
Analysis of complex simulation experiments with
Gaussian processes

Mickaël Binois
Inria Sophia Antipolis - Acumes

joint works with D. Ginsbourger (UniBE), R. Gramacy (VT), A. Habbal
(UCA), V. Picheny (Secondmind), O. Roustant (Insa)

Séminaire Calisto
2 Juillet 2021



Problem description
Let us consider an expensive-to-evaluate black box simulator:

f : X ⊂ Rd → Rm.

Here, X = [−1, 1]d , corresponding to box constraints. In addition:
only noisy evaluations of f may be possible;
some data may be available too.

Common occurrence in engineering, physics, operations research,
epidemiology, ML, ...

Examples of (stochastic) simulators:
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Applications

Optimization or safety
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Also: sensitivity analysis, dimension reduction,...
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Surrogate based sequential design procedure

Bayesian optimization [Mockus, 1989]
Sequential design strategy based on a distribution over functions to define
an acquisition function.

0)uDesignuofuexperiments

Black
Box

1)uMetamodelutraining

2)uInfillucriterionuoptimization

3)uStop?

Result

For instance:
0 Maximin Latin Hypercubes

Samples
1 Gaussian process model
2 Expected Improvement
3 Budget
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Gaussian processes

Definition (Gaussian vector)
A d-dimensional random vector Y is Gaussian iif ∀a ∈ Rd , a>Y is
Gaussian.

Definition (Gaussian process)
A random process Y indexed by D is said to be Gaussian iif
∀xi ∈ D,∀n ∈ N, (Y (x1), . . . ,Y (xn)) is a Gaussian vector.

GPs are fully characterized with their mean and covariance functions.
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Gaussian processes

Same with images:
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Gaussian process regression
We use a zero mean GP prior on y , with covariance k: Y ∼ GP(0, k).

MVN conditional identities give directly the result on (xi , yi )1≤i≤N :

Y |y ∼ GP(µ, σ2) with
mn(x) = E(Y (x)|y) = k(x)>K−1

N y,
s2
n (x) = Var(Y (x)|y) = k(x, x)− k(x)>K−1

N k(x), where

k(x) = (k(x, x1), . . . , k(x, xN))> and KN = (k(xi , xj)1≤i ,j≤n.
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GP training

GPs have their own hyperparameters, mostly for the kernel function.
Most popular kernels are stationary, e.g., the Gaussian kernel:
k(x , x ′|τ2, θ) = τ2 exp(−(x − x ′)2/θ) = τ2c(abs(x − x ′)|τ2, θ).

Hyperparameter estimation can be based on:
model error (i.e., cross validation, training/testing sets)
variogram analysis
likelihood

Likelihood, i.e., multivariate normal density:

L = 1
(2π)N/2|K|1/2 exp

(
−1
2y>K−1y

)
.

Alternatives include maximum-likelihood estimation and more Bayesian
versions with various degrees of approximation.
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Gaussian processes are increasingly popular

For reasons including:
probabilistic model with spatial dependence
→ provide realistic uncertainty in sampled/unsampled areas;
conditional distributions can be analytical (e.g., conditional variance)
→ key to define efficient active learning strategies;
parameterized by two functions (mean and covariance kernel)
→ flexibility
simple implementation (and many libraries)
→ easy to test
theoretical background
→ Stochastic process, random fields, Reproducing Kernel Hilbert
Spaces (RKHS), positive definite functions
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2) Infill criterion - Expected Improvement
Improvement: I : x ∈ X → max {f ∗ − Y (x), 0} ∈ R, y∗ = min1≤i≤N yi ,

Expected Improvement [Mockus et al., 1978]

E [I(x)|y] = (f ∗ −mN(x)) Φ
(

f ∗−mN(x)
sN(x)

)
+ sN(x)φ

(
f ∗−mN(x)

sN(x)

)
→ balance between exploration and exploitation
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Beyond EI and implementations

Many different infill criteria:
probability of improvement;
UCB [Srinivas et al., 2009];
entropy: conditional [Villemonteix et al., 2009], mutual information
[Contal and Vayatis, 2013], PESC [Hernández-Lobato et al., 2014],
max value [Wang and Jegelka, 2017];

Implementations:
Matlab: DACE, UQLab

R: DiceKriging, DiceOptim, mlrMBO, tgp, laGP, hetGP, . . .

Python: GPy, GPflow, GPyTorch

Overview: [Erickson et al., 2017]
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GP based sequential design is versatile

Active research directions on extensions include:
batched versions of BO, e.g., with multi-point EI or local models
look-ahead criteria
noise on inputs/outputs, heteroskedasticity, non-Gaussian noise
complex inputs/outputs (images, graphs, functions, ...)
multi-fidelity and variable cost
multi/many objective, multi-task, constrained optimization

with some practical limitations:
GP training can be expensive: the vanilla version is O(N3) in time
complexity (but can be reduced to O(N) with approximations)
d must remain in the low tens
non-stationarity is harder to model
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Gaussian process regression with noisy observations

Observation model: y(xi ) = f (xi ) + εi , εi ∼ N (0, r(xi ))

For a zero mean GP with kernel k, MVN conditional identities give:

Y |y ∼ GP(µ, σ2) with

mN(x) = E(Y (x)|y) = k(x)>(KN + ΣN)−1y,
s2
N(x) = Var(Y (x)|y) = k(x, x)− k(x)>(KN + ΣN)−1k(x) + r(x)

where y = (y(xi ))>1≤i≤N , k(x) = (k(x, xi ))>1≤i≤N , KN = (k(xi , xj))1≤i ,j≤N ,
ΣN = Diag(r(x1), . . . , r(xN))

Remark 1: interest also in P(y(x)|data), not only P(f (x)|data)
Remark 2: alternative noise distributions are possible, but losing analytical
tractability
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Gaussian process regression (2)

ΣN = Diag(τ2)

mn(x) = k(x)>K−1
N y,

s2
n (x) = k(x, x) − k(x)>K−1

N k(x)
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Motivating example for heteroskedasticity

Silverman (1985)’s motorcycle accident data
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Motivating example for heteroskedasticity

Silverman (1985)’s motorcycle accident data
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Gaussian process regression results with estimated constant noise:
→ predictive mean is fine, but predictive variance is not.
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Heteroskedastic GP modeling

To deal with input-dependent noise, one idea is to model jointly the
(log-)variance by a second GP

assumes smoothly varying noise across the input space,
introduces latent variables (log-variances) or needs empirical r(xi )’s,
full MCMC (Goldberg et al., 1998), hard-EM (Kersting et al., 2007),
variational (Lazaro-Gredilla et al., 2011), MLE (Binois et al., 2018).
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Heteroskedastic GP modeling (cont’d)

Joint modeling of input dependent noise ε ∼ N (0, r(x)) allows:
to add samples more efficiently,
to benefit from – and plan – replications via looking-ahead

Examples
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16 / 51



Example: Epidemic management (Hu et al., 2015)
Study disease outbreak dynamics based on stochastic compartmental
modeling:

Susceptible, Infected, Recovered (SIR) counts
The continuous time state (St , It ,Rt) is a Markov chain, with
transition S + I → 2I and I → R
considered output is the total number of newly infected:

f (x) := E[S0 − lim
T→∞

ST |(S0, I0,R0) = x] = γE
[∫ ∞

0
It dt|x

]
estimated by Monte Carlo

Experiments:
total population M = 2000
testing set is 2000 designs on the grid, 100 replicates
training set is 1000 designs, 500 with 5 replicates, 250 with 10, 150
with 50, 100 with 100
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Example: Epidemic management (Hu et al., 2015)

Reference mean and noise surfaces
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Example: Epidemic management (Hu et al., 2015)

Comparison of standard deviation estimations
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Input Noise
In some applications (e.g., robustness), it may be necessary to predict at
uncertain locations. The corresponding approximation can be derived, see
e.g., [Girard, 2004].
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Concepts in Multi-objective Optimization (MOO)

A solution minimizing every objective at once usually does not exist.

Pareto dominance
Vector A dominates vector B if:
∀i ∈ {1, . . . , n}, ai ≤ bi

∃j ∈ {1, . . . , n}, aj < bj

Pareto optimality
A is Pareto optimal if it is
non-dominated.

f2

f1

C

A

B

Pareto set (PS): set of all optimal points in the variable space
Pareto front (PF): image of the Pareto set in the objective space
Noisy case: PF defined on expected values of f1, . . . , fm

19 / 51



2bis) MO infill criterion - Hypervolume Improvement
One possible MO improvement is the Hypervolume Improvement IH, i.e.,
the volume added to the current Pareto front by a new observation.
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The corresponding generalization of EI is the Expected Hypervolume
Improvement [Emmerich et al., 2011]:
EHI(x) = E(IH(Y1(x), . . . ,Ym(x))|Y).
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Estimating the Pareto front

Here, we consider n observations of m functions fi , 1 ≤ i ,≤ m.

We build m independent GP models Yi ∼ GP(mn, kn).

Aim: giving an estimation of the whole Pareto front
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Naive solution: taking the Pareto front of the GP models’ mean
→ does not propagate model uncertainty.
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Attainment probability

We consider the random attained set:
Y = {y ∈ Rm | ∃x ∈ X s.t. Y1(x) ≤ y1 ∩ · · · ∩ Ym(x) ≤ ym}

In the rest, we make use of the following attainment probability:

pY : Rm → [0, 1], y→ P [y ∈ Y]
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Conditional Pareto Front (CPF) simulations
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Conditional Pareto Front (CPF) simulations
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Conditional Pareto Front (CPF) simulations
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Conditional Pareto Front (CPF) simulations
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Conditional Pareto Front (CPF) simulations
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Empirical attainment function

pY is estimated as follows : α̂N(z) = 1
N

N∑
i=1

I{CPFi dominates z}
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β-quantiles are level sets of the attainment/coverage function of Y, pY :

Qβ = {z ∈ Rm, pY(z) ≥ β}
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Vorob’ev expectation and deviation

Vorob’ev expectation (VE) [Molchanov, 2005, Chevalier et al., 2013]
Assuming that E(µ(Y)) <∞, it is defined as the smallest β∗-quantile
such that E(µ(Y)) = µ(Qβ∗) where µ is the Lebesgue measure.

Associated variance: Vorob’ev deviation E(µ(Qβ∗∆Y)) (∆: symmetric
difference between sets)
Example: Application to CPFs, using a reference point to bound volumes
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Example 1
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Stepwise Uncertainty Reduction: definition of the criterion

The Vorob’ev deviation is a measure of the uncertainty on P.
Then it is a possible infill criterion to minimize for a new candidate
observation xn+1: J(xn+1) = E

(
µ(Qβ∗

n+1
∆Y)|Y

)
.

This implies updating conditional simulations [Chevalier et al., 2014].

Algorithm Estimation of J(xn+1)
1: Require : p conditional simulations knowing Y
2: for i ∈ (1, . . . , q) do
3: Sample z ∼ N (mn(xn+1), sn(xn+1))
4: Y (i) ← Update the p conditional simulations with z
5: end for
6: Estimate the uncertainty based on the q ensembles of p conditional simulations,

Y (i), 1 ≤ i ≤ q
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Update of simulations - illustration on CPFs
Simulations with n observations:
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Performance of this SUR criterion
Initial state (n = 10)
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Performance of this SUR criterion

Monitoring of Vorob’ev deviation value:
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Complementing multi-objective optimization with game
theory

Goal: optimize more outputs (m) simultaneously

Examples :
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Kalai-Smorodinsky solution
[Binois and Picheny, 2019, Picheny et al., 2018, Binois et al., 2019]
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Calibration problem

Suppose that we have observations of a physical phenomenon depending
on some variables x, with an observable y (corrupted by noise,
y(x) = yR(x) + ε, ε ∼ N (0, σ2

ε ):
That is, we have (xi , yi ), 1 ≤ i ≤ n;

In many cases, there also exist a mathematical/computer model yM of the
phenomenon:

still, it may take some time to evaluate;
there may exist a bias with reality (imperfect model);
they involve additional tuning parameters θ = (θ1, . . . , θp) that can
be controlled. That is, we have can evaluate yM(x,θ).
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Calibration problem (cont’d)

The goal is to reconcile the model with the data, i.e., find the *best* θ
corresponding to the data.
A natural way is to define *best* as follows:

θ∗ ∈ argmin
θ

( n∑
i=1

(yi − yM(xi ,θ))2
)

Maybe we can do more:
quantify uncertainty on the optimal θ
→ Bayesian calibration : find P(θ|y), given a prior on θ: P(θ)
(estimated by Markov Chain Monte Carlo - MCMC)
estimate the bias (and potentially correct it)
→ Kennedy and O’Hagan framework: use a GP to model the bias
and use its likelihood to drive the MCMC.
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Calibration example (from [Gramacy, 2020])

The aim is to predict the amount of time it takes for a ball to hit the
ground depending on the height it is dropped from.

The mathematical model (coming from physics) says that the time of the
fall of a height h is t =

√
2h
g .
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Calibration example (from [Gramacy, 2020]) (cont’d)

Suppose we don’t recall the value of g and want to recover it.
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Calibration example (from [Gramacy, 2020]) (cont’d)

Results from [Gramacy, 2020]:
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Calibration example (2): Code for Anisotropies in the
Microwave Background

Data: Planck survey
CAMB: code for calculating cosmological observables, here angular power
spectra for temperature, with parameters θ
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Calibration example (2): Code for Anisotropies in the
Microwave Background

Approach: emulate CAMB outputs via decomposition on a functional
basis, and model the coefficients:

Y (θ, l) =
p∑

i=1
wi (θ)φi (l)

Reference method: PCA for φi and GP for wi
Alternative method: variational autoencoder for φ and GP for w
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Calibration example (2): Code for Anisotropies in the
Microwave Background

Results:
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Calibration example (3): Influenza A
Influenza A virus is a frequent cause of lower respiratory tract infections,
causing over 15 million diagnoses resulting in 200 000 hospitalizations
each year.

Scope: get deeper understanding of infection mechanisms with
mathematical models, paired with experimental data

Data: Viral lung titers from individual mice infected with 75 TCID 50
influenza H1N1
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Mathematical model [Myers2017]
Tracks susceptible (“target”) cells T and classes of infected cells I1 and I2, and
virus V .
Target cells become infected with virus at rate βV per cell.
Once infected, they enter an eclipse phase I1 at rate κ per cell before
transitioning to produce virus at rate ρ per cell I2.
Virus is cleared at rate c and virus-producing infected cells I2 are cleared in a
density dependent manner with max rate δ and half-saturation constant Kd .
The following system of differential equations describes these dynamics:

T ′ = −βTV ,
I ′1 = βTV − κI1,

I ′2 = κI1 −
δI2

Kd + I2
,

V ′ = ρI2 − cV .

The system is of the form y′ = f(t, y,p). The state variables are given by
y(t) = [T (t), I1(t), I2(t),V (t)]>. The parameters β, κ, δ,Kd , ρ, c and initial
conditions T (0), I1(0), I2(0),V (0) uniquely determine the initial value problem.
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Ingredients of a classical parameter estimation problem

p y(p) s(y(p)) ‖s(y(p))− d‖2
2 +R(p)

d

parameter-to-model model-to-data
loss

prior knowledge/regularization

Parameter p defines the specific model y, which then gets mapped by s
onto the data d, and finally measured with a quality measure J , that may
include prior knowledge R about p.

For the inverse problem we want to find a p̂ with best quality measure J ,
given y, s, regularization R, and data d.

But:
this problem is very often ill-posed
and prior knowledge introduction can be tricky

UQ is generally performed by local sensitivity analysis. Alternatives include
Bayesian methods, via MCMC.
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Proposed alternative [Chung et al., 2019]

Here, we propose to perform the regularization implicitly, via a surrogate
stochastic process of the data.

Then posterior samples are used to obtain a distribution for the
parameters, using the classical framework.

Much easier to include prior information such as regularity.
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Handling noise with larger tails than Gaussian

The Gaussian distribution is a special case of the Student distribution
(with ν =∞)
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[Shah2014] generalized GPs to Student-t processes, with homoskedastic
noise.
Turns out that it can be extended further as we showed for GPs.
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Comparison of heteroskedastic GPs and TPs
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Results

MCMC results
proposed methodology
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Concluding remarks

Gaussian processes are the power horse in many sequential design
problems.

They provide sensible uncertainty quantification, amenable to uncertainty
propagation.

Many difficulties can be handled (non-stationarity, multi-objective, etc.)
but no unified framework.
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