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Calibration for field based flow models
To produce accurate predictions of quantities of interest it is necessary to
make a systematic treatment of uncertainties within the models and
observations:
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By means of a statistical model containing multiplicative inadequacy
terms, Edeling and co-authors obtained estimates for the model error in
RANS simulations based on Launder-Sharma turbulence closure relation,
using a Bayesian calibration method employing measured boundary-layer
velocity profiles.

The results suggest that the coefficients are not expected to be
flow-independent.
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Stochastic Lagrangian description of turbulent flows has been widely
applied to complex industrial situations. For instance, in a meteorological
context we have applications on the filtering of wind data, downscaling
methods, simulation of fluid dynamics around windmills.

Following the ideas of Pope, we interpret the mean and the Reynolds
stresses as the first and second moments of the Lagrangian PDF. Then,
we follow fluid particles as they move through the flow considering the
process ((Xt, Ut); 0 ≤ t ≤ T ), and we write

〈g(U)〉(t, x) ≈ E [g(Ut)| Xt = x] ,

and quantities of interest can be identified.
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In the case of stochastic Lagrangian models, the uncertainty
quantification for model parameters arises naturally; and statistically
reliable methods to estimate the parameters are available since (in
principle) it is possible to construct the likelihood function (probability
that the model, given the parameters, generates de observations).

Maximum likelihood estimators (MLE), pseudo-maximum likelihood
estimators, quadratic variation estimators (QVE), Markov chain
Monte Carlo (MCMC) methods, among others.
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Data

The data used was obtained from the observation platform SIRTA. We have a
family of time series containing different components of the wind, registered
with a frequency of 10Hz during 24 hours spanned for all Wednesday of the
year 2017. Is representative of the range of possible values for the temperature,
degree of humidity, direction of the wind, intensity, and therefore a wide variety
of wind profiles.

Wind measurements taken at a fixed point altitude of xobs = 30[m] with
sonic anemometers.

We transform the set of velocity components into the observed instantaneous
turbulent kinetic energy considering an ergodic mean (rather than the usual
Monte Carlo approximation):

qobs
tk ≈

3∑
i=1

(
U i,obstk

− 1
ζ

∑
tk−ζ≤sk≤tk

U i,obssk

)2

,

for ζ a time scale between 10 and 59 minutes.
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An indicator that we could use to classify the observations in homogeneous
regimes is the turbulence intensity (which is in fact connected with the wind
production), defined as the quotient between the standard deviation of wind
speed series and the mean velocity:

It :=
√

2k(t, x)
√

3‖〈U〉‖
,

with k the TKE.

Figure: Observed wind speed (in blue), mean velocity (in blue scale) and turbulence
intensity (in orange), measured during the period 4h - 20h.
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Probabilistic model for the instantaneous TKE

In many physical applications we are interested in modelling
characteristic components of the fluid at a fixed point in space.
• Baehr [2010]: construction of stochastic processes filtering corrupted

measurements of a stochastic vector field along a random path.
Method using a local model of the random medium to estimate
locally the parameters and derive a dynamic model for mobile
measurements signal. These ideas were applied to Doppler wind
LIDAR observations.

• In our case, we have the data filtered at xobs and the idea is to
restore the stochastic modelling of the TKE at each time t. We do
not have detailed information, thus we use a mesoscale approach.

The ideas presented here can be applied using different approaches,
scales and context.
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Stochastic Lagrangian models for turbulent
flows

The simplest model for (Xt, u
′
t); 0 ≤ t ≤ T ), consistent with the Navier

Stokes equations, has been the generalized Langevin model:
dX

(i)
t = U

(i)
t dt, 1 ≤ i ≤ 3,

du
′(i)
t =

3∑
j=1

Gij(t,Xt)u′(j)t dt+
√
C0(t,Xt)ε(t,Xt)dB(i)

t ,
(1)

for i = 1, 2, 3, with ε the dissipation rate of the turbulent kinetic energy

k(t, x) = 1
2E
[
‖u′t‖

2 |Xt = x
]
. (2)

The non-dimensional coefficient C0(t, x) depends on the local values of
the Reynolds stresses, the dissipation rate and the drag force ∂〈U(i)〉

∂xj
.
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Closure models for G and ε

• Simplified Langevin Model (SLM): The kinetic energy evolves
correctly with homogeneous turbulence and the drift coefficient is
isotropic. G is given as a return-to-mean force field and the velocity
rewrites as an OU:

Gij(t, x) = −
(

1
2 + 3

4C0

)
ε(t, x)
k(t, x)δij . (3)

At the Reynolds stress level, the SLM corresponds to a Rotta model
with CR = 3

2C0 + 1.

1 Mixing length parametrization:

ε(t, x) = Cε
lm

(k(t, x))
3
2 , (4)

where Cε, lm > 0. The value of the mixing length lm can be modelled
proportional to z within the surface layer, and as a constant away from
the surface layer.
We consider lm = κzlm , where κ is the Von Kármán constant and
zlm = 30[m].

2 Turbulent viscosity parametrization: ε(t, x) = Cµ
νturb

(k(t, x))2 .
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• The isotropization-to-production (IP) model for homogeneous
turbulence:

Gij(t, x) = −
CR

2
ε(t, x)
k(t, x)

δij + C2
∂〈U(i)〉
∂xj

(t, x),

C0 ε(t, x) =
2
3

(CR ε(t, x) + C2 P(t, x)− ε(t, x)) ,
(5)

for P the turbulent production considering covariance terms 〈u′(i)u′(j)〉.
Here, C0 is no more considered as a constant.

• Elliptic blending model: This closure model adds a wall effect
(anisotropic effect) near the ground:

Gij(t, x) = −γi,j−
1
2
ε(t, x)
k(t, x)δij , C0 ε(t, x) =

3∑
i,j=1

2
3(γij(t, x))〈u′(i)u′(j)〉(t, x),

(6)
where the tensor γ depends on the elliptic blending coefficient α(t, x),
solution of the elliptic PDE:

L2∇2α(t, x)− α(t, x) = − 1
k(t, x) .
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Remark
The values of the constants C0 and CR might vary according to the
closure model and the context. In general, the value CR = 1 corresponds
to no-return to isotropy, while values from 1.5 to 5.0 (C0 between 1/3
and 8/3) have been suggested by different authors.

Hereafter, we focus on the SLM with mixing length closure
parametrization, a model commonly used in Numerical Weather
Prediction (NWP) solvers. Nonetheless, the modelling and methodology
presented can be adapted to other closure models.
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Reduced Lagrangian model for the
instantaneous TKE

• Badosa et al. [2017], Murata et al. [2018]: Construction of a
probabilistic forecast of solar irradiance, with a rather simple linear
drift. Badosa and co-authors proposed an Itô process with diffusion
xα(1− x)α that results from a deterministic forecast and estimates
the parameters involved by means of a variance-autocorrelation
fitting.

• Arenas-López and Badaoui [2020] have proposed a data-driven OU
process describing the wind speed on a scale of seconds.

• The Weibull distribution has been widely used in wind energy and
other renewable energy sources where the main issue has been the
estimation of the distribution coefficients.

• Benssousan and Brouste [2016] proposed a stochastic modelling of
the squared norm of the wind velocity as a CIR process with
coefficients to be calibrate.
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The principle of our model is that an observer measures the velocity at
each time t knowing the particle fluid position Xt equals xobs. Then, we
consider

〈U (i)〉(t, xobs) = E
[
U

(i)
t

∣∣∣Xt = xobs

]
,

and any of the Eulerian quantities involved in the model has to be
understood as expectations of the corresponding Lagrangian quantities,
knowing that the position is fixed at xobs. In particular, we get the
relation

k(t, xobs) = 1
2E[‖u′t‖2].

Definition
We define the instantaneous turbulent kinetic energy as the stochastic
process (qt; t ≥ 0) given by

qt := ‖u′t‖2. (7)
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Within the real observations we noticed some external forces effect,
producing some jumps (plus noise) in the wind velocity (and therefore in
the kinetic energy). This behaviour evidence the need of a forcing term
accounting for the turbulence production.

Using Itô formula, Levy’s characterization theorem and a mixing length
closure,

d‖u′t‖2 = 2
∑
i,j

u
′(i)
t Gi,ju

′(j)
t dt+ 3C0εtdt+ 2

√
C0εt

∑
i

u
′(i)
t dB

(i)
t

= γtdt− CR
εt
kt
qtdt+ 3C0εtdt+ 2

√
C0εt
√
qtdWt,
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Hence, we deduce the CIR-type mean-field TKE model:

dqt = γdt−CR
Cα√

2
qtE1/2[qt]dt+3C0

Cα

2
√

2
E3/2[qt]dt+

√√
2C0CαE3/4[qt]

√
qtdWt,

(8)
with initial condition q0 = x and Cα := Cε

lm
.

The extra drift term γ accounting for the production of energy that, for
simplicity, in this first part we consider as constant.

Wellposedness? Using the regularity of the map t 7→ E[qt] and classical
stochastic analysis tools, we can prove (under some suitable assumptions
on Cα, T, γ, C0) the existence of a strong (positive) solution of the mean
field model.

20 / 42



Introduction
Data

Probabilistic model for the instantaneous TKE
Calibration and analysis of the reduced model

Results

Stochastic Lagrangian models for turbulent flows
Closure models for G and ε
Reduced Lagrangian model for the instantaneous TKE
CIR model for the instantaneous TKE

Hence, we deduce the CIR-type mean-field TKE model:

dqt = γdt−CR
Cα√

2
qtE1/2[qt]dt+3C0

Cα

2
√

2
E3/2[qt]dt+

√√
2C0CαE3/4[qt]

√
qtdWt,

(8)
with initial condition q0 = x and Cα := Cε

lm
.

The extra drift term γ accounting for the production of energy that, for
simplicity, in this first part we consider as constant.

Wellposedness? Using the regularity of the map t 7→ E[qt] and classical
stochastic analysis tools, we can prove (under some suitable assumptions
on Cα, T, γ, C0) the existence of a strong (positive) solution of the mean
field model.

20 / 42



Remark
Formally, taking expectation on both sides of Eq. (8) we get the ODE

dkt
dt

=
(γ

2 − ε
)
, (9)

which corresponds to the classical equation with production term
deduced from RANS equations with a k − ε closure model.

Using Itô formula to compute k̃n(t) := E[qnt ], we have, for all n ≥ 1:

k̃n(t) = 1
µn(t)

{
n

∫ t

0
µn(s)

[(
n+ 1

2

)
C0

Cα√
2
k̃

3/2
1 (s) + γ

]
k̃n−1(s)ds+ xnµn(0)

}
,

(10)
with µn(t) = exp

{
nCR

Cα√
2

∫
k̃

1/2
1 (t)

}
, and k̃0(t) ≡ 1.

In the particular case γ = 0:

k̃n(t) =
n∑

m=1

βm(n,C0, x)
(
x−1/2 + Cαt

2
√

2

)−2n−αm
t→∞−−−→ 0, (11)

i.e. we conclude the dissipation of all the moments at large times.
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CIR model for the instantaneous TKE
Although E[qt] cannot be written in analytic form when γ 6= 0, we can apply an
isocline method to the ODE (9), concluding the boundedness of E[qt] and its
asymptotic behaviour at large times:

lim
t→+∞

E[qt] =
(√

2γ
Cα

)2/3

.

Then,

E[qt] ≈
1
τ

∫ τ

0
qtdt =

(√
2γ[τ ]
Cα

)2/3

(12)

Inst. TKE at the equilibrium
Substituting (12) in the mean-field SDE (8), we obtain the CIR model for the
instantaneous TKE:

dqt = Θ(Cα, γ) (µ(Cα, γ)− qt) dt+ σ(γ)√qtdWt, q0 = x, (13)

where

Θ(Cα, γ)︸ ︷︷ ︸
speed of adjst.

= CR
3

√
C2
αγ

2
, µ(Cα, γ)︸ ︷︷ ︸

mean

Θ(Cα, γ) = CRγ, σ(γ) =
√

2C0γ.
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Remarkably, we recover the SDE form suggested by Bensoussan and
Brouste! with parameters having an intrinsic physical meaning.
• Under the condition 2Θµ ≥ σ2 (always satisfied in our case) the

state zero is exclude for the trajectories of the CIR process.
• Is an ergodic process with known stationary density and with a

well-known explicit relation with a chi-square random variable.
• Explicit transition density in terms of Bessel functions.
• Explicit moments in terms of hypergeometric functions.
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Calibration and analysis of the reduced
model

Next step: infer on the possible values of the parameters in the model
θ = (Cα, γ) considering the observations. Here we consider the
Kolmogorov constant as a prescribed value C0 = 1.9, nonetheless, the
methodology can be extend to the calibration of C0.
• The main drawback with point-estimators is that we do not have

access to the possible uncertainties.
• The main drawback with Bayesian approaches, where we construct a

Markov chain that converge to the stationary distribution of the
parameters, is that we need a first guess. What about a guess for
γ?

To provide a reliable calibration with no external parameters, we
propose a two-step method in which we construct the a priori
distribution of the parameters through a learning stage (called
step-zero) to then quantify the uncertainty of the parameters in the
step-one
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On the value of Cα

Recall that Cα = Cε
lm

, with lm(z) = κzlm . Hence, considering the
reference values for the Von-Kármán constant κ ∈ [0.287, 0.615], and
Cµ ∈ [0.054, 0.135] for Cε = C

3/4
µ , we have

Cα ∈ [0.0061, 0.0259].
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For both stages of the calibration we use a numerical approximation for
the solution of the model (13). For this, let Π = {t0, t1, . . . , tN} be a
partition of the time interval [0, T ] (measure in seconds) with
homogeneous time step ∆t = T

N ; and define the Symmetrized Euler
scheme associated to the SDE (13) as:

q̂tn+1 = q̂tn + Θ(Cα, γ) (µ(Cα, γ)− q̂tn) ∆t+ σ(γ)
√
q̂tn
(
Wtn+1 −Wtn

)
,

(14)
updated with q̂tn = |q̂tn |, for all n = 0, . . . N − 1, with initial condition
q̂0 = x.
Converging weakly for C0 < 2.

26 / 42



Step Zero: Prior calibration
Using this approach we do not need a priori distribution for the parameters θ
but the joint density pθ(q) associated with the model.

Assume we have a perfect model and independent observations (i.e. the SES
(14) replicates perfectly the observed data). Notice that:

q̂tn+1 ∼ N
(
q̂tn + Θ(Cα, γ) (µ(Cα, γ)− q̂tn) ∆t, σ2(γ)q̂tn∆t

)
.

Considering D ⊂ R+ ×R+ as the compact set supporting the admissible values
of the parameter vector, we compute the maximum pseudo-likelihood estimator
as follows

θ̂ = argmaxθ∈D log pθ∆t(q)

= argmaxθ∈D

{
−
N

2
log γ −

M2,−1

4C0∆tγ
−
CR(q̂T − x)

24/3C0

(
Cα

γ

)2/3

−
C2
R∆tM0,1

C028/3

(
Cα

γ

)1/3
Cα +

C2
RN∆t
C024/3

(
Cα

γ

)2/3
γ −

C2
R∆tM0,−1

4C0
γ + Ctte

}
,

where we used the notation:

M̂m1,m2 = 1
N

N−1∑
n=0

(q̂tn+1 − |q̂tn |)
m1 |q̂tn |

m2 .
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m1 |q̂tn |

m2 .
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• We construct an estimator for γ by using the convergence of the
quadratic variation of a diffusion process: quadratic variation estimator

γ̂ = M̂2,0

2C0∆tM̂0,1
, (15)

satisfying γ̂ N→∞−−−−→ γ, in probability.

• Then, we compute the maximum likelihood estimator for Cα:

Ĉα =
√

2/γ̂
(
γ̂∆tCR − M̂1,0

∆tCRM̂0,1

)3/2

. (16)

• We construct an a priori distribution for θ, sufficiently informative and
independent of external information, through the set

∆ := {(Ĉα(d), γ̂(d)) : for all Wednesday d of the year 2017},
and define the truncated Gaussian a priori distributions:

γ ∼ N + (Γ,VΓ
)
, Cα ∼ N + (C,VC) , (17)

where Γ and C denotes the empirical mean of the γ and Cα estimators,
and similarly VΓ and VC their corresponding empirical variance.
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Step One: Posterior calibration of reduced
model

Here we update our initial guess on the values of the parameters with a
statistical model considering any deviation as an observation error:

qobs(θ) = q̂(θ) + E , (18)

where q̂(θ) stands for the output of the numerical approximation of the TKE;
E is a logistic random vector having zero mean and scale parameter s to be
calibrate.

Therefore, from Bayes theorem, we know that

π(θ|qobs) ∝ p(qobs|θ)pθ(θ). (19)

Metropolis-Hastings Algorithm: Used to sample from the posterior.
Start from an initial value θ0, for the nth-iteration we proceed as follows,

1 Simulate θ̃ ∼ ρ(θ̃|θn), and u ∼ U (0, 1), where ρ is a proposed transition
density.

2 Compute

a := min
{

1, pθ(θ̃)p(qobs|θ̃)ρ(θn|θ̃)
pθ(θn)p(qobs|θn)ρ(θ̃|θn)

}
. (20)

3 If u < a, then θn+1 = θ̃ and we accept the simulated state.
Else, we reject and keep the previous state, i.e. θn+1 = θn.
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A common issue in the implementation of this method is the correct
exploration of the state space in high dimension, which in our case is
crucial.
Hamiltonian Monte Carlo methods
Use Hamiltonian equations to mimic the dynamic of a particle following
the contour with high probability mass by introducing a synthetic
momentum variable p and the Hamiltonian

H(θ, p) = K(θ, p)− log π(θ|qobs)︸ ︷︷ ︸
potential

,


dθ

dt
=
∂H

∂p
dp

dt
= −

∂H

∂θ
.

Assuming constant energy, the evolution -in time- of the particle
generates the contour of the target distribution π (obtained from the
marginal distribution).
• Advantages: preservation of the volume, efficient exploration in high

dimensional cases, reversibility of the dynamics.
• Disadvantage: the introduction of this auxiliary momentum duplicate

the number of variables, and therefore the computational cost.
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To propose a new state for the Markov
chain, we project the trajectory back to the
parameter space, and finally accept/reject
the state by following a decision step similar
to the one implemented in the
Metropolis-Hasting algorithm.

The approximation of the Hamiltonian equations: Leapfrog
method, which start with half step for the momentum variables, then do
a full step for the position using the update momentum, and finally
complete the remaining half step for the momentum.
Self-tuning variant of the leapfrog method: NUTS method
(No-U-Turn Sampler).
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Description of the Bayesian calibration
Recall that in the SDE (13):
Cα appears only in the drift.
γ appears in particular in the diffusion.

Then, we balance the cost by playing with the observation frequency that
serves in the method: ξCα < ξγ <

1
10 [sec]

1 Estimate the observation error: Compute the mean

E[Et(d)] = E[qtobs − q̂t(Ĉα(d), γ̂(d))],

using a Monte Carlo method, and then approximate the scale
ŝ2 = 3V[E (d)]

π2 .
2 Bayesian calibration of γ: Split the signal considering the partition

[0, T ] =
⋃

0≤i≤N

[Ti, Ti+1]. Then, we estimate the density of γi considering

the sub-signal qobs
∣∣
[Ti,Ti+1]

, and therefore we allow for the parameter to
variate in time.
Here we use the statistical model

qobs = q̂(γi(ω), Ĉα(d)) + E (ω),

where γi ∼ N + (Γ,VΓ
)

in (17), observation error E ∼ Logistic(0, s)
and scale s such that log(s) ∼ N (ŝ, 1).
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3 Bayesian calibration of Cα: From the family of Markov chains
({γi,n(d)}n≥1; i = 0, . . . , N), we define the piecewise constant
production term

γt =
N∑
i=0

E[γi]1[Ti,Ti+1](t),

and we apply a HMC method for the construction of the Markov
chain associated with Cα with the statistical model:

qobs
t = q̂t(γt, Cα(ω)) + E (ω),

where Cα ∼ N + (C,VC) in (17), and observation error E as in 2.
In this case we consider qobs with frequency ξCα .

Convergence diagnostic tests: Verify if the chain explores the state
space thoroughly, convergence of the empirical mean, analyse if the
simulated values are uncorrelated. We also can apply formal statistical
diagnostic methods.



Results
We have selected a window of 16 hours of observations for each day, between
4:00 am and 8:00 pm. The partition of each signal during this time will be
done in 20-minute sub-signals, for a total of 48 sub-signals per day. The data
frequencies were set as: ξγ = 12[obs/min] and ξCα = 2[obs/min].

In order to validate the results obtained from step zero, compare the quotient(√
2γ̂(d)
Ĉα(d)

)2/3

against the time-averaging 1
#obs

∑
t
qobs
t , obtaining an

absolute error of order −4.
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Calibration of Cα

Figure: Bayesian calibration of Cα for all Wednesday of 2017. In the bottom
figure, the exploration of the state space and posterior Cα distribution.



Calibration of γ

Figure: Blox plot for each 20minutes-length subsignal and comparison
between step 0 and step 1 with mean posterior estimators (small line-segments)
day-mean posterior estimator (solid color line) and prior estimator (black line).



Introduction
Data

Probabilistic model for the instantaneous TKE
Calibration and analysis of the reduced model

Results

An important observation to follow from the analysis of the calibration
results is the connection between the production term γ and the
turbulence intensity, not in magnitude but in in the evolution of the
dynamic:
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Once the calibration was performed, we fixed the inferred values Cα(d) and
γt(d) =

∑N

i=0 E[γi(d)]1[Ti,Ti+1](t), and construct the associated
time-discretization for the instantaneous TKE as:

q̂tn+1 = q̂tn+CRγt(d)∆t−CR

(
C2
α(d)γt(d)

2

)1/3

q̂tn∆t+
√

2C0γt(d)
√
q̂tn (Wtt+1−Wtn ),

and compare the observations against a 95% confidence interval:
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Relation between It and γt

Considering the kinetic energy in a stationary regime:

CRγt − CR
(
C2
αγt
2

)1/3

E[qt] = 0,

from which we deduce the relation

γt = Cα√
2
|〈U〉|3I3

t 33/2. (21)

It =
√

2k(t, x)
√

3‖〈U〉‖
Ît = 1

|〈U〉|
√

3

(√
2γt
Cα

)1/3
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Figure: Prediction of the instantaneous TKE: construction of 95% confidence
intervals from the CIR and γt given by (21). Observations were taken during
February 15th, November 1rst and November 10th between 5:00 am and 8:00
pm (color plots).
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