Inria - Sophia Antipolis Méditerranée

Uncertainty quantification in CFD simulations of multiphase flow

Aurore Dupré

14th January 2021

Calisto seminar

Context of the post-doc

- → Post-doc from 1st February 2020 to 31st January 2021
- → European Project: VIrtual Materials Market Place (VIMMP)
 - Project started the $1^{\rm st}$ January 2018 and ends the $31^{\rm st}$ December 2021
 - VIMMP facilitates and promotes the exchange between all materials modelling stakeholders for the benefit of increased innovation in European manufacturing industry.

In this context, we define a CFD workflow to quantify uncertainty

naío

Context of the post-doc

- → Post-doc from 1st February 2020 to 31st January 2021
- → European Project: VIrtual Materials Market Place (VIMMP)
 - Project started the $1^{\rm st}$ January 2018 and ends the $31^{\rm st}$ December 2021
 - VIMMP facilitates and promotes the exchange between all materials modelling stakeholders for the benefit of increased innovation in European manufacturing industry.

In this context, we define a CFD workflow to quantify uncertainty

→ Particle injection when statistical stationnary state is reached

Ínnía -

Uncertainty quantification in CFD simulations of multiphase flow

The workflow

(naía-

'Particles in pipe' workflow

'Particles in pipe' workflow

'Particles in pipe' workflow

Fluid instance (1): Physical parameters

- → Fluid properties:
 - $\rho_f = 1.17862 \ {\rm kg} \cdot {\rm m}^{-3}$
 - *T* = 293.15 K
 - $|U_{\text{volumetric}}| = 1 \text{ m} \cdot \text{s}^{-1}$

Fluid instance (2): Model parameters

→ Turbulence model: $R_{ij} - \varepsilon$

$$\begin{split} \frac{\partial \langle u_{f}^{i} u_{f}^{j} \rangle}{\partial t} + \langle U_{f}^{k} \rangle \frac{\partial \langle u_{f}^{i} u_{f}^{j} \rangle}{\partial x_{k}} + \frac{\partial \langle u_{f}^{i} u_{f}^{j} u_{f}^{k} \rangle}{x_{k}} \\ &= -\left(\langle u_{f}^{i} u_{f}^{k} \rangle \frac{\partial \langle U_{f}^{j} \rangle}{\partial x_{k}} + \langle u_{f}^{j} u_{f}^{k} \rangle \frac{\partial \langle U_{f}^{j} \rangle}{\partial x_{k}} \right) \\ &- \frac{1}{\rho_{f}} \left(\frac{\partial \langle \mathscr{P} u_{f}^{i} \rangle}{\partial x_{j}} + \frac{\partial \langle \mathscr{P} u_{f}^{j} \rangle}{\partial x_{i}} \right) + \frac{1}{\rho_{f}} \left(\langle \mathscr{P} \frac{\partial u_{f}^{i}}{\partial x_{j}} \rangle + \langle \mathscr{P} \frac{\partial u_{f}^{j}}{\partial x_{i}} \rangle \right) \\ &+ \nu_{f} \frac{\partial^{2} \langle u_{f}^{i} u_{f}^{j} \rangle}{\partial x_{k}^{2}} - 2\nu_{f} \langle \frac{\partial u_{f}^{i}}{x_{k}} \frac{\partial u_{f}^{j}}{x_{k}} \rangle \end{split}$$

→ Gradient reconstruction: Green-Gauss

naío -

Uncertainty quantification in CFD simulations of multiphase flow

Fluid instance (3): Numerical parameters

→ Half pipe: 1 m length, 0.1 m radius, hexahedric mesh

- \rightarrow Time resolution: dt = 0.1 s, 100 iterations (10 s physical time)
- → Tool: Code_Saturne

Particle instance (1): Physical parameters

- → Fluid properties: 'frozen' flow
- → Particle properties: $\emptyset = 10^{-4}$ m, ρ_p , spherical shape, volumetric flow rate
- → Injection area: point-source injection

Particle instance (2): Model parameters

 \rightarrow Stochastic Lagrangian model

$$\begin{cases} dx_{\rho} = U_{\rho}dt, \\ dU_{\rho} = \frac{(U_{s}(t) - U_{\rho}(t))}{\tau_{\rho}}dt, \qquad \tau_{\rho} = \frac{\rho_{\rho}}{\rho_{f}}\frac{d_{\rho}^{2}}{18\nu_{f}} \\ dU_{s}^{i} = -\frac{1}{\rho_{f}}\partial_{i}\langle\mathscr{P}\rangle(t, x_{\rho}(t))dt \\ + (\langle U_{\rho}^{j}\rangle - \langle U_{f}^{j}\rangle)\frac{\partial\langle U_{f}^{j}\rangle}{\partial x_{i}}dt + G_{ij}^{*}(U_{s}^{j} - \langle U_{f}^{j}\rangle(t, x_{\rho}(t))dt \\ + \sigma_{ij}(t, x_{\rho}(t))dB_{j} \end{cases}$$

Particle instance (3): Numerical parameters

- \rightarrow Half pipe: 1 m length, 0.1 m radius, hexahedric mesh
- → Particle injection: 200 particles at each time step
- \rightarrow Time resolution: dt = 0.01 s, 500 iterations (5 s physical time)
- → Tool: Code_Saturne

Wrapper/Mapper

- → Coupling 2 components: CFD fluid (tool: Code_Saturne) Particle tracking (tool: Code_Saturne)
- → Model: \mathbb{P}_0 -interpolation, frozen fields
- → Exchanged variables: pressure, velocity field, R_{ij} , turbulent viscosity ν_t , ε
- → Exchange frequency: initialization
- → Tool: MEDCoupling

Sensitivity analysis

(naío-

Uncertainty quantification in CFD simulations of multiphase flow

13 of 34

Variables of interest (1)

→ Physical parameters:

- Fluid properties: ρ_f , T, $|U_{volumetric}|$
- Particle properties: \varnothing , ρ_p , shape, flow rate
- Injection area

→ Model parameters:

- Turbulence model
- Gradient reconstruction
- Agglomeration

→ Numerical parameters:

- Spatial discretization
- Temporal discretization
- Number of particle injected

Variables of interest (1)

→ Physical parameters:

- Fluid properties: ρ , T, $|U_{volumetric}|$
- Particle properties: $\mathbf{Ø}$, ρ_{p} , shape, flow rate
- Injection area
- → Model parameters:
 - Turbulence model
 - Gradient reconstruction
 - Agglomeration

→ Numerical parameters:

- Spatial discretization
- Temporal discretization
- Number of particle injected

Variables of interest (1)

→ Physical parameters:

- Fluid properties: ρ , T, $|U_{volumetric}| \sim Uniform(\{1,2\})$
- Particle properties: $\emptyset \sim \text{Uniform}([10^{-6}, 10^{-3}])$, ρ_{ρ} , shape, flow rate
- Injection area

→ Model parameters:

- Turbulence model
- Gradient reconstruction
- Agglomeration

naín -

→ Numerical parameters:

- Spatial discretization
- Temporal discretization
- Number of particle injected \sim Uniform([100, 1000])

Variables of interest (2)

$$\begin{cases} dx_{p} = U_{p}dt, \\ dU_{p} = \frac{(U_{s}(t) - U_{p}(t))}{\tau_{p}}dt, \qquad \tau_{p} = \frac{\rho_{p}}{\rho_{f}}\frac{d_{p}^{2}}{18\nu_{f}} \\ dU_{s}^{i} = -\frac{1}{\rho_{f}}\partial_{i}\langle\mathscr{P}\rangle(t, x_{p}(t))dt \\ + (\langle U_{p}^{j}\rangle - \langle U_{f}^{j}\rangle)\frac{\partial\langle U_{f}^{j}\rangle}{\partial x_{i}}dt + G_{ij}^{*}(U_{s}^{j} - \langle U_{f}^{j}\rangle(t, x_{p}(t))dt \\ + \sigma_{ij}(t, x_{p}(t))dB_{j} \end{cases}$$

Observable (1)

- Debit at output
- Concentration at output
- Particle diameter

Observable (1)

- Debit at output
- Concentration at output
- Particle diameter

Observable (2)

→ Concentration at output:

- Non-deterministic observable: depends on particles trajectories
- Time cumulative over the last 100 iterations

SA Methods (1): Overview

- 1. Non-parametric techniques
 - → Input-output correlation
 - Pearson correlation coefficient
 - Standardized regression coefficient
 - → Computation of several esitmators
- 2. Variance-based indicators
 - → Sobol' sensitivity indices
 - Rests on the assumption of independant inputs
 - Implicity assumes that the second moment is sufficient to describe output variability
- 3. Looking at the entire distribution

First order Sobol indice

First order indice:

$$S_i = rac{\mathsf{Var}[\mathbb{E}[Y|X_i]]}{\mathsf{Var}[Y]}$$

- → Variable ranking
- → $S_i \in [0, 1]$ are directly interpreted as measures of sensitivity: the larger it is, the more influential the *i*th input X_i
- → Common methods for assessing uncertainty imporance
- → Requires a high number of simulations (computational cost, memory space, ..)

Total order Sobol indice

Total order Sobol indice:

$$S_i^{\text{tot}} = \sum_{\mathbf{u} \subset \{1, \dots, d\}, \mathbf{u} \neq \emptyset, i \in \mathbf{u}} S_{\mathbf{u}}$$

→ Absolute ranking

→ Measures the contribution to the output variance X_i, including all variance caused by its interactions, of any order, with any other input variables

SA Methods (3): Metamodeling

→ Generate a surrogate model: alternative model that mimic the solver and which is less costly

Polynomial chaos expansion

→ Polynomial chaos expansion is a polynomial spectral decomposition of random variables on the basis of orthogonal polynomials

Gaussian process regression (Kriging)

→ Gaussian process regression is a method of interpolation where the interpolated values are modeled by a Gaussian process

Numerical results

Uncertainty quantification in CFD simulations of multiphase flow

22 of 34

Average concentration at output

Intrinsic variance

→ Tool: Python library OpenTurns → Sample size: 13200

First Sobol indice

Uncertainty quantification in CFD simulations of multiphase flow

Plateform

(naía-

Uncertainty quantification in CFD simulations of multiphase flow

27 of 34

- → SALOME is an open-source software that provides a generic Pre- and Post-Processing platform for coupled numerical simulation
- → https://www.salome-platform.org/

SALOME enables to:

nnía -

- $\boldsymbol{\rightarrow}\,$ create, modify, import and export, repair and clean CAD models
- \rightarrow generate, edit or check meshes; import and export mesh data
- → perform computation using one or more external solvers (coupling)
- → display computation results (scalar, vectorial data)

Uncertainty quantification in CFD simulations of multiphase flow

Salome - Yacsgen

in Inria_case_workflow	in mapper out etudy study_out output_pat mesh_nam output_nan trg_mesh_1	in part_instance_out studyinstance_oi instance_n mesh_nam cs_file_pati
mesh_nam	[trg_mesh_r]	boundary_)

Name	Туре	Value	
📲 path	string	/user/adupre/home/Documents/wimmp/Inria_Workflow/	
₩ study_name	string	HALF_PIPE_LAGR	
₩ instance_name	string	Eulerian	
₩u mesh_path	string	/user/adupre/home/Documents	
₩ mesh_name	string	half_pipe.med	

Salome - OTGUI (OpenTurns)

Conclusion

(naía-

Uncertainty quantification in CFD simulations of multiphase flow

31 of 34

Conclusion and perspectives

Conclusion:

- → Implementation of the workflow is not trivial: high computational cost, several tools involved
- → Meta-modeling is an essential tool
- → Particle diameter and fluid velocity are the most infulencial variables
- \rightarrow The choice of the observable is a crucial step

Perspectives:

- \rightarrow Sensitivity analysis based on the entire distribution
- → Uncertainty quantification on particle diameter
- → Observable: particle size (agglomeration/fragmentation)
- → VIMMP: Systematic tool to assess the question of uncertainty in material workflows

Thank you for your attention !

Special thanks to Pascale, Eric and Jean-Pierre for all the discussions. Thanks Pascale and Eric for the help in the worflow implementation.

naío -

References

→ Code_Saturne:

- Frédéric Archambeau, Namane Méchitoua and Marc Sakiz. *Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows - Industrial Applications.* International Journal on Finite Volumes, 2004, 1.
- https://www.code-saturne.org/cms/documentation

→ Salome:

- https://www.salome-platform.org/

→ OpenTurns:

- Michaël Baudin, Anne Dutfoy, Bertrand looss and Anne-Laure Popelin. *OpenTURNS: An industrial software for uncertainty quantification in simulation*. 2015.
- https://openturns.github.io/openturns/latest/contents.html

→ Sensitivity analysis:

- Saltelli, A. *Making best use of model evaluations to compute sensitivity indices.* Computer Physics Communication, 2002, 145, 580-297

