18] was re-implemented with
some slight modifications. Each time series was decomposed into
deterministic and stochastic components. A Markov chain of sec-
ond order with 65 states (Metering, Wind) and a second order lag
of 6 captured the state transitions of a given time series. These
parameters correspond to the suggestion of Pesch et al. We only
set 10 states for the Economy dataset because its time series are
too short to fill a transition probability matrix for 65 states. In the
rare case of anomalies in the transition probability matrix a healing
mechanism was applied as suggested by Pesch et al. In contrast
to [18], we adopted the multi-seasonal decomposition instead of
the trend and season elimination that the authors applied. More-
over, we did not apply a running average filter for smoothing the
time series because this characteristic is not relevant for this work.
Generation has been carried out for the stochastic component only
since it is not applicable to deterministic components.

Finally, we re-implemented the genetic algorithm based on Kang
et al. [11]. As suggested by the authors, the initial population con-
sisted of 20 time series (Metering, Economy) that were randomly
selected. Its size was set to 10 for the Wind dataset. The time series
xi which sets the feature target for the generation of x̃i was not
among the initial population. A crossover of time series occurred
with a probability of 80%, a mutation occurred with a probability
of 40%. Time series were selected by their fitness. We defined the
fitness function as the RMSE of all K scaled features:

f itness(xi ,x j ) =

√
1
K

·
∑K

k=1
(f sk (xi ) − f sk (x j ))

2 (22)

The iteration stopped if (1) the fitness was at least -0.01, (2) if the
maximum number of iterations, 3000, has been reached, or (3) if
there was no improvement in a sequence of 200 iterations.

FBG was set to a lower error threshold p = 0.01 and an upper
threshold q = 0.05 for all features and all experiments.

5.3 Feature-based Distance
The selected generation methods have been compared regarding
the feature-based distance. First, they have been applied to the
domain they were originally designed for, second they have been
applied to all domains.
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Recombination on Metering. Figure 5 compares FBG with the
recombination method. The x-axis shows the feature fk , the y-axis
shows the feature-based distance {dk (xi , x̃i ), 1 ≤ i ≤ I } as boxplot.

FBG generated time series whose deterministic components re-
spected the error threshold q (Figure 5a). The base component
also respected the error threshold p. However, there were rare
cases where the season component of a given time series were not
recombined which led to a feature-based distance below p. The
recombination method generated time series with a higher feature-
based distance to its given counterpart. While the base components
(which were not recombined) yielded good results, the clustered
and recombined daily season masks were more distant.

FBG also generated stochastic components whose features were
similar to their given counterparts (Figure 5b). Although the mo-
ment features from FBG are remarkably good, they are not below
the expected error threshold q. The simulation process had to select
a trade-off between the expected features and the constraints. The
recombination method used an AR simulation that generated values
with a fixed standard deviation, skewness, and kurtosis. Thus, these
features did not fit well the given moments of the original dataset.
The autocorrelation could be well reproduced.

Markov Chain on Wind. The Markov chain method evolved only
stochastic components. The generated dataset reproduced well the
given features for the Wind dataset (Figure 6). FBG method yielded
better results but the skewness is higher than for the Markov chain
due to the trade-off with the constraints.

The feature-based distances seem high because the Wind dataset
is very homogeneous. However, the unscaled distances are not.

Genetic Algorithm on Economy. Figure 7 compares FBG with the
genetic algorithm on the Economy dataset. For the deterministic
components, FBG did not exceed the error threshold q (Figure 7a).
In less than 8%, no recombination candidates were found which is
why the component was identical to the given one. Thus, the lower
whiskers reached 0 instead of stopping at p. The genetic algorithm
generated highly similar components. The base value and trend
slope had a median feature distance of 10% while the season masks
differed from given season masks by only 2%.

Regarding the stochastic component, FBG provided more sim-
ilar residuals in terms of standard deviation and autocorrelation.
However, the genetic algorithm outperforms it regarding skewness
and kurtosis (Figure 7b) for the same reason as in the experiments
above.

Summary. Table 4a lists the median feature-based distance per
dataset and method. The best distances are printed in boldface. FBG
generally outperformed the other methods on the deterministic
components due to the error thresholds. It partially yielded the
best results on the stochastic components. However, Markov chains
were sometimes better because they use a more comprehensive
(but also bigger) model for generating residuals. The good results
of the genetic algorithm on the Economy dataset were due to the
3000 iterations which led to best results on some of these features.

5.4 Standard Distance
The feature-based distance compares characteristics that generation
methods are able to express. In this subsection, we show that this
distance measure is related to the standard distance measures that

q1 s1 s2 s3

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

FBG
Recombination

(a) Deterministic Features

sd skew kurt acf1

0.
00

0.
50

1.
00

1.
50 FBG

Recombination

(b) Stochastic Features

Figure 5: Feature-based Distance of Recombination

sd skew kurt acf1

0.
00

0.
20

0.
40

0.
60 FBG

Markov Chain

Figure 6: Feature-based Distance of Markov Chain

q1 q2 s1

0.
00

0.
20

0.
40

0.
60

FBG
Genetic Algorithm

(a) Deterministic Features

sd skew kurt acf1

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

FBG
Genetic Algorithm

(b) Stochastic Features

Figure 7: Feature-based Distance of Genetic Algorithm

we presented in Section 2: the raw-value distance, the distribution
distance, and the autocorrelation distance.

Raw-value Distance. Visually, the raw-value distance was as-
sessed with a lineplot. Figure 8 shows the first four years of an
exemplary time series from the Economy dataset (black solid line)
together with the result from FBG (blue dashed line) and from the
genetic algorithm (red dotted line). Due to the error thresholds and
the strong deterministic components, the FBG result was very close
to the original time series. The genetic algorithm had some peaks
and lows due to mutation.
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Table 4: Median Distances on All Datasets

(a) Feature-based Distances

Metering θ1 θ2 σ1 σ2 σ3 sd skew kur t acf1

RE 0.0285 - 0.1344 0.2492 0.1930 1.0120 0.4846 0.2805 0.2105
MC - - - - - 0.0388 0.0494 0.0691 0.0367

GA 0.1145 - 0.0977 0.0880 0.1244 0.1025 0.2063 0.3159 0.1970
FBG 0.0272 - 0.0296 0.0306 0.0306 0.0582 0.0926 0.1151 0.0764

Wind θ1 θ2 σ1 σ2 σ3 sd skew kur t acf1

RE 0.0494 - 0.2703 0.5889 - 1.3999 2.2606 0.9540 1.9901
MC - - - - - 0.1692 0.0792 0.2318 0.4334
GA 0.2078 0.2520 0.0749 0.1881 - 0.2469 0.1850 0.3778 0.6589
FBG 0.0192 0.0190 0.0180 0.0184 - 0.1364 0.2539 0.1590 0.2670

Economy θ1 θ2 σ1 σ2 σ3 sd skew kur t acf1

RE - - 0.2193 - - 0.3517 0.1429 0.3325 0.2440
MC - - - - - 0.0575 0.1245 0.1896 0.2663
GA 0.1047 0.1127 0.0244 - - 0.1166 0.0687 0.0696 0.1406
FBG 0.0299 0.0294 0.0275 - - 0.0349 0.1199 0.1548 0.0886

(b) Standard Distances

Raw-value Distribution ACF

RE 1.7829 0.4471 0.2320
MC 0.7934 0.1478 0.0183

GA 0.8214 0.0858 0.1562
FBG 0.7167 0.1305 0.0492

Wind

RE 3.4251 0.0676 0.1142
MC 2.7296 0.0242 0.0205
GA 2.0618 0.0090 0.0336
FBG 2.7559 0.0149 0.0166

Economy

RE 277.4685 0.0790 0.0268
MC 335.3713 0.0767 0.0146
GA 690.3626 0.2520 0.0200
FBG 387.8705 0.0999 0.0145

Numerically, the raw-value distance was calculated as RMSE
(Equation 2) since we took into account differences in scale, trans-
formation and shift. Table 4b lists the median RMSE of a given and
the corresponding generated time series per dataset and method.

On the Metering dataset, FBG was the most accurate method
regarding raw-value distance. The Markov chain method ranked
second. Although this method copied the deterministic components
as is, it had a higher RMSE. One reason was that it did not take
value constraints into account.

On the Wind dataset, the genetic algorithm yielded the highest
accuracy. Due to the homogeneous data, every time series in the
initial population was already highly similar to the time series
that set the target features. The methods Markov chain and FBG
returned a similar distance. While the Markov chain method copied
the deterministic components, FBG recombined components with
a lower error threshold that led to a slightly higher RMSE.

On the Economy dataset, the recombination method showed the
lowest distance. Since this method did not exhibit a high similarity
of monthly season masks (σ1), the trend component that has been
copied as is had a major influence on this accuracy.

Distribution Distance. The distribution distance focuses on the
overall occurrence of values rather than the time domain. Visually,
Figure 9 illustrates the histogram of an original Wind time series
and the corresponding generated ones. The genetic algorithm, FBG,
and the Markov chain generated values that were highly similar
to the original ones. The recombination method was less similar
because it did not take into account the higher order moments.

Numerically, the distribution distance was assessed with the
Bhattacharyya distance [2]:

DB (xt , x̃t ) = − log
∑B

b=1

√
hb (xt ) · hb (x̃t ) (23)

where b is one of B equidistant buckets and hb is the relative fre-
quency of values within the bucket. Equal distributions have a

distance 0, the more dissimilar they are the higher is the distance.
Table 4b lists the median Bhattacharyya distance for every dataset
and generation method. We split the value range into B = 100
(Metering), B = 30 (Wind), and B = 10 (Economy), respectively.

On theMetering andWind datasets, the genetic algorithm ranked
first and FBG second. The Metering dataset contains several deter-
ministic effects that are not captured by the component-based time
series model. Thus, they are considered as residuals and are more
difficult to reproduce.

The Wind dataset is very homogeneous. New combinations and
mutations of its time series reproduced the value distribution very
well. The Markov chain and recombination method yielded less
accurate distribution distances which was mainly due to negative
values that arose when generated residuals were stronger than the
deterministic component.

On the Economy dataset however, the Markov chain and recom-
bination yielded better results than the competitors. Since these
methods took the strong trend component as is, they could better
reproduce the original distribution than FBG and the genetic algo-
rithm. Moreover, these time series were very short and thus, FBG
was unable to accurately reproduce the value distribution.

Autocorrelation Distance. We assessed the unscaled autocorre-
lation of lag 1 of original and generated time series (Equation 3).
Table 4b lists the median distance per dataset and method.

These results correspond to the scaled feature ac f1. FBG had
the best results on the Wind and Economy dataset. The Markov
chain had the smallest distances on the Metering dataset. On the
Economy dataset, its results were only slightly worse than those of
FBG.

Summary. By comparing the results from standard distance mea-
sures, we showed that FBG competed with state-of-the-art gen-
eration methods. It ranked first, second or third place on all the
example datasets. The feature-based distance corresponded only
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partially to standard distance measures from the literature. While
the feature-based distance captures one specific characteristic of a
time series, the standard approaches capture an overall distance. For
example, the feature moments did not represent the full spectrum
of a histogram which is why these features only correspond to the
histogram in special cases.

6 CONCLUSION AND FUTUREWORK
In this work, we introduced a feature set which is an efficient repre-
sentation for a component-based time series model. Subsequently,
we showed that the feature-based distance compares generation
methods from different domains regarding their expressiveness.

The feature-based generation FBG method takes these features
into account and evolves highly similar time series. Moreover, it
respects user-given similarity expectations which are expressed by
the feature-based similarity and limiting error thresholds. By this
means, it outperforms currently available generation methods.

Overall, this work is the first to present a cross-domain compari-
son of generation methods. This assessment is important in order
to generalize generation methods from different domains that were
considered as isolated applications but that could evolve datasets
independent of their original application.

Feature-based similarity is a tool for the validation of generated
datasets. Users can select time series by selecting those who fulfill
their similarity expectations. In a future work, we will also val-
idate generated datasets on extrinsic data-analysis tools such as
classification in order to assess their applicability.

Other components can be added to the proposed time series
model. Further research should also exploit the correlation between
components which could improve the recombination.

In this work, we focused on statistical characteristics that have
been presented in the literature of generation methods. Considering
the automation in many domains, interesting features should also
be derived automatically. In a future work, we will focus on learning
features with, e.g., ANNs and compare them with our feature set.
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