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FEEL++

Finite Element Embedded Library in C++

Open source library → github.com/feelpp

Galerkin methods

Domain Specific Embedded Language (DSEL) in C++

Scaling : from laptops to supercomputers

Easy deployment → Docker, Singularity

(Multi)Physics toolboxes: Heat Transfer, Aerothermics, CFD, CSM,
FSI, Maxwell
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Introduction to micro-swimming
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Context

Micro-swimming � swimming at low Reynolds number

Reynolds number

Re =
Inertia

Viscosity
∝ ρL3U

µL2

ρ: Density L: Length
µ: Viscosity U: Speed
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Context

Micro-swimming � swimming at low Reynolds number

Reynolds number

Re =
ρLU

µ
≈ 10−4 (for spermatozoon)

ρ: Density L: Length
µ: Viscosity U: Speed Source: ”Life at low Reynolds Number”, AJP 45.1

(1977)

Figure: Purcell 3-links swimmer
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Context

Micro-swimming � swimming at low Reynolds number

Reynolds number

Re =
ρLU

µ
≈ 10−4 (for spermatozoon)

ρ: Density L: Length
µ: Viscosity U: Speed

Source: Nat Commun 5, 5119 (2014)

Figure: Scallop theorem
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Examples of microswimmers

Figure: E. Coli

Figure: Run and tumble

Figure: Sperm cell

Figure: Motion in
proximity of a surface

Figure: Artificial
microswimmer

Figure: Functionalised
particle
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Numerical description

Particle solvers → collective motion
Yang, Yingzi et al. Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through

hydrodynamic interactions. Phys. Rev. E, 78, 6, 2008.

ODE solvers - RFT → solving Newton 2nd law
∑

F = 0

F. Alouges, L. Giraldi et al. Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers.

International Journal of Non-Linear Mechanics, 56, 2013.

PDE solvers → solving the flow field

Differential equations → Finite Element method
Bergmann, Iollo. Bioinspired swimming simulations. (2016). Journal of Computational Physics.

Integral equations → Boundary Element method
Kenta Ishimoto. Bacterial spinning top, Journal of Fluid Mechanics, 880, 2019.

Scientific positioning: Numerical simulation of micro-swimmers under
partial differential equation description. Interplay with optimization and
control.

Goal: Simulate and control a magnetically actuated micro-robot
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Articulated swimmers

Luca Berti (IRMA) FEEL++ developments for micro-swimming December 10, 2020 8 / 35



Microswimming problem - Stokes equations

Let Ft be the fluid domain, St the domain occupied by the swimmer.
∇p − µ∆u = 0, on Ft ,

∇ · u = 0, on Ft ,

u = U + ω ∧ (x − xCM) + ud (x), on ∂St ∩ ∂Ft ,

Kinematic coupling: Dynamic coupling:

U and ω are the translational and
rotational speeds of the swimmer.
ud (x) is the imposed displacement
on the boundary of the swimmer.

Balance of forces that fluid and
swimmer exchange.
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Articulated swimmers - Translational constraints

L L
B1 B2B3

L L
B1 B2B3

Figure: Example of articulated swimmers with translational constraints

Analytical computations and benchmarking
Non-reciprocal strokes can be imposed
Slight modification of independent rigid bodies formulation

Procedure:

Identify Bn as the reference body
Ui of all the other bodies Bi , i = 1 . . . n − 1, are expressed as
functions of Un via constraints of the form

Ui = Un + Win(t), i = 1 . . . n − 1,

where Win(t) represents the relative velocity between Bi and Bn.
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Coupling with several rigid bodies



−µ∆u +∇p = f , on Ft ,

∇ · u = 0, on Ft ,

u = Ui + ωi × (x − xCM
i (t)), i = 1 . . . n, on ∂Bi ,

mi U̇i = −Ffluid , i = 1 . . . n,

Ji ω̇i = −Mfluid , i = 1 . . . n.

Weak formulation → test functions (ũ, p̃, Ũ, ω̃) such that
ũ = Ũi + ω̃i × (x − xCM

i ) on ∂Bi

2µ

∫
F
D(u) : D(ũ) dx −

∫
F
p∇ · ũ dx + mU · Ũ + Jω · ω̃ = 0.

B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains. Journal of Computational Physics, 156,

1999.

Luca Berti (IRMA) FEEL++ developments for micro-swimming December 10, 2020 11 / 35



Coupling with several rigid bodies



−µ∆u +∇p = f , on Ft ,

∇ · u = 0, on Ft ,

u = Ui + ωi × (x − xCM
i (t)), i = 1 . . . n, on ∂Bi ,

U̇i = 0, i = 1 . . . n,

ω̇i = 0, i = 1 . . . n.

Weak formulation → test functions (ũ, p̃, Ũ, ω̃) such that
ũ = Ũi + ω̃i × (x − xCM

i ) on ∂Bi

2µ

∫
F
D(u) : D(ũ) dx −

∫
F
p∇ · ũ dx + U · Ũ + ω · ω̃ = 0.

B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains. Journal of Computational Physics, 156,

1999.
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Algebraic form

Enforcing the condition ũ = Ũi + ω̃i × (x − xCM
i ) on ∂Bi is done by

First, building the system matrix A. No coupling for the moment is
enforced between fluid and swimmer.

A =


AII AI Γ 0 0 BT

I

AΓI AΓΓ 0 0 BT
Γ

0 0 T 0 0
0 0 0 R 0
BI BΓ 0 0 0


Second, building a coupling matrix P such that
(uI , u∂Bi

,Ui ,ωi , p)T = P(uI ,Ui ,ωi , p)T

P =


I 0 0 0

0 P̃Ui
P̃ωi 0

0 I 0 0
0 0 I 0
0 0 0 I

 → PTAPX = PTF
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Fluid toolbox: the interface for rigid-body motion

In the fluid toolbox, an interface for rigid body motion has been
introduced. One needs to specify in the json:

Materials section

"Materials":

{"Fluid":{

"physics":"fluid",

"rho":"1.0e-6",

"mu":"1"

},

"Solid":{

"markers":["Swimmer"],

"physics":"body",

"rho":"1.0e-6"

}}

Fluid BC

"BoundaryConditions":

{"fluid":{"body":

{"swimmer_markers":

{"markers":["Sphere1"],

"materials":{"names":"Solid"},

//"translational-velocity"

"elastic-velocity":

{"onTail":{

"expr":"{f(x,t),g(x,t)}:x:t",

"markers":"Sphere1"

}}}}
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Translational constraints - Lagrange multipliers

Lagrange multipliers:

U̇i · Ũi + αi · Ũi = 0 i = 1 . . . n − 1,

U̇n · Ũn −
n−1∑
i=1

αi · Ũn = 0

αi · (Ui −Un) = αi ·Win, i = 1 . . . n − 1.

The addition of Lagrange multipliers entails the modification of P by
providing an additional identity matrix of size d(n − 1)× d(n − 1) on the
diagonal.
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Translational constraints - Modification of P

(uI , u∂Bi
,Ui ,ωi , p)T = P̃(uI ,Un,ωi , p)T

P̃ =


I 0 0 0

0 ˜̃PU P̃ωi 0
0 E 0 0
0 0 I 0
0 0 0 I

 E =


Id
...
Id
...
Id


˜̃PU =


P̃U1

...

P̃Ui

...

P̃Un



It constrains further the FEM space to functions satisfying

u = Un + ωi × (x − xCM
i ) + Win(t), on ∂Bi

Luca Berti (IRMA) FEEL++ developments for micro-swimming December 10, 2020 16 / 35



The moving domain

The computational domain is transformed in time via ALE maps
At : F0 → Ft . It associates the points x in the fluid domain Ft at time t
to their position x∗ in the reference domain F0. In other words
At(x∗) = x .
ALE maps are computed by solving an extension problem of the
displacement d(x , t) on the boundary of the domain

∆φt = 0 in F0

φt(x) = d(t, x) in ∂F0

and At(x∗) = x∗ + φt(x∗).
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Articulated swimmer

L L
B1 B2B3

L-a L

L-a L-a

L L-a

L L

Figure: Three-sphere swimmer and its swimming gait.
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Fitted mesh and remeshing

Using ALE to handle moving domains is possible under the condition that
movements are not too large.

Remeshing depending on mesh quality indices

η2 =
2r

R
(2D) η3 =

3r

R
(3D)

We set constraints:

Interfaces, that must be kept,

Interface discretization, that should be remain unvaried as well (in
order to maintain all the properties linked to areas and volumes of the
enclosed region),

Interpolating the solution from the old to the new mesh, in order to
restart computations.
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Simulations with remeshing in Feel++ using (Par)MMG

Edge split

Edge collapse

Edge swap

Node relocation

Local size function h

Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary
problems - C. Dapogny, C. Dobrzynski and P. Frey - April 1, 2014 - JCP
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Deformable swimmers
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Recall the problem and notation


∇p − µ∆u = 0, on Ft ,

∇ · u = 0, on Ft ,

u = U + ω ∧ (x − xCM) + ud (x), on ∂St ∩ ∂Ft ,

The expression of ud (x) is often given in the reference frame, and via the
ALE map At , gives the velocity in the current frame

ud (x) = ud (At(x∗))

For example,

u∗d (x∗) = (A(x∗) cos(2Btt − 2Bxx
∗),C (x∗) cos(Btt − Bxx

∗))
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Spermatozoon simulation

u∗d (x∗) = (A(x∗) cos(2Btt − 2Bxx
∗),C (x∗) cos(Btt − Bxx

∗))
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Spermatozoon simulation

u∗d (x∗) = (A(x∗) cos(2Btt − 2Bxx
∗),C (x∗) cos(Btt − Bxx

∗))
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Tail centerline described by ODEs

Spermatozoon with ellipsoidal head (3D)

ODE system describing the tail’s centerline beating dX
d` (t, `) = F (t, `)

Imposition of the centerline shape onto the meshed tail:
Solution of the 1d ODE giving the centerline coordinates, ∀t
Interpolation of the tail’s shape
Transfer of the displacement onto the mesh nodes

Jikeli Jan F., Friedrich Benjamin M. et al. Sperm navigation along helical paths in 3D chemoattractant landscapes.

Nature Communications 6, 2015.
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Hyperelasticity equations

Let Ω∗ be the intial position of the solid body, x∗ ∈ Ω∗. We take this as
the reference position.

Let η(t, x∗) = x(t, x∗)− x∗ be the solid displacement, i.e. the difference
between the current and initial position of the points in the domain.

Let F (t, x∗) = I +∇η be the deformation gradient.

Let Σ(t, x∗) be the second Piola-Kirkhhoff tensor of the elastic material, a
function of the elastic properties of the material and of the displacement
gradient.

They satisfy

ρ
∂2η

∂t2
−∇ · (FΣ) = 0
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ISIR robot

The swimmer we want to simulate is

Elastic tail

Small magnet

H

It swims under the external magnetic field H, uniform in space, that
produces a torque on the magnet.
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Objective

The final objective is analyzing swimming close to solid boundaries.

?
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Coupled problem

Let F be the fluid domain, T the domain occupied by the elastic tail, H
the domain occupied by the magnetic head. Let S = H ∪ T .

− µ∆u +∇p = 0, in F \ S ,
∇ · u = 0, in F \ S ,

ρ
∂2η

∂t2
−∇ · (FΣ) = 0,

u = U + Ω× (x − xCM) + ∂tη(x), on ∂S ,

mU̇ = F = Fext − Ffluid ,

JΩ̇ = M = Mext −Mfluid .

Luca Berti (IRMA) FEEL++ developments for micro-swimming December 10, 2020 28 / 35



Coupled problem

In this simulation, the swimmer is dragged on its magnetic head
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Other fluid models
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Other fluid models: Brinkman model

−∇p + µ∆u = µα2u

∇ · u = 0

α2 = 9φ
2a2 for a network of spheres of radius a and volume fraction φ

Variation of Darcy equations for heterogeneous media with sparse
solid matrix

Models relevant fluids, like mucus, where the volume fraction of solid
obstacles is low

Recent publications applied to microswimming
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Other fluid models: quasi-Newtonian

σ(p, u) = −pI + 2µ(γ̇)D(u)

where γ̇ =
√

2tr(D(u)) measures the deformation rate of the fluid

Different expressions for µ(γ̇) (power law, Carreau-Yasuda)

Blood can be modeled via these fluids (when size of vessels is less
than 1mm)

Parameters have been fitted in the literature
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Other fluid models: viscoelastic fluids

Re(∂tu + u · ∇u) = −∇p + (1− ε)∆u +
ε

Wi
∇ · σ

∇ · u = 0

∂tσ + (u · ∇)σ = ∇u · σ + σ(∇u)T − 1

Wi
(σ − I )

σ = I + Wi
ε τ → conformation tensor

Wi = λU
L Weissemberg number → polymer relaxation time vs. flow

timescale
ε =

µp

µf +µp
effective elastic viscosity

Oldroyd-B viscoelastic model

Models swimming in fluids with elastic suspended matrices (polymers
for instance)
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Perspectives

Interface swimming simulations with remeshing

Test the available swimmers in non-Newtonian fluid models presented
before

Control of the elastic swimmer
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Thank you for your attention!
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