
Ontology-Based Query Answering
Overview and Relevant Work

Michaël Thomazo

Inria, Université Paris-Saclay
LIX, École Polytechnique, Université Paris-Saclay

WebClaimExplain – June 2nd, 2017

1 / 32

Is Semantics Needed?

2 / 32

Benefits of Ontologies

I dealing with incompleteness of the data
I hiding even more the specifics of data storage
I using a vocabulary that is familiar to the user

3 / 32

The need for reasoning

Query answering needs explicit and implicit data!

I Materialization-based query answering
I Reformulation-based query answering
I Hybrids of the above: combined approaches

Courtesy of I.Manolescu

4 / 32

Materialization-based query answering

ontology

G

G∞

query q

answer

I q(G∞) can be computed using an RDBMS
I G∞ needs time to be computed and space to be stored
I Not suitable for high update rate (data and/or schema triples)

Courtesy of I.Manolescu

5 / 32

Materialization-based query answering

ontology

G

G∞

query q

answer

I q(G∞) can be computed using an RDBMS
I G∞ needs time to be computed and space to be stored
I Not suitable for high update rate (data and/or schema triples)

Courtesy of I.Manolescu

6 / 32

Reformulation-based query answering

ontology

query q query qref

answer

G

I qref (G) can be evaluated using an RDBMS
I Robust to updates
I Reformulated queries are complex, thus costly to evaluate

Courtesy of I.Manolescu

7 / 32

Reformulation-based query answering

ontology

query q query qref

answer

G

I qref (G) can be evaluated using an RDBMS
I Robust to updates
I Reformulated queries are complex, thus costly to evaluate

Courtesy of I.Manolescu

8 / 32

Ontology Mediated Query Answering

I Data: Professor(Alice), Reviewer(Alice)
I Query : ∃x ∃y Teacher(x) ∧ reviews(x , y)

I Ontology (semantics) :
I ∀x Reviewer(x) → ∃y reviews(x , y)
I ∀x Professor(x) → Teacher(x)

Professor(Alice)
Reviewer(Alice)
Teacher(Alice)
∃y1 reviews(Alice,y1)

Materialization (chase)

∃x ∃y Teacher(x) ∧ reviews(x , y)
∃x Professor(x) ∧ Reviewer(x)
∃x Teacher(x) ∧ Reviewer(x)
∃x ∃y Professor(x) ∧ reviews(x , y)

Query Rewriting

9 / 32

Ontology Mediated Query Answering

I Data: Professor(Alice), Reviewer(Alice)
I Query : ∃x ∃y Teacher(x) ∧ reviews(x , y)
I Ontology (semantics) :

I ∀x Reviewer(x) → ∃y reviews(x , y)
I ∀x Professor(x) → Teacher(x)

Professor(Alice)
Reviewer(Alice)
Teacher(Alice)
∃y1 reviews(Alice,y1)

Materialization (chase)

∃x ∃y Teacher(x) ∧ reviews(x , y)
∃x Professor(x) ∧ Reviewer(x)
∃x Teacher(x) ∧ Reviewer(x)
∃x ∃y Professor(x) ∧ reviews(x , y)

Query Rewriting

10 / 32

Ontology Mediated Query Answering

I Data: Professor(Alice), Reviewer(Alice)
I Query : ∃x ∃y Teacher(x) ∧ reviews(x , y)
I Ontology (semantics) :

I ∀x Reviewer(x) → ∃y reviews(x , y)
I ∀x Professor(x) → Teacher(x)

Professor(Alice)
Reviewer(Alice)
Teacher(Alice)
∃y1 reviews(Alice,y1)

Materialization (chase)

∃x ∃y Teacher(x) ∧ reviews(x , y)
∃x Professor(x) ∧ Reviewer(x)
∃x Teacher(x) ∧ Reviewer(x)
∃x ∃y Professor(x) ∧ reviews(x , y)

Query Rewriting

11 / 32

Ontology Mediated Query Answering

I Data: Professor(Alice), Reviewer(Alice)
I Query : ∃x ∃y Teacher(x) ∧ reviews(x , y)
I Ontology (semantics) :

I ∀x Reviewer(x) → ∃y reviews(x , y)
I ∀x Professor(x) → Teacher(x)

Professor(Alice)
Reviewer(Alice)
Teacher(Alice)
∃y1 reviews(Alice,y1)

Materialization (chase)

∃x ∃y Teacher(x) ∧ reviews(x , y)
∃x Professor(x) ∧ Reviewer(x)
∃x Teacher(x) ∧ Reviewer(x)
∃x ∃y Professor(x) ∧ reviews(x , y)

Query Rewriting

12 / 32

Formalization of the Problem

I Input: a set of ground atoms I , a set of existential rules (or a
description logic) R, a (Boolean) conjunctive query q

I Output: yes if and only if I ,R |= q

Existential Rule
An existential rule (or TGD) is a formula of the shape:

∀x∀y.[B(x, y) → ∃z.H(y, z)],

I B and H are non-empty conjunctions of atoms on variables
I x, y and z are pairwise disjoint

13 / 32

Formalization of the Problem

I Input: a set of ground atoms I , a set of existential rules (or a
description logic) R, a (Boolean) conjunctive query q

I Output: yes if and only if I ,R |= q

Existential Rule
An existential rule (or TGD) is a formula of the shape:

∀x∀y.[B(x, y) → ∃z.H(y, z)],

I B and H are non-empty conjunctions of atoms on variables
I x, y and z are pairwise disjoint

14 / 32

Goal of the Talk

I incomplete...
I highly subjective...
I selection of topics, past, present and future

15 / 32

Problem 1: Does the Chase Terminate?

I it may not terminate:
I I = {Human(Alice)}
I R = {Human(x) → hasParent(x , y) ∧ Human(y)}

I checking if the chase w.r.t R terminates on some/all instance
is undecidable

I acyclicity based conditions have been proposed to ensure
termination/non-termination

References:
I Acyclicity Notions for Existential Rules and Their Application to Query

Answering in Ontologies, Cuenca Grau et al., JAIR 2013
I Detecting Chase (Non)Termination for Existential Rules with

Disjunctions, Carral et al., IJCAI 2017

16 / 32

Problem 1: Does the Chase Terminate?

I it may not terminate:
I I = {Human(Alice)}
I R = {Human(x) → hasParent(x , y) ∧ Human(y)}

I checking if the chase w.r.t R terminates on some/all instance
is undecidable

I acyclicity based conditions have been proposed to ensure
termination/non-termination

References:
I Acyclicity Notions for Existential Rules and Their Application to Query

Answering in Ontologies, Cuenca Grau et al., JAIR 2013
I Detecting Chase (Non)Termination for Existential Rules with

Disjunctions, Carral et al., IJCAI 2017

17 / 32

Problem 1: Does the Chase Terminate?

I it may not terminate:
I I = {Human(Alice)}
I R = {Human(x) → hasParent(x , y) ∧ Human(y)}

I checking if the chase w.r.t R terminates on some/all instance
is undecidable

I acyclicity based conditions have been proposed to ensure
termination/non-termination

References:
I Acyclicity Notions for Existential Rules and Their Application to Query

Answering in Ontologies, Cuenca Grau et al., JAIR 2013
I Detecting Chase (Non)Termination for Existential Rules with

Disjunctions, Carral et al., IJCAI 2017

18 / 32

Problem 2: Is there a Rewriting of q in a Language L? (1)

Given q and R, given a query language L, does it exist q′ ∈ L such
that for all instance I ,

I ,R |= q ⇔ I |= q′.

Several target languages have been proposed:
I UCQs
I first-order logic
I non-recursive Datalog
I Datalog
I ...

19 / 32

Problem 2: Is there a Rewriting of q in a Language L? (1)

Given q and R, given a query language L, does it exist q′ ∈ L such
that for all instance I ,

I ,R |= q ⇔ I |= q′.

Several target languages have been proposed:
I UCQs
I first-order logic
I non-recursive Datalog
I Datalog
I ...

20 / 32

Problem 2: Is there a Rewriting of q in a Language L? (2)

I this is not always the case: transitivity rules do not play well
with first-order logic

I checking the existence of a rewriting is usually undecidable
I sufficient conditions have been proposed
I the size of generated rewritings has been studied

References:
I Sound, complete and minimal UCQ-rewriting for existential rules, König

et al., SWJ 2015
I The price of query rewriting in ontology-based data access, Gottlob et al.,

AIJ 2014

21 / 32

Problem 2: Is there a Rewriting of q in a Language L? (2)

I this is not always the case: transitivity rules do not play well
with first-order logic

I checking the existence of a rewriting is usually undecidable
I sufficient conditions have been proposed
I the size of generated rewritings has been studied

References:
I Sound, complete and minimal UCQ-rewriting for existential rules, König

et al., SWJ 2015
I The price of query rewriting in ontology-based data access, Gottlob et al.,

AIJ 2014

22 / 32

Problem 3: Towards more Expressive Query Languages

I CQs are basic
I extension with aggregation
I extension with restricted form of recursivity (for instance,

RPQs or CRPQs)

References:
I Complexity of Answering Counting Aggregate Queries over DL-Lite,

Kostylev et al., DL 2013
I Answering Conjunctive Regular Path Queries over Guarded Existential

Rules, Baget et al., IJCAI 2017

23 / 32

Problem 3: Towards more Expressive Query Languages

I CQs are basic
I extension with aggregation
I extension with restricted form of recursivity (for instance,

RPQs or CRPQs)

References:
I Complexity of Answering Counting Aggregate Queries over DL-Lite,

Kostylev et al., DL 2013
I Answering Conjunctive Regular Path Queries over Guarded Existential

Rules, Baget et al., IJCAI 2017

24 / 32

Problem A: Optimization of Query Evaluation (1)

I the size of generated rewritings has been studied
I it does not tell much on the efficiency of query evaluation
I even small positive existential first-order rewritings are not

easy to evaluate
I cost-based optimization of queries generated by rewriters is

not a closed topic

25 / 32

Problem A: Optimization of Query Evaluation (2)

How come that current optimizers are not already efficient enough?

A comment in Postgres optimizer code:

/* we stop as soon as we hit a non-AND item */

Optimizing through unions is crucial for the kind of queries we are
faced with.

References:

I Optimizing Reformulation-based Query Answering in RDF, Bursztyn et
al., EDBT 2015

26 / 32

Problem A: Optimization of Query Evaluation (2)

How come that current optimizers are not already efficient enough?
A comment in Postgres optimizer code:

/* we stop as soon as we hit a non-AND item */

Optimizing through unions is crucial for the kind of queries we are
faced with.

References:

I Optimizing Reformulation-based Query Answering in RDF, Bursztyn et
al., EDBT 2015

27 / 32

Problem A: Optimization of Query Evaluation (2)

How come that current optimizers are not already efficient enough?
A comment in Postgres optimizer code:

/* we stop as soon as we hit a non-AND item */

Optimizing through unions is crucial for the kind of queries we are
faced with.

References:

I Optimizing Reformulation-based Query Answering in RDF, Bursztyn et
al., EDBT 2015

28 / 32

Problem B: Consistent Query Answering (1)

I in presence of inconsistencies, FOL semantics is not interesting
→ everything is entailed

I alternative to FOL need to be studied to keep some robustness
I variety of semantics based on the notion of repair

I most common: keeping maximum consistent subset of the data
I modifications of the data are also sometimes allowed

References:

I Inconsistency-Tolerant Semantics for Description Logics, Lembo et al.,
RR 2010

I Inconsistency-Tolerant Querying of Description Logic Knowledge Bases,
Bienvenu et al. RW 2016

29 / 32

Problem C: Temporal OBQA

I time is important for applications
I several ways to integrate it
I interactions between time and reasoning explode quickly

References:

I Temporalizing Ontology-Based Data Access, Baader et al., CADE 2013
I Temporalized EL Ontologies for Accessing Temporal Data: Complexity of

Atomic Queries, Gutiérrez-Basulto et al., IJCAI 2016

30 / 32

Recap

Chase Termination Query Optimization

Rewritability Consistent Query Answering

Query Languages Temporal Data and Ontologies

31 / 32

Recap

Chase Termination Query Optimization

Rewritability Consistent Query Answering

Query Languages Temporal Data and Ontologies

32 / 32

