
Beyond Surrogate Modeling :
Learning the Local Volatility via Shape Constraints

Areski Cousin
IRMA, Université de Strasbourg

Joint work with Marc Chataigner, Stéphane Crépey, Matthew Dixon
and Djibril Gueye

Séminaire équipe Calisto - INRIA, July 2, 2021

Areski Cousin Learning the Local Volatility via Shape Constraints Slide 1



Motivation

We explore 2 alternatives machine learning approaches for the
construction of local volatility surfaces

A no-arbitrage Gaussian process (GP) approach based on price and a
neural net (NN) approach with penalization of arbitrages based on implied
volatility

Construction at a given cotation date, from observations of bid-ask prices
for a set of liquidly traded European options

GP estimate NN estimate
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General Problem Statement [no-arbitrage GP approach]

In this presentation, we focus on the GP approach

Construct a GP surface estimate P : Rd → R, interpolating noisy
option prices {xi , yi}ni=1 so that yi = P(xi ) + εi for some additive
noise εi , ∀i .
For a given option, bid and ask prices considered as two (noisy)
replicates of P
Subject to shape constraints, i.e., non-decreasing in maturity and
convex in strike (to avoid calendar spread and butterfly arbitrages).
How to effectively enforce shape constraints in the GP regression ?
Uncertainty quantification under shape constraints : how to derive
no-arbitrage confidence bands ?
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Connections between option price, IV and local volatility

Figure: Mathematical connections between option prices, implied, and local volatility. The
bold red arrow shows the route under the no-arbitrage GP approach based on price. The bold
blue arrow shows the route under the NN approach based on implied volatility.
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Absence of static arbitrage

The put price function (T ,K)→ P(T ,K) is considered to be free of static
arbitrage if there exists a measure Q such that the discounted asset e−(r−q)tSt

is a Q–martingale and P(T ,K) = EQ
[
e−rT (K − ST )+

]
.

Absence of arbitrage [constant interest rate r and dividend yield q]

Let p(T , k) := eqTP(T ,K) where k = e−(r−q)TK be the reduced put price.
The put price surface (T ,K)→ P(T ,K) is free of static arbitrage if and only if
the reduced price function p is such that

p(·, k) is a non-decreasing function and p(0, k) = (k − S0)+, for any
k ≥ 0

p(T , ·) is a convex function, p(T , 0) = 0, ∂p
∂k

(T , 0) = 0 and
lim

k→∞
p(T , k) = k − S0, for any T ≥ 0
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GP regression with shape constraints
Illustrative example

Data : Euro Stoxx 50 put prices, January 10, 2019
5% of the data used (red points), zero-mean Gaussian prior with a
Gaussian kernel
Classical GP (left) vs GP with no-arbitrage constraints (right)
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GP regression with shape constraints

Kriging of option price surface - quantification of uncertainty

Pointwise 5% and 95% estimated quantiles of the fitted GP

Classical kriging (left) vs kriging with no-arbitrage constraints (right)
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GP regression with shape constraints

Assume that the a priori belief on the (reduced) price surface p is given as a
GP prior process Y . The GP approach with shape constraints consists in
estimating the conditional distribution of Y given{

y = Y (X ) + ε
Y ∈M

where X = (x1, . . . , xn)>, y = (y1, . . . , yn)>, ε is a zero-mean Gaussian noise in
Rn (independent of Y ) andM is a convex set of functions satisfying some
shape properties.

For instance,M can be :

Md
0 := {f ∈ C([0, 1]d ,R) | ymin ≤ f (x) ≤ ymax, ∀x ∈ D}

M1
1 := {f ∈ C([0, 1],R) | f is non-decreasing}

M1
2 := {f ∈ C([0, 1],R) | f is convex}

M2
12 := {f ∈ C([0, 1]2,R) | f is non-decreasing in t and convex in x}
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GP regression with shape constraints

Main issues :

The posterior process is not Gaussian

The shape condition is usually infinite-dimensional

Proposed solutions :

We construct a finite-dimensional approximation of Y for which the shape
condition is easy to check.

We consider the mode of the posterior distribution (as opposed to the
posterior mean) as the response surface predictor

Hyper-parameters are estimated using (unconstrained) MLE

Sampling of the posterior (no-arbitrage) distribution by Hamiltonian
Monte Carlo starting from the mode
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Finite-dimensional approximation of GP (1d case)
As in Maatouk and Bay (2014), Cousin et al. (2016), López et al. (2018), we
rely on basis function approximation.

Input domain D is normalized on [0, 1] and discretized on a regular
subdivision u0 < . . . < uN with a constant mesh δ.

For each ui , we consider hat functions φi (x) := max
(
1− |x−ui |

δ
, 0
)

Y is approximated on D by Y N(x) =
∑N

i=0 Y (ui )φi (x)
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Finite-dimensional approximation of GP (2d case)

D = [0, 1]2 is discretized on a (Nt + 1)× (Nx + 1) regular grid with knots
(ui , vj), i = 0, . . . ,Nt , j = 0, . . . ,Nx .

For each knot (ui , vj), we consider tensor product basis functions

φi,j(t, x) := max
(
1− |t − ui |

δt
, 0
)
max

(
1− |x − vj |

δx
, 0
)

Y is approximated on D by

Y N(t, x) =

Nt∑
i=0

Nx∑
j=0

Y (ui , vj)φi,j(t, x)

N = (Nt + 1)(Nx + 1) is the number of knots
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Finite-dimensional approximation of GP (2d case)

Proposition

Let Y be a zero-mean GP with covariance function K and with almost surely
continuous paths.

The finite-dimensional process Y N uniformly converges to Y on D as
Nt →∞ and Nx →∞, almost surely.

Y N(t, x) = Φ(t, x)ξ where ξ := (Y (u0, v0),Y (u0, v1), . . . ,Y (uNt , vNx ))>

is a zero-mean Gaussian vector with N × N covariance matrix ΓN such
that ΓN = K((ui1 , vj1), (ui2 , vj2)).

Shape-preserving conditions :

Y N is bounded on [ymin, ymax] if and only if ymin ≤ ξi,j ≤ ymax

Y N(t, x) is a non-decreasing function of t if and only if ξi+1,j ≥ ξi,j
Y N(t, x) is a convex function of x if and only if ξi,j+2− ξi,j+1 ≥ ξi,j+1− ξi,j
· · ·
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GP regression with shape constraints

New formulation of the problem : Consider a zero-mean GP prior Y with
covariance function K . The N-dimensional approximation Y N of Y on D is
such that, for any x ∈ D, Y N(x) = Φ(x)ξ, where ξ is a zero-mean Gaussian
vector with covariance matrix ΓN .

GP regression with shape constraints consists in finding the conditional
distribution of Y N = Φ(·)ξ given that{

y = Φ(X ) · ξ + ε
ξ ∈ Cineq

where X = (x1, . . . , xn)>, y = (y1, . . . , yn)>, ε is a zero-mean Gaussian noise in
Rn (independent of ξ) and Cineq is a set of linear inequality constraints.

This is equivalent to finding the distribution of a truncated Gaussian vector
Z := [ξ | y = Φ(X ) · ξ + ε] given ξ ∈ Cineq
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Estimation of hyper-parameters

We consider 2-dimensional anisotropic stationary kernels :

K (x , x ′) = σ2Kt(T − T ′; θt)Kx(k − k ′; θx)

where Kt ,Kx are stationary kernels. ex : Gaussian, Matérn 5/2,
Matérn 3/2, Exponential.

Homoscedastic noise : ε ∼ N (0,Σnoise) where Σnoise = σ2noiseIn

Hyper-parameters : λ = (σ, θ1, . . . , θd , σnoise)
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Estimation of hyper-parameters

Following López-Lopera et al (2017), two MLE approaches can be considered

Unconditional likelihood : Find λ that maximizes the Gaussian likelihood
P (Φ(X ) · ξ + ε = y | λ) or log-likelihood

LN(λ) := −n

2
log(2π)− 1

2
log |C | − 1

2
y>C−1y

where C := Φ(X )ΓN(λ)Φ(X ) + Σnoise(λ)

Conditional likelihood : Find λ that maximizes the conditional probability
P (Φ(X ) · ξ + ε = y | ξ ∈ Cineq, λ) or the log-likelihood

LN,cond(λ) := LN(λ) + log P(ξ ∈ Cineq | Φ(X ) ·ξ+ε = y)− log P(ξ ∈ Cineq)

Areski Cousin Learning the Local Volatility via Shape Constraints Slide 15



Mode estimator

We define the (a posteriori) most probable response surface and measurement
noises as {

MN
K (x) := Φ(x) · (c∗1 , . . . , c∗N)>, x ∈ D

e∗ := (e∗1 , . . . , e
∗
n )>

where (c∗, e∗) is the mode of the truncated Gaussian vector (ξ, ε) given the
constraints, defined as solution of

max
c,e

P (ξ ∈ [c , c + dc], ε ∈ [e, e + de] | Φ(X ) · ξ + ε = y , ξ ∈ Cineq) .

The mode (c∗, e∗) is solution of a quadratic problem

min
Φ(X )·c+e=y, c∈Cineq

(
c>(ΓN)−1c + e>Σ−1

noisee
)
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Mode estimator

Data : S&P 500 bid ask put prices as of of May 18, 2019
Fitted Matérn 5/2 kernel using uncond. MLE, 3340 training data in blue,
1755 testing data in red, Nt = 25, Nx = 100.
Most probable surface (left) vs most probable noise values (right)

Areski Cousin Learning the Local Volatility via Shape Constraints Slide 17



Sampling finite-dimensional GP with shape constraints

First remark that the distribution of ξ given Φ(X ) · ξ + ε = y is multinormal
N (µcond ,Σcond) where{

µcond = ΓNΦ(X )>
(
Φ(X )ΓNΦ(X )> + Σnoise

)−1 b
Σcond = ΓN − ΓNΦ(X )>

(
Φ(X )ΓNΦ(X )> + Σnoise

)−1
Φ(X )ΓN

Following López-Lopera et al (2017), we consider the Hamiltonian Monte Carlo

method introduced by Pakman and Paninski (2013) for sampling truncated
multivariate Gaussian :

T N (µcond ,Σcond , Cineq)

MCMC initialized using the mode estimator since it satisfies the inequality
constraints.
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Comparison of RMSE and backtest results for the different
approaches

SSVI, GP, NN based on IV, NN based on price, and unconstrained versions

IV RMSE
(Price RMSE) SSVI GP IV based

NN
Price

based NN
SSVI

Unconstr.
GP

Unconstr.

IV based
NN

Unconstr.

Price
based NN
Unconstr.

Calibr. fit on
the training set

1.37%
(2.574)

0.58%
(0.338)

1.23%
(2.897)

13.70%
(9.851)

1.04%
(2.691)

0.60%
(0.321)

0.84%
(2.163)

5.65 %
(2.456)

Calibr. fit on
the testing set

1.52%
(2.892)

0.57%
(0.355)

1.29%
(2.966)

14.27%
(10.347)

1.09%
(2.791)

0.57%
(0.477)

0.86%
(2.045)

6.14%
(2.888)

MC backtest 8.69%
(22.826)

19.76%
(74.017)

2.95%
(4.989)

6.37%
(11.764) N/A N/A N/A N/A

FD backtest 6.88%
(33.545)

7.86%
(35.270)

3.43%
(11.976)

5.56%
(26.785) N/A N/A N/A N/A

Comput. time
(seconds) 33 856 191 185 1 16 76 229

Table: The IV and price RMSEs of the SSVI, GP and NN approaches. Last
line : computation times.
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Slices of the IV Surface

Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-asks IVs
(+) and testing bid-asks IVs (+) (the bid-ask IVs are reconstructed numerically from the corresponding bid-ask
market prices). The shaded envelopes show 100 paths of the constrained GP’s posterior.
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Slices of fitted IV errors with respect to mid-price IVs

Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-asks IVs
(+) and testing bid-asks IVs (+) (the bid-ask IVs are reconstructed numerically from the corresponding bid-ask
market prices). The shaded envelopes show 100 paths of the constrained GP’s posterior.
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Slices of the IV Surface - unconstrained case

Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-asks IVs
(+) and testing bid-asks IVs (+) (the bid-ask IVs are reconstructed numerically from the corresponding bid-ask
market prices). The shaded envelopes show 100 paths of the constrained GP’s posterior.
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Slices of fitted IV errors with respect to mid-price IVs -
unconstrained case

Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-asks IVs
(+) and testing bid-asks IVs (+) (the bid-ask IVs are reconstructed numerically from the corresponding bid-ask
market prices). The shaded envelopes show 100 paths of the constrained GP’s posterior.
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Thanks for your attention.
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Classical kriging

Estimation of the unknown function f using Bayesian statistics

Our first belief in f is given as a Gaussian process prior Y
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Classical kriging

The function f is known at some input points x1, . . . , xn :

f
(
x1) = y1, . . . , f (xn) = yn.
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Classical kriging

This belief is updated given that Y (x1) = y1, . . . ,Y (xn) = yn

Source : presentation of N. Durrande
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Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process
(
Y (x), x ∈ Rd

)
is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R.

and its covariance function

K : (x , x ′) ∈ Rd × Rd −→ Cov(Y (x),Y (x ′)) ∈ R.

1D kriging kernel K(x , x ′) Class

Gaussian σ2 exp
(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x′|

θ

)
C0
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Classical kriging

Changing the kernel K means changing the initial belief on f (i.e., the prior).

Source : presentation of N. Durrande

Given the observations, the model is entirely defined by the kernel.
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Classical kriging

Changing the kernel K has a huge impact on the model

Source : presentation of N. Durrande
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Classical kriging

X = (x1, . . . , xn)> ∈ Rn×d : some design points

y = (y1, . . . , yn)> ∈ Rn : observed values of f at these points

Y (X ) = (Y (x1), . . . ,Y (xn))> : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | Y (X ) = y is a GP with mean function

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− k(x)>K−1k(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xn))> , K is the covariance matrix of Y (X )
and k(x) = (K (x , x1) , . . . ,K (x , xn))>

Note that computational complexity of K−1 is O(n3).
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Classical kriging - indirect observations

In some applications, the unknown function f is not directly observed at X .
But, if f (X ) is known up to solving a linear equality system, kriging can still be
applied without loss of efficiency :

A · f (X ) = b, (1)

where

A is a given matrix of dimension n ×m

b = (b1, . . . , bn)> ∈ Rn

X = (x1, . . . , xm)> ∈ Rm×d : some design points

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm
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Classical kriging - indirect observations

The GP prior Y is updated given AY (X ) = b where

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA>

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Classical kriging - indirect observations with noise

Assume that f is known up to solving a linear equality system with
measurement errors :

A · f (X ) + ε = b. (2)

where

A is a given matrix of dimension n ×m

b = (b1, . . . , bn)> ∈ Rn

X = (x1, . . . , xm)> ∈ Rm×d : some design points

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm

ε is zero-mean Gaussian noise in Rn with covariance matrix Σnoise

Note that A is not necessarily a full-rank matrix in the presence of noise
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Classical kriging - indirect observations with noise

The GP prior Y is updated given AY (X ) + ε = b where

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

ε is assumed to be independent of Y

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) + ε = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA> + Σnoise

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA> + Σnoise

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Training a Gaussian process

In general, we do not have enough information to define - a priori - the
mean function and the kernel function

Training the GP consists in selecting the kernel function (and the
corresponding hyper-parameters) that best represents the data structure

Hyper-parameters : p = (µ(·), σ, θ,Σ)

Estimation of p by maximizing the likelihood function

As Y (X ) is a Gaussian verctor with mean µ and covariance matrix K, the
log likelihood function is given by :

log P(Y (X ) = y | p) = −1
2
log det(K)− 1

2
(y−µ)>K−1(y−µ)− n

2
log(2π)
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