A framework to construct constraint preserving and approximately well-balanced schemes

Mario Ricchiuto

Team CARDAMOM,
Inria research center at University of Bordeaux (France)
Acknowledgements
Credit to them for the good stuff
blame me for the rest

• Yogiraj Mantri, Vellore Institute of Technology, India
• Philipp Öffner, Johannes Gutenberg-University, Mainz
• Wassilij Barzukow, CNRS, Institut de Mathématiques de Bordeaux
• Davide Torlo, MathLab at SISSA, Italy
We want to solve numerically (hyperbolic) systems of balance laws

$$\partial_t U + \nabla \cdot F(U) = S(U; \varphi(x))$$

Typical examples

- Shallow water equations with topography/friction/Coriolis/etc
- Euler equations with gravity
- GPR model and hyperbolic reformulations of viscous/dispersive systems
- etc.

We consider both 1D and Multi-D problems
A motivational example to fix ideas

Pseudo-1D rotating shallow water eq.s (Castro et al, SISC 31, 2008)

\[
\partial_t \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} + \partial_x \begin{pmatrix} hu \\ hu^2 + P(h) \\ huv \end{pmatrix} = -h \begin{pmatrix} 0 \\ gb'(x) + cfu - \phi v \\ cfv + \phi u \end{pmatrix}
\]

Incomplete zoology of steady states: some of the 2d richness in 1d

1. Lake at rest
2. One dimensional frictionless flows with constant energy
3. Pseudo-one dimensional rest state with transverse perturbations \(v(x) \) and Coriolis effects
4. Frictionless pseudo-one dimensional flows with Coriolis effects
5. One dimensional flows with friction
6. etc. etc.
Objective: construct a will balanced scheme using as little a-priori knowledge as possible

besides the structure of the PDE itself

Well balanced how:

many meanings .. with all the (more or less) obvious connections.

(begging forgiveness in advance for any - involuntary - omissions !)
Preserving $V(U, \varphi(x)) = V_0$ via WB differencing or generalized polynomial approximations

Reconstruction/evolution of fluctuations wrt a given equilibrium $U^*(x)$

Reconstruction/evolution of fluctuations wrt discrete equilibria (approximate full well balanced):

Fully well balanced Riemann solver with 0-wave to enforce integral steady balance

Well balanced via integration of the source term and global fluxes

Well balanced numerics a (possibly incomplete) taxonomy

1. Preserving $V(U, \varphi(x)) = V_0$ via WB differencing or generalized polynomial approximations

2. Reconstruction/evolution of fluctuations wrt a given equilibrium $U^*(x)$

3. Reconstruction/evolution of fluctuations wrt discrete equilibria (approximate full well balanced):

4. Fully well balanced Riemann solver with 0-wave to enforce integral steady balance

5. Well balanced via integration of the source term and global fluxes

.. few of Carlos’ contributions ...

Carlos’ contributions are essential in advancing the field of well-balanced numerical methods.
Well balanced numerics a (possibly incomplete) taxonomy

1. Preserving $V(U, \varphi(x)) = V_0$ via WB differencing or generalized polynomial approximations

2. Reconstruction/evolution of fluctuations wrt a given equilibrium $U^*(x)$

3. Reconstruction/evolution of fluctuations wrt discrete equilibria (approximate full well balanced):
 \[\dot{U}_i(t) + R_i(U_h) = R_i(U_h^*) \text{ with } U^*(x) \text{ approx. sol. of the Cauchy pb } U' = J^{-1} S(U, \varphi) \]

4. Fully well balanced Riemann solver with 0-wave to enforce integral steady balance

5. Well balanced via integration of the source term and global fluxes
 \[\partial_x F = S \Rightarrow \partial_x F(U^*) = -\partial_x R^* , \quad R \approx \int S \]
Objective

1. Elaborate on the GF idea and provide a link with the approximate Cauchy solver method
2. Propose a MultiD constraint preserving generalization
DG-SEM and Global Flux Quadrature in 1D

with Y. Mantri and P. Öffner
DG-SEM - Main notation
Discontinuous Galerkin Spectral Element Method

• Reference element $\xi \in [0, 1]$
• $x(\xi)$ linear mapping $[0, 1] \mapsto K$, for simplicity: $|K| = h$
• $\{\xi_i\}_{i=0,p}$ the $p + 1$ Gauss-Lobatto (GL) points
• $\{\phi_i(\xi)\}_{i=0,p}$ degree p Lagrange bases
• Set $U_h = \sum_{i=0}^{p} \phi_i(x(\xi)) U_i$
DG-SEM - Discrete variational form

Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

On an element K, start from discrete approximation arising from the variational form

$$h \int_0^1 \varphi_i(\xi) \partial_t U_h - \int_0^1 \partial_\xi \varphi_i(\xi) F_h + (\varphi_i \hat{F}_h(U_h^- U_h^+))_{\xi=1} - (\varphi_i \hat{F}_h(U_h^- U_h^+))_{\xi=0} = h \int_0^1 \varphi_i(\xi) S_h$$
Global Flux Quadrature in 1D

DG-SEM - Discrete variational form
Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

DG-SEM : quadrature based on the same GL nodes used for the polynomial expansion

$$\mathcal{M} \dot{U} - D_x^T \mathbf{F} + \hat{\mathbf{F}} = \mathcal{MS}$$

with the notation:

- $\mathcal{M} = \text{diag}(\{w_i\}_{i=0,p})$ with $w_i = h \int_0^1 \phi_i(\xi) d\xi$ the quadrature weights
- with $(D_x)_{ij} = w_i \partial_\xi \phi_j(\xi_i)$
- $\mathbf{B} = \text{diag}(-1, \ldots, 1)$ the matrix sampling boundary values
- $\mathbf{U, F, \hat{F}, S}$: elemental arrays of nodal solution/flux/num. flux/source values

DG-SEM - Discrete variational form

Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

DG-SEM discrete equations in strong form (SBP property\(^2\))

$$\mathcal{M}\dot{U} + D_x F + B(\hat{F} - F) = \mathcal{M}S$$

DG-SEM - Discrete variational form

Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

DG-SEM discrete equations in strong form

$$\mathcal{M} \dot{U} + D_x F + B(\hat{F} - F) = \mathcal{M} S$$

Setting $\hat{F}(U^-, U^+) = \alpha F^+ + (1 - \alpha) F^- - \mathcal{D}[U]$, we get the fully discrete method

$$\mathcal{M} \dot{U} + D_x F + B(\alpha F) - B(\mathcal{D}[U]) = \mathcal{M} S$$

This is our "reference" non well-balanced method
DG-SEM - Discrete variational form using global fluxes

Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

by locally recasting it in the pseudo-conservative form

$$\partial_t U + \partial_x G(U; \varphi(x)) = 0$$

with \(G = F(U) + R(U; \varphi(x)) \) and

$$R(U; \varphi(x)) = R_0 - \int_{x_0}^{x} S(U; \varphi(s)) ds$$
DG-SEM - Discrete variational form using global fluxes

Consider the approximation of solutions of

$$\partial_t U + \partial_x F(U) = S(U, \varphi)$$

by locally recasting it in the pseudo-conservative form

$$\partial_t U + \partial_x F(U) = -\partial_x R(U; \varphi(x))$$

If we have the source primitive R at all GL nodes, we can readily write the DG-SEM scheme:

$$M\dot{U} + D_x F + B(\alpha[F]) - B(D[U]) = -D_x R + B(\alpha[R])$$

The key now is to define R at all GL nodes
DG-SEM - Discrete variational form using global fluxes

We compute nodal values of R:

$$\partial_x R = -S$$

Choose

$$R_h = \sum_{i=0,p} \varphi_i(x(\xi)) R_i , \quad S_h = \sum_{i=0,p} \varphi_i(x(\xi)) S_i$$

and integrate on each element

1. For the (local) initial value we set $R_0 = R^-$

2. For all $i \in 1, p$ we compute $R_i = R_{i-1} - h \sum_{l=0,p} \int_{\xi_{i-1}}^{\xi_i} \varphi_l(\xi) S_l ds$
DG-SEM - Discrete variational form using global fluxes

We compute nodal values of R:

$$\partial_x R = -S$$

Remark. *In compact notation we have*

$$R = R^- - h\mathcal{I}S$$

with \mathcal{I} is the tableau of the $p + 1$ stages RK-LobattoIIIa implicit collocation method.

3 A. Prothero & A. Robinson, Math.Comp. 28, 1974
Source integration: initial value

The initial value R^- can be related to the last value on the neighbouring element:

$$R^- = [R(x_p)]^K + [R] = [R(x_p)]^K + \lim_{\epsilon \to 0} \int_{x_0-\epsilon}^{x_0+\epsilon} S$$

The critical term is for the shallow water example

$$\lim_{\epsilon \to 0} \int_{x_0-\epsilon}^{x_0+\epsilon} gh \cdot \partial_x b_h$$

For simplicity, let us rule out discontinuous bathymetry and set

$$R^- = [R(x_p)]^K, \quad [R] = 0$$
DG-SEM - Discrete variational form using global fluxes

We seek solutions of the (hyperbolic) system of balance laws

\[\partial_t U + \partial_x F(U) = S(U; \varphi(x)) \]

for all \(K \) evolve in time

\[
\mathcal{M} \dot{U} + D_x F + B(\alpha[F]) - B(D[U]) = h D_x IS \quad \text{GF-DG}
\]

\[
\mathcal{M} \dot{U} + D_x F + B(\alpha[F]) - B(D[U]) = \mathcal{M} S \quad \text{DG}
\]
Main result

Proposition (Discrete steady state). The DG-SEM with global flux quadrature preserves exactly continuous discrete steady states $U^*_i = U(F_i)$ with F obtained by integrating the ODE

$$F' = S(U(F), \varphi(x))$$

using the implicit continuous collocation RK-LobattoIIIA method on spatial slabs of size h.

As long as $U(F)$ is a one to one mapping $U^*(x)$ verifies the consistency estimates of the LobattoIIIA method4: Element endpoints are $2p$-order accurate, internal nodes have accuracy h^{p+2}.

4See e.g. Theorem 7.10 in Hairer, Wanner and Norset, Solving Ordinary Differential Equations I., Springer 1993
Global flux quadrature

\[\int_K \phi_i f_h \rightarrow hD_x I f \]

Main results

- Characterization of discrete equilibria: solution of LobattoIIIA continuous collocation method

- For steady states: super-convergence property of the LobattoIIIA ODE integrator

- Same approximate well balanced notion as in \(^5\), however:
 - ✓ No need of compute the solution of the Cauchy problem .. (maybe for initialization)
 - ✓ Considerable accuracy enhancements at steady state with minor change in code
 - × Order/type of collocation method not arbitrary

Pseudo-1D rotating shallow water eq.s (Castro et al, SISC 31, 2008)

\[
\begin{aligned}
\partial_t \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} + \partial_x \begin{pmatrix} hu \\ hu^2 + P(h) \\ huv \end{pmatrix} &= -h \begin{pmatrix} 0 \\ \partial_x \varphi + c_f u - \phi v \\ c_f v + \phi u \end{pmatrix}
\end{aligned}
\]

Notation.

- h: water depth
- ζ: free surface level
- $v = (u, v)$: horizontal velocity
- $P = gh^2/2$: hydrostatic pressure (g: gravity acceleration)
- $\varphi = gb$: gravitational potential ($b(x, y)$: bottom topography)
- $c_f = c_f(h, v)$: friction coefficient
- ϕ: Coriolis coefficient
Numerical examples: perturbations of moving equilibria

Trans-critical with

\[h u = q_0 \]
\[g \zeta + u^2/2 = \mathcal{E}_0 \]

Depth perturbation \(\xi_h = 10^{-3} \)

Super-critical with

\[h u = q_0 \]
\[g \zeta + u^2/2 = \mathcal{E}_0 - \int_{x_0}^{x} c_f u \]

Depth perturbation \(\xi_h = 10^{-5} \)

Sub-critical with \(v = \phi x \) and

\[h u = q_0 \]
\[g \zeta + u^2/2 = \mathcal{E}_0 + \int_{x_0}^{x} \phi uv \]

Depth perturbation \(\xi_h = 10^{-5} \)
Numerical examples: error wrt ODE solver

Sub-critical with

\[hu = q_0 \]
\[g\zeta + u^2/2 = \mathcal{E}_0 \]

Super-critical with

\[hu = q_0 \]
\[g\zeta + u^2/2 = \mathcal{E}_0 - \int_{x_0}^{x} c_f u \]

Sub-critical with \(v = \phi x \) and

\[hu = q_0 \]
\[g\zeta + u^2/2 = \mathcal{E}_0 + \int_{x_0}^{x} \phi uv \]
Numerical examples: (super)convergence, DG-SEM

Theory for GF: internal points = $O(h^{p+2})$ - endpoints = $O(h^{2p})$

Super-critical channel with bump (no friction, no Coriolis)

Sub-critical with Coriolis force
Numerical examples: (super)convergence, DG-SEM

Theory for GF: internal points $= \mathcal{O}(h^{p+2})$ - endpoints $= \mathcal{O}(h^{2p})$

Super-critical channel with bump (no friction, no Coriolis)

Sub-critical with Coriolis force
2 MultiD Constraint Preserving via Global Flux Quadrature

with W. Barsukow and D. Torlo
Well balanced in multi-D: structure/constraint preserving

\[\nabla \cdot F(U) = S(U; \varphi(x)) \]

The form of the tensor F determines the type of differential constraints to preserve.
Well balanced in multi-D: structure/constraint preserving

We are going to work with the following example (with $v = (u, v)$)

$$
\partial_t P + \nabla \cdot v = s(x, y)
$$

$$
\partial_t u + \partial_x P = \phi v - c_f u + \tau_x
$$

$$
\partial_t v + \partial_y P = -\phi u - c_f v + \tau_y
$$

Linear waves with Coriolis, friction, mass source

P pressure

$v = (u, v)$ velocity

$s(x, y)$ mass source

c_f friction coefficient

ϕ Coriolis coefficient

$\tau = (\tau_x, \tau_y)$ momentum forcing (e.g. wind for free surface waves)
Well balanced in multi-D: structure/constraint preserving

We are going to construct schemes preserving (simultaneously) the constrains

\[\nabla \cdot v = s(x, y) \]

\[\nabla P = q \]

- one multi-D constraint : \(\nabla \cdot v = s(x, y) \) (hard)
- two (pseudo-)1D constraints : \(\nabla P = q \) (easier)
Global Flux Quadrature in MultiD

Discrete Framework: SEM

Tensor product spectral finite element method (SEM)

- $x(\xi) = (x(\xi), y(\eta))$ mapping $[0, 1]^2 \mapsto K$, for simplicity: $|K| = h^2$
- $\{\xi_i\}_{i=0,p}$ and $\{\eta_j\}_{j=0,p}$ the $p + 1$ Gauss-Lobatto (GL) points
- $\{\phi_i(x)\}_{i=0,p}$ and $\{\psi_j(y)\}_{j=0,p}$ 1d degree p Lagrange bases
- For node ij: $\lambda_{ij}(x(\xi), y(\eta)) = \phi_i(x)\psi_j(y)$
- Set $U_h = \sum_{i,j} \lambda_{ij}(x(\xi), y(\eta))U_{ij}$
Discrete Framework: SEM

Tensor product spectral finite element method (SEM)

- \(x(\xi) = (x(\xi), y(\eta)) \) mapping \([0, 1]^2 \mapsto K\), for simplicity: \(|K| = h^2\)
- \(\{\xi_i\}_{i=0,p} \) and \(\{\eta_j\}_{j=0,p} \) the \(p + 1 \) Gauss-Lobatto (GL) points
- \(\{\phi_i(x)\}_{i=0,p} \) and \(\{\psi_j(y)\}_{j=0,p} \) 1d degree \(p \) Lagrange bases
- For node \(ij \): \(\lambda_{ij}(x(\xi), y(\eta)) = \phi_i(x)\psi_j(y) \)
- Set \(U_h = \sum_{i,j} \lambda_{ij}(x(\xi), y(\eta))U_{ij} \)

Notation: tensor product matrices

Mass matrix entries

\[
\int_K \lambda_{ij} \lambda_{lm} = \int_{x_0}^{x_p} (\phi_i(x)\phi_l(x)) \times \int_{y_0}^{y_p} (\psi_j(y)\psi_m(y)) \Rightarrow M = M_x \otimes M_y = M_y \otimes M_x
\]
Global Flux Quadrature in MultiD

Discrete Framework: SEM

Tensor product spectral finite element method (SEM)

- \(x(\xi) = (x(\xi), y(\eta)) \) mapping \([0, 1]^2 \mapsto K\), for simplicity: \(|K| = h^2\)
- \(\{\xi_i\}_{i=0,p} \) and \(\{\eta_j\}_{j=0,p} \) the \(p + 1 \) Gauss-Lobatto (GL) points
- \(\{\phi_i(x)\}_{i=0,p} \) and \(\{\psi_j(y)\}_{j=0,p} \) 1d degree \(p \) Lagrange bases
- For node \(ij \): \(\lambda_{ij}(x(\xi), y(\eta)) = \phi_i(x)\psi_j(y) \)
- Set \(U_h = \sum_{i,j} \lambda_{ij}(x(\xi), y(\eta))U_{ij} \)

Notation: tensor product matrices

Mass matrix entries

\[
\int_K \lambda_{ij} \lambda_{lm} = \int_{x_0}^{x_p} (\phi_i(x)\phi_l(x)) \times \int_{y_0}^{y_p} (\psi_j(y)\psi_m(y)) \Rightarrow M = M_x M_y = M_y M_x
\]
Global Flux Quadrature in MultiD

Discrete Framework: SEM

Tensor product spectral finite element method (SEM)

- $x(\xi) = (x(\xi), y(\eta))$ mapping $[0, 1]^2 \mapsto K$, for simplicity: $|K| = h^2$

- $\{\xi_i\}_{i=0}^p$ and $\{\eta_j\}_{j=0}^p$ the $p+1$ Gauss-Lobatto (GL) points

- $\{\phi_i(x)\}_{i=0}^p$ and $\{\psi_j(y)\}_{j=0}^p$ 1d degree p Lagrange bases

- For node ij: $\lambda_{ij}(x(\xi), y(\eta)) = \phi_i(x)\psi_j(y)$

- Set $U_h = \sum_{i,j} \lambda_{ij}(x(\xi), y(\eta))U_{ij}$

Notation: tensor product matrices

Derivative matrix entries

$$\int_K \lambda_{ij} \partial_x \lambda_{lm} = \int_{x_0}^{x_p} (\phi_i(x)\partial_x \phi_l(x)) \times \int_{y_0}^{y_p} (\psi_j(y)\psi_m(y)) \Rightarrow D_x M_y = M_y D_x$$
Discrete Framework: SEM

We are going to work with the following example (with $v = (u, v)$)

$$\partial_t P + \nabla \cdot v = s(x, y)$$
$$\partial_t u + \partial_x P = q_x$$
$$\partial_t v + \partial_y P = q_y$$

Standard continuous SEM approximation (no stabilization) in strong form

$$M\dot{P} + M_y D_x U + M_x D_y V = MS$$
$$M\dot{U} + M_y D_x P = MQ_x$$
$$M\dot{V} + M_x D_y P = MQ_y$$
Discrete Framework: SEM
We are going to work with the following example (with $v = (u, v)$)

\[
\begin{align*}
\partial_t P + \nabla \cdot v &= s(x, y) \\
\partial_t u + \partial_x P &= q_x \\
\partial_t v + \partial_y P &= q_y
\end{align*}
\]

Standard continuous SEM approximation (no stabilization) in strong form

\[
\begin{align*}
M \dot{P} + M_y D_x U + M_x D_y V &= MS = \sum K M^K S^K \\
M \dot{U} + M_y D_x P &= MQ_x \\
M \dot{V} + M_x D_y P &= MQ_y
\end{align*}
\]

Abuse of notation:
for continuous SEM the matrix formulation involve local elemental assembly. We omit it for brevity, and explicitly mention only when necessary
Global Flux Quadrature in MultiD

Discrete Framework: SEM

We are going to work with the following example (with $v = (u, v)$)

\[
\begin{align*}
\partial_t P + \nabla \cdot v &= s(x, y) \\
\partial_t u + \partial_x P &= q_x \\
\partial_t v + \partial_y P &= q_y
\end{align*}
\]

Standard continuous SEM approximation (no stabilization) in strong form

\[
\begin{align*}
M \dot{P} + M_y D_x U + M_x D_y V &= MS \\
M \dot{U} + M_y D_x P &= MQ_x \\
M \dot{V} + M_x D_y P &= MQ_y
\end{align*}
\]

Stabilization using standard methods:
SUPG, gradient penalty, orthogonal subgrid scales etc\(^6\).

More later (if time)

\(^6\)see e.g. (Michel et al, J.Sci.Comp. 94, 2023) for a review
The *div* constraint. Homogeneous case

Consider now the multiD (steady) constraint on the *div*.

\[\partial_x u + \partial_y v = 0 \]
The \textit{div} constraint. Homogeneous case

Consider now the multiD (steady) constraint on the \textit{div}.

\[
\begin{align*}
\partial_x u &= -\partial_y v := -\sigma_x \Rightarrow D_x U = -h D_x I_x \sigma_x \\
\partial_y v &= -\partial_x u := -\sigma_y \Rightarrow D_y V = -h D_y I_y \sigma_y
\end{align*}
\]

\[\Rightarrow \quad \text{div} := h D_y I_y D_x P + h D_x I_x D_y V\]

1. We look at it as two 1D relations in one
2. We apply to each the GF quadrature as if we where working on 2 balance laws
3. We combine the two to get a discrete divergence operator
The \textit{div} constraint. Homogeneous case

Consider now the multiD (steady) constraint on the \textit{div}.

\[
\begin{align*}
\partial_x u &= -\partial_y v := -\sigma_x \Rightarrow D_x U = -hD_x I_x \sigma_x \\
\partial_y v &= -\partial_x u := -\sigma_y \Rightarrow D_y V = -hD_y I_y \sigma_y
\end{align*}
\]

⇒ \text{div} := hD_y I_y D_x U + hD_x I_x D_y V

Remarks

• Note that $I_x = I_y$, both corresponding to the LobattoIIIA tableau.
• We keep the subscripts x and y for better understanding.
• Recall that the standard SEM divergence operator is

\[
\text{div}_{\text{SEM}} := M_y D_x U + M_x D_y V
\]
The \textit{div} constraint. Homogeneous case

Consider now the multiD (steady) constraint on the \textit{div}.

\[\partial_x u = -\partial_y v := -\sigma_x \Rightarrow D_x U = -hD_x I_x \sigma_x \]

\[\partial_y v = -\partial_x u := -\sigma_y \Rightarrow D_y V = -hD_y I_y \sigma_y \]

Proposition (The div residual) The local assembly of the divergence operator can be written as

\[\text{div} = \sum_K D^K_x D^K_y \Phi^K \]

where on each element Φ^K is the array of integrated divergences

\[(\Phi^K)_{lm} := \int_{y_0}^{y_m} (u_h(x_l, s) - u_h(x_0, s)) + \int_{x_0}^{x_l} (v_h(s, y_m) - v_h(s, y_0)) \]
(non-stabilized) SEM-GF for the acoustics system

The SEM-GF semi-discrete approximation of the acoustics system (with abuse of notation) reads

\[M \dot{P} + D_x D_y \Phi = 0 \]
\[M \dot{U} + M_y D_x P = 0 \]
\[M \dot{V} + M_x D_y P = 0 \]

Proposition (Steady states) *The SEM-GF scheme preserves exactly initial states for which \(P_i = P_0 \ \forall \ i \), and which verify within each element \(K \) and for every pair \(l, m \geq 1 \)

\[(\Phi^K)_{lm} = \int_{y_0}^{y_m} (u_h(x_l, s) - u_h(x_0, s)) + \int_{x_0}^{x_l} (v_h(s, y_m) - v_h(s, y_0)) = 0 \]
Global Flux Quadrature in MultiD

(non-stabilized) SEM-GF for the acoustics system

The SEM-GF semi-discrete approximation of the acoustics system (with abuse of notation) reads

\[
\begin{align*}
M\dot{P} + D_x D_y \Phi &= 0 \\
M\dot{U} + M_y D_x P &= 0 \\
M\dot{V} + M_x D_y P &= 0
\end{align*}
\]

Definition (LobattoIIIA line-by-line/row-by-row projection) Let \(v_e = (u_e(x, y), v_e(x, y)) \) be a given div free velocity. Consider the initialization obtained by means of the LobattoIIIA method

\[
\begin{align*}
[I_y U(x_l)]_m &= u(x_l, y_0) + \int_{y_0}^{y_m} u_e(x_l, y) \\
[I_x V(y_m)]_l &= v(x_0, y_m) + \int_{x_0}^{x_l} v_e(x, y_m)
\end{align*}
\]

with local ICs given by the last value of the previous elements, and ICs on the lowest/left boundaries

\[
\begin{align*}
u_h(x_i, y = 0) &= u_e(x_i, y = 0) \quad \text{and} \quad v_h(x = 0, y_j) = v_e(x = 0, y_j)
\end{align*}
\]
Global Flux Quadrature in MultiD

(non-stabilized) SEM-GF for the acoustics system

The SEM-GF semi-discrete approximation of the acoustics system (with abuse of notation) reads

\[
\begin{align*}
M \dot{P} + D_x D_y \Phi &= 0 \\
M \dot{U} + M_y D_x P &= 0 \\
M \dot{V} + M_x D_y P &= 0
\end{align*}
\]

Proposition (LobattoIIIA projection preservation) Let \(\textbf{v}_e = (u_e(x, y), v_e(x, y)) \) be a \textit{div} free velocity, and consider the initial state consisting of the LobattoIIIA line-by-line/row-by-row projection of \(\textbf{v}_e \), and \(P_i = P_0 \ \forall i \). The SEM-GF scheme

1. Preserves the initial condition within the accuracy of the evaluation of the integrals of the components of \(\textbf{v}_e \). The IC is preserved exactly if the quadrature is exact.

2. It the nodal consistency order \(O(h^{p+2}) \) associated to the LobattoIIIA method
Global Flux Quadrature in MultiD

(non-stabilized) SEM-GF for the full system: main ingredients
Global Flux Quadrature in MultiD

(non-stabilized) SEM-GF for the full system: main ingredients

Pressure equation: sources included using the GF recipe in x and y. Achieved setting

$$\Phi_{lm} = \int_{x_0}^{x_i} \int_{y_0}^{y_m} (\partial_x u_h + \partial_y v_h - s_h)$$

On each element

$$D_x D_y \Phi = h D_x D_y I_x U + h D_y D_x I_x V - h^2 D_x I_x D_y I_y S$$
(non-stabilized) SEM-GF for the full system: main ingredients

Velocity equations: we treat the 2 pseudo-1D constraints independently

\[
\begin{align*}
\partial_x P &= q_x \\
\partial_y P &= q_y \\
\Rightarrow \quad D_x P &= hD_x I_x Q_x \\
D_y P &= hD_y I_y Q_y
\end{align*}
\]

More compactly, we can write the above as

\[
\begin{align*}
\partial_x P &= q_x \\
\partial_y P &= q_y \\
\Rightarrow \quad D_x (P - h I_x Q_x) &= D_x \Phi_u \\
D_y (P - h I_y Q_y) &= D_x \Phi_v
\end{align*}
\]

having introduced the residuals

\[
(\Phi_u)_{lm} = \int_{x_0}^{x_1} (\partial_x P_h(x, y_m) - q_{x_h}) \quad \text{and} \quad (\Phi_v)_{lm} = \int_{y_0}^{y_m} (\partial_y P_h(x_l, y) - q_{y_h})
\]
(non-stabilized) SEM-GF for the full system: main ingredients

We obtain the full non-stabilized SEM-GF discretization

\[
\begin{align*}
M\dot{P} + D_x D_y \Phi &= 0 \\
M\dot{U} + M_y D_x \Phi_u &= 0 \\
M\dot{V} + M_x D_y \Phi_v &= 0
\end{align*}
\]

All steady state preserving properties are enconded in the residual arrays \((\Phi, \Phi_u, \Phi_v)\)
SEM-GF for the full system

We obtain the full non-stabilized SEM-GF discretization

\[M \dot{P} + D_x D_y \Phi = 0 \]
\[M \dot{U} + M_y D_x \Phi_u = 0 \]
\[M \dot{V} + M_x D_y \Phi_v = 0 \]

All steady state preserving properties are encoded in the residual arrays \((\Phi, \Phi_u, \Phi_v)\)

Stabilization

Use systematically GF quadrature to express all operators in terms of \(\Phi, \Phi_u\) and \(\Phi_v\)

- We carry on the steady state preserving properties
- This is not the case for classical stabilization operators!
The initial solution
At the moment we can follow two approaches

1. Use a given IC (analytical or tabulated)

2. Given a \(\text{div} \) free velocity field \(v_0 \) (analytical or tabulated)
 - project \(v_0 \) on the space of discrete equilibria to obtain \(v_{h0} \)
 - Integrate the pressure in the each direction with LobattoIIIA, using \(v_{h0} \) to evaluate the RHS
 - Use \(\text{div} \) and \(\text{curl} \) conditions to combine the two and obtain a single admissible pressure initial state
Linear waves with Coriolis, friction, mass source

\[
\partial_t \begin{pmatrix} P \\ u \\ v \end{pmatrix} + \partial_x \begin{pmatrix} u \\ P \\ 0 \end{pmatrix} + \partial_y \begin{pmatrix} v \\ 0 \\ P \end{pmatrix} = \begin{pmatrix} s(x, y) \\ \phi v - c_f u + \tau_x \\ -\phi u - c_f v + \tau_y \end{pmatrix}
\]

Notation.
- \(P \) pressure
- \(v = (u, v) \) velocity
- \(s(x, y) \) mass source
- \(c_f \) friction coefficient
- \(\phi \) Coriolis coefficient
- \(\tau = (\tau_x, \tau_y) \) momentum forcing (e.g. wind for free surface waves)
Vortex solutions

div-free exponential

\[
\begin{align*}
 r &= \|x - x_0\| \\
 v &= (x - x_0) \perp f(r) \\
 P &= 1
\end{align*}
\]

div-free exponential + Coriolis

\[
\begin{align*}
 r &= \|x - x_0\| \\
 v &= v_{\text{div-free}} + \nabla \varphi_2 \\
 P &= 1 - \phi g(r)
\end{align*}
\]

div-free exponential + mass source

\[
\begin{align*}
 v &= v_{\text{div-free}} + \nabla \varphi_2 \\
 P &= 1 \\
 s &= \Delta \varphi_2
\end{align*}
\]
Vortex solutions perturbations: \(p = p_{\text{steady}} + 10^{-5} \delta p \)

- div-free exponential
- div-free exponential + Coriolis
- div-free exponential + mass source
Vortex solutions perturbations: \(p = p_{\text{steady}} + 10^{-10} \delta p \)

div-free exponential

\[\begin{align*}
\text{Non Global Flux} & \\
\text{Global Flux} & \\
\end{align*} \]

\[\begin{array}{c}
p2 \text{ on } 20 \times 20 \text{ grid} \\
p3 \text{ on } 13 \times 13 \text{ grid} \\
\end{array} \]

div-free exponential + Coriolis

\[\begin{align*}
\text{Non Global Flux} & \\
\text{Global Flux} & \\
\end{align*} \]

\[\begin{array}{c}
p2 \text{ on } 20 \times 20 \text{ grid} \\
p3 \text{ on } 13 \times 13 \text{ grid} \\
\end{array} \]
Vortex solutions perturbations: super-convergence - theory $GF = \mathcal{O}(h^{p+2})$

$\text{div-free exponential + Coriolis}$

$\text{div-free exponential + mass source}$
The Stommel Gyre

\[
\partial_t \begin{pmatrix} p \\ u \\ v \end{pmatrix} + \partial_x \begin{pmatrix} u \\ p \\ 0 \end{pmatrix} + \partial_y \begin{pmatrix} v \\ 0 \\ p \end{pmatrix} = \begin{pmatrix} 0 \\ \phi v - c_f u + \tau_x \\ -\phi u - c_f v + \tau_y \end{pmatrix}
\]

Notation.

Friction: \(c_f \) constant

Coriolis: \(\phi = \phi_0 + f_0 y \)

Forcing: \(\tau = \tau_0(0, \cos(\beta y)) \)
The Stommel Gyre

Pressure perturbation $10^{-3} \delta_p$: $p1$ on 80×80 mesh

Pressure perturbation $10^{-5} \delta_p$: $p3$ on 13×13 mesh
The Stommel Gyre

Theory for GF: internal points $= \mathcal{O}(h^{p+2})$
Summary

- Global flux quadrature approach considerable accuracy enhancements at steady state for appropriate choice of the ODE integrator hidden the table \mathcal{I}

- In one dimension discrete equilibria can be generated a-priori if necessary

- In two dimensions fully div preserving schemes can be designed

Outlook

- FD and FV variant using ODE operators independent of the underlying method (with Carlos)

- MultiD with FD/FV and dime-by-dim solution of the Cauchy problem (with Carlos, I hope :D)

- MultiD: closer look at the curl involution

- DG-SEM with GFq for multiD scalar conservation laws and nonlinear variants
DG-SEM + GFq:

Continuous FEM version:

WENO high order GF:

DG-SEM + GFq including discontinuous data/solutions:
Xu and Shu, A high-order well-balanced discontinuous Galerkin method for hyperbolic balance laws based on the Gauss-Lobatto quadrature rules, September 2023 Brown preprint

Structure preserving for acoustics:
W. Barsukow, M. Ricchiuto, and D. Torlo, Structure preserving methods via global flux quadrature: divergence preservation and curl involution with continuous finite elements, in preparation

MultiD well balanced:
... gracias Carlos!