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A graph G is called a pairwise compatibility graph (PCG) if there exists a positive
edge weighted tree T and two non-negative real numbers dmin and dmax such that each
leaf lu of T corresponds to a node u ∈ V and there is an edge (u, v) ∈ E if and only
if dmin ≤ dT (lu, lv) ≤ dmax, where dT (lu, lv) is the sum of the weights of the edges
on the unique path from lu to lv in T . In this paper we study the relations between
the pairwise compatibility property and superclasses of threshold graphs, i.e., graphs
where the neighborhoods of any couple of nodes either coincide or are included one into
the other. Namely, we prove that some of these superclasses belong to the PCG class.
Moreover, we tackle the problem of characterizing the class of graphs that are PCGs of
a star, deducing that also these graphs are a generalization of threshold graphs.

Keywords: PCG; leaf power graphs (LPG); mLPG; threshold graphs; matrogenic graphs.
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1. Introduction

Given an edge weighted tree T , let dmin and dmax be two non-negative real numbers
with dmin ≤ dmax. For any two leaves l1 and l2 of the tree T , we denote by dT (l1, l2)
the sum of the weights of the edges on the unique path from l1 to l2 in T . Starting
from T , dmin and dmax, it is possible to construct a pairwise compatibility graph of
T , i.e., a graph G(V, E) where each node u ∈ V corresponds to a leaf lu of T and
there is an edge (u, v) ∈ E if and only if dmin ≤ dT (lu, lv) ≤ dmax. We will denote
such a graph G by PCG(T, dmin, dmax). Consequently, we say that a graph G is a
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(a) (b)

Fig. 1. (a) A pairwise compatibility tree; (b) the corresponding pairwise compatibility graph.

pairwise compatibility graph (PCG) if there exists an edge weighted tree T (called a
pairwise compatibility tree) and two non-negative real numbers dmin and dmax such
that G = PCG(T, dmin, dmax). In Fig. 1, an example of pairwise compatibility tree
and the corresponding pairwise compatibility graph are depicted.

The pairwise compatibility graph recognition problem consists in determining
whether a given graph is PCG or not. This problem seems in general difficult to
tackle, and even more after the paper by Yanhaona et al. [19] disproving the con-
jecture that every graph is PCG [13].

Althought the pairwise compatibility graph recognition problem arose in a com-
putational biology context [13] and its main application remains in phylogenetics, it
has captured the interest of researchers belonging to other fields such as computa-
tional complexity and graph theory. In particular people working in computational
complexity theory are fascinated from the fact that the clique problem is polyno-
mially solvable for PCGs [13].

Due to the apparent difficulty of the pairwise compatibility recognition problem
for arbitrary graphs, the research is focussed on the study of this problem for specific
classes of graphs. Following this line of research many classes of graphs are proven
to be in PCG such as cliques and disjoint union of cliques [1], chordless cycles and
single chord cycles [20], ladder graphs [18], some particular subclasses of bipartite
graphs [19] and graphs with Dilworth number two [8]. Moreover, it is proven that
all graphs with 7 nodes or less are PCGs [17, 6], whereas the smallest example of
a graph that is not PCG has 8 nodes [10]. Finally, in [7], the closure properties of
the PCG class under some common graph operations are also studied.

In this paper we present two different contributions: The first one oriented to
increase the number of specific classes of graphs that are PCGs and the other one
going toward the direction of characterizing subclasses of PCGs derived from a
specific topology of the pairwise compatibility tree. Both these results are related
to generalizations of threshold graphs, i.e., graphs where the neighborhoods of any
couple of nodes either coincide or are included one into the other.

These graphs, introduced in 1977 independently by Chavatal and Hammer [9],
and Henderson and Zalcstein [12], have then found application in many fields, such
as computer science, scheduling theory, modern systems biology, social sciences
and psychology [15]. So in this paper, after a section recalling terminologies and
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concepts useful in the forthcoming work, we present the main results in Secs. 3
and 4. In particular, in Sec. 3 we prove that a wide superclass of threshold graphs
is inside the PCG class. Then, in Sec. 4, the structure of the graphs that are PCGs
of stars is presented, proving that the stars are pairwise compatibility trees of a
new class of graphs, which we call nearly three-threshold. This class extends the
class of threshold graphs At the end, some open problems derived from this work
are summarized in the last section of the paper.

2. Preliminaries

In this section, we introduce some definitions and some concepts that we use in the
rest of this paper.

An edge weighted tree, simply a weighted tree, is a tree with a non-negative weight
assigned to each edge. In this paper we consider only weighted trees and connected
graphs.

Given a connected graph G whose distinct node degrees are δ1 > · · · > δr, we
define Bi = {v ∈ V (G) : deg(v) = δi}, for any i = 1, . . . , r. The sets Bi are usually
referred as boxes and the sequence B1, . . . , Br is called the degree partition of G into
boxes. Notice that B1 contains all the nodes of maximum degree while Br contains
all the nodes of minimum degree and that r does not represent the maximum degree
but it is the number of different degrees in the graph.

An n-leaf star is a tree with n nodes with distinct degrees δ1 = n and δ2 = 1,
and the cardinality of the two boxes B1 and B2 are 1 and n − 1, respectively. We
usually denote by c the unique node of degree n.

Given a graph G with degree partition B1, . . . , Br, G is a threshold graph if and
only if for all u ∈ Bi, v ∈ Bj , u �= v, we have (u, v) ∈ E(G) if and only if i + j ≤
r + 1. As an example, see the graph in Fig. 2(a).

A caterpillar is a tree in which all the nodes are within distance one of a central
path which is called the spine.

A graph G = (K, S, E) is said to be split if there is a node partition V =
K ∪ S such that the subgraphs induced by K and S are complete and stable,
respectively.

(a) (b) (c)

Fig. 2. (a) A threshold graph; (b) the corresponding pairwise compatibility tree that makes it a
LPG; (c) the corresponding pairwise compatibility tree that makes it a mLPG.
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Given two split graphs G1 = (K1, S1, E1) and G2 = (K2, S2, E2), their compo-
sition G1 ◦ G2 is formed by taking the disjoint union of G1 and G2 and adding all
the edges {u, v} such that u ∈ K1 and v ∈ V (G2). Observe that G1 ◦ G2 is again a
split graph.

A set M of edges is a perfect matching of dimension n of A onto B if and only
if A and B are disjoint subsets of nodes of cardinality n and each node in A is
adjacent to exactly one node in B. We say that a split graph G = (K, S, E) is a
split matching if the subset of edges in E not belonging to the clique forms a perfect
matching.

An antimatching of dimension n of A onto B is a set of edges such that its
complement is a perfect matching of dimension n of A onto B. We say that a split
graph G = (K, S, E) is a split antimatching if the subset of edges in E not belonging
to the clique forms an antimatching.

A split matrogenic graph [15] is the composition of t split graphs Gi =
(Ki, Si, Ei) with i = 1, . . . , t such that either Gi is a split matching or Gi is a
split antimatching or Ki = ∅ (and Gi is called stable graph) or Si = ∅ (and Gi is
called clique graph).

It is not difficult to see that split matrogenic graphs are a super class of thresh-
old graphs and that also split matchings and split antimatchings graphs are split
matrogenic.

Before concluding this section, we introduce the definitions of two subclasses of
PCGs, namely LPGs and mLPGs:

Definition 2.1. [16] A graph G = (V, E) is an LPG if there exists a tree T and
an integer dmax such that there is an edge (u, v) in E if and only if for their corre-
sponding leaves lu, lv in T we have dT (lu, lv) ≤ dmax. It is worth to note that LPG
(leaf power graphs) have been well studied in literature since they were introduced
(see e.g., 2, 3, 4, 11 and 14.)

Definition 2.2. A graph G = (V, E) is an mLPG if there exists a tree T and an
integer dmin such that there is an edge (u, v) in E if and only if for their correspond-
ing leaves lu, lv in T we have dT (lu, lv) ≥ dmin.

Proposition 2.3. Let G be a graph that does not belong to some class L from
{PCG, LPG, mLPG}. Then every graph H that contains G as an induced subgraph,

does not belong to L either.

3. Split Matrogenic Graphs

This section is devoted to study the relation between the class of split matrogenic
graphs and PCGs. In order to prove that subclasses of split matrogenic graphs
belong to the PCG class, we proceed step by step enlarging, at each step, the
considered class. Let us start by proving that threshold graphs are both LPG and
mLPG graphs.
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(a) (b) (c)

Fig. 3. (a) A split matching graph; (b) a pairwise compatibility caterpillar tree for a split matching
graph; (c) a pairwise compatibility tree for a split matching graph.

Theorem 3.1. Let G be a threshold graph, then G ∈ LPG ∩ mLPG. In both
of the cases a tree T and a value dmin or dmax associated to G can be found in
polynomial time.

Proof. Let G be a threshold graph on n nodes (see Fig. 2(a)) and let B1, . . . , Br

be the degree partition of G. As tree T , we consider an n-leaf star with center at
node c.

To prove that G ∈ LPG, for each node v of G, assign weight i to the edge (lv, c)
in T if v ∈ Bi. Define dmax = r + 1. As for each u ∈ Bi, v ∈ Bj , u �= v, we have
(u, v) ∈ E(G) if and only if i + j ≤ r + 1; hence, it follows that G = LPG(T, dmax).
(See Fig. 2(b)).

On the other hand, to prove G ∈ mLPG for any v ∈ V (G) assign r + 1 − i

to the edge (lv, c) in T if v ∈ Bi. Note that, as i ≤ r we assign non-negative
weights to the edges of the star. Define dmin = r + 1. For any two nodes v ∈ Bi

and u ∈ Bj , we have that if i + j ≤ r + 1 (meaning that (u, v) ∈ E(G)) then
dT (lu, lv) = 2(r+1)−(i+j) ≥ r+1 = dmin. Otherwise, if i+j > r+1 (meaning that
(u, v) �∈ E(G)) then dT (lu, lv) = 2(r +1) − (i + j) < r +1 = dmin. (See Fig. 2(c)).
This concludes the proof.

Theorem 3.2. Let G be a split matching graph, then G ∈ LPG. A tree T and a
value dmax associated to G can be found in polynomial time.

Proof. Given a split matching graph G = (K, S, E) with |K| = |S| = n (see
Fig. 3(a)), we associate a caterpillar tree T as in Fig. 3(b). The leaves ai, corre-
sponding to the nodes ki of K, are connected to the spine with edges of weight 1 and
the leaves bi, corresponding to nodes si ∈ S, with edges of weight n. It is clear that
G = LPG(T, n + 1). Indeed, for any two ai, aj it holds that 3 ≤ dT (ai, aj) ≤ n + 1,
for any two bi, bj we have dT (bi, bj) ≥ 2n+1, for any ai, bi we have dT (ai, bi) = n+1
(hence the edge (ki, si) ∈ E) and for any ai, bj with i �= j we have dT (ai, bj) ≥ n+2
(hence the edge (ki, sj) �∈ E).
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(a) (b) (c)

Fig. 4. (a) A split antimatching graph; (b) a pairwise compatibility caterpillar tree for a split
antimatching graph; (c) a pairwise compatibility tree for a split antimatching graph.

Note that the pairwise compatibility tree provided for the split matching graph
by the previous proof is not unique. Indeed, one can easily check that the binary
tree T in Fig. 3(c) also is a pairwise compatibility tree of a split matching graph
when dmax = 4.

Analogously, we can show that split antimatching graphs are in mLPG.

Theorem 3.3. Let G be a split antimatching graph, then G ∈ mLPG. A tree T

and a value dmin associated to G can be found in polynomial time.

We omit the proof of this theorem, as it uses arguments similar to those in the
proof of Theorem 3.2. In Figs. 4(b) and 4(c), two possible pairwise compatibility
trees associated to a split antimatching graph (Fig. 4(a)) are depicted.

We now introduce two further subclasses of split matrogenic graphs and prove
that they are inside the PCG class.

Definition 3.4. Given a sequence of t split graphs Gi = (Ki, Si, Ei) with i =
1, . . . , t, we say the graph H = G1 ◦ · · · ◦ Gt is a split matching (antimatching)
sequence if each of the graphs Gi is either a split matching (antimatching), or a
stable graph or a clique graph.

We first prove that split matching sequences and split antimatching sequences
are in PCG. In both of these proofs, in the construction of the pairwise compati-
bility tree, we will make use of the constructions depicted in Figs. 3(c) and 4(c),
respectively. Finally, we want to point out that a clique graph (a stable graph) can
be considered both as a split matching and as a split antimatching graph and in
each case the pairwise compatibility tree is constructed in the same way, where
only leaves ai (respectively bi) appear. In Fig. 5, a pairwise compatibility tree is
given for an n node stable graph G when it is considered as a split matching graph
(Fig. 5(a)) or as a split antimatching graph (Fig. 5(b)).

Theorem 3.5. Let H be a split matching sequence, then H ∈ LPG. A tree T and
a value dmax associated to H can be found in polynomial time.
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(a) (b)

Fig. 5. The pairwise compatibility tree for a stable graph G with n nodes when it is considered
as: (a) a split matching graph; (b) a split antimatching graph.

(a) (b)

Fig. 6. (a) The pairwise compatibility tree for the split matching graph Gi; (b) the pairwise
compatibility tree for the split matching sequence H.

Proof. Let H = G1 ◦ · · · ◦ Gt be a split matching sequence. For each graph Gi we
define a tree Ti as shown in Fig. 6(a) (where the leaves ai (bi) could be missing if
Gi is a stable (clique) graph). It holds that Gi = LPG(Ti, dmax) where dmax is a
value to be defined later, but surely greater than or equal to 2(i + 1). Indeed, let
a1, . . . , an be the leaves of Ti corresponding to nodes of Ki and let b1, . . . , bn be those
corresponding to nodes of Si. For any two leaves ar, as it holds that dTi(ar, as) =
2 + 2i ≤ dmax and for any two bs, br we have dTi(br, bs) = 2dmax − 2i ≥ dmax +
2i + 2 − 2i > dmax. Finally, for any two leaves as, bs that correspond to an edge
of the matching, their distance is dmax − 2i + 1 ≤ dmax and for any two leaves
corresponding to a non edge ar, bs, their distance is dmax + 1.

In order to prove that H ∈ LPG, we define a new tree T starting from the
trees T1, . . . , Tt, simply by contracting all their roots into a single node as shown
in Fig. 6(b). We claim that H = LPG(T, dmax) where we set dmax = 2(t + 1). In
order to prove it, consider two graphs Gi and Gj with i < j. Let a, a′, b and b′

be four distinct leaves corresponding to nodes in Ki, Kj , Si and Sj respectively.
Observe that the nodes in Ki are connected to all the other nodes in Kj ∪ Sj as
the distances in T are dT (a, a′) = 1 + i + j + 1 ≤ 2(j + 1) ≤ dmax and dT (a, b′) =
1 + i + j + dmax − 2j = dmax + (i − j + 1) ≤ dmax (as j ≥ i + 1). Finally, any
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node in Si is not connected to any node Kj and to any node Sj as in these cases,
the distances are dT (b, a′) = dmax − 2i + i + j + 1 > dmax (as j ≥ i + 1) and
dT (b, b′) = dmax − 2i + i + j + dmax − 2j ≥ 2dmax − 2j > dmax.

Theorem 3.6. Let H be a split antimatching sequence, then H ∈ mPCG. A tree
T and a value dmin associated to H can be found in polynomial time.

We omit the details of this proof as it follows the same lines of the proof of
Theorem 3.5, where the tree Ti associated to each split antimatching graph Gi is
depicted in Fig. 7 and dmin = 2(t + 1) + 1.

Now, we further enlarge the subclass of split matrogenic graphs that is inside
the PCG class.

Theorem 3.7. Let H = G1 ◦ · · · ◦ Gt be a split matrogenic graph. If for each split
matching graph Gi and for each split antimatching graph Gj it holds that i < j,

then H ∈ PCG. A tree T and two values dmin, dmax associated to H can be found
in polynomial time.

Proof. Let H = G1 ◦ · · · ◦ Gt. It is clear that if none of the graphs Gi is a split
matching (a split antimatching) the proof trivially follows from Theorem 3.5 (The-
orem 3.6). Hence, let Gq, 1 < q ≤ t, be the first occurrence of a split antimatching
graph. Then, the graphs H1 = G1 ◦ · · · ◦ Gq−1 and H2 = Gq ◦ · · · ◦ Gt are a
split matching sequence and a split antimatching sequence, respectively. Then, let
H1 = LPG(T1, M) where the tree is constructed the same way as in the proof of
Theorem 3.5 and M = 2(t +1)+ 1 (recall that in the proof of Theorem 3.5 we only
need M to be a value greater than 2q). Similarly, according to the Theorem 3.6,
H2 = mLPG(T2, m) and m = 2(t + 1) + 1 (note that we choose to have m = M).
We modify T2 in such a way that the weights of the edges out-coming from the
root start from value q and not from value 1; the other edges are modified accord-
ingly. This is not restrictive, as T2 results as if H2 was the composition of t split
antimatching graphs whose first q − 1 are empty graphs.

We construct the pairwise compatibility tree T by joining the roots of T1 and
T2 with an edge of weight m/2. We set dmin = m and dmax = 2m. We modify the
weights of the resulting tree increasing by m/2 the weight of any edge incident to a

Fig. 7. The pairwise compatibility tree for the split antimatching graph Gi.
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Fig. 8. The pairwise compatibility tree for the split matrogenic graph H as defined in Theorem 3.7.

leaf in T1. Observe that in this way the distance of any two leaves in T1 is increased
by m. This means that two leaves correspond to nodes of an edge in H1 if and only
if their distance is less than or equal to M + m = 2m. Furthermore, the maximum
distance of any two leaves in T2 is less than or equal to 2m−2t < 2m meaning that
they correspond to nodes of an edge in H2 if and only if their distance is greater
than or equal to m. In Fig. 8 the pairwise compatibility tree for the split matrogenic
graph H is depicted.

We claim that H = PCG(T, 2m, m) (recall that m = 2(t + 1) + 1). We have
already shown that the pairwise compatibility constraints hold for any two leaves
that correspond to two nodes of the same graph H1 or H2. It remains to show that
this constraint also holds for two leaves where one corresponds to a node in H1 and
the other one to a node in H2. To this purpose, let ai and bi be two distinct leaves in
T1, connected to the root with edges of weight i and corresponding to nodes of the
clique and the stable graph of H1, respectively. Similarly let a′

j , b
′
j be two distinct

leaves in T2, connected to the root with edges of weight j and corresponding to
nodes in the clique and in the stable graph of H2, respectively. The following hold:

(a) dT (ai, a
′
j) = 2m+ i− j and as i < j and m > j, then m ≤ 2m+1+ i− j ≤ 2m.

Hence, the corresponding nodes of ai, a
′
j in H are connected.

(b) dT (ai, b
′
j) = m + 1 + i + j + 1 and as m = 2t + 3 ≥ i + j + 2, then m ≤ m + i +

j + 2 ≤ 2m. Hence, the corresponding nodes of ai, b
′
j in H are connected.

(c) dT (bi, a
′
j) = 2m− i + m− j − 1 and as m = 2t + 3 ≥ i + j + 2, then 2m + (m−

i−j−1) > 2m. Hence, the corresponding nodes of bi, a
′
j in H are not connected.

(d) dT (bi, b
′
j) = 2m − i + j + 1 and as i < j, then 2m + (i − j + 1) > 2m. Hence,

the corresponding nodes of bi, b
′
j in H are not connected.

This, concludes the proof.

The next enlargement step would imply to prove that the composition of a split
antimatching sequence followed by a split matching sequence is a PCG. Unfortu-
nately, it does not seem possible to generalize our reasonings to this case, and we are
convinced that the order of appearance of a matching or an antimatching sequence
in a split matrogenic graph is some how strictly related to the pairwise compatibility
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property. Hence, we leave as an open problem determining whether split matrogenic
graphs belong to the PCG class or not.

4. Pairwise Compatibility Graphs of Stars

In Theorem 3.1, we showed that threshold graphs are pairwise compatibility graphs
of trees that are stars. It is natural to wonder how much this particular structure
of the tree is connected with the structural properties of threshold graphs. Here we
completely describe all the graphs that are PCGs of a star. Namely, we prove that
stars are pairwise compatibility trees of a superclass of threshold graphs. To the
best of our knowledge, this class of graphs has never been characterized before, so
we name it as nearly three-threshold graphs.

Before defining this new class of graphs, we will consider another equivalent
definition of threshold graphs, that is based on the concept of vicinal preorrder.

Given a graph G = (V, E), let us define the open and closed neighborhood of x

as N(x) = {w : w ∈ V, w �= x and (w, x) ∈ E} and N [x] = N(x) ∪ {x}.
In general, if V ′ ⊂ V , NV ′(x) and NV ′ [x] are the neighborhoods (respectively

open and closed) of x restricted to the graph induced by V ′.
The vicinal preorder 
 of a graph G = (V, E) on the set of nodes V guarantees

that for any two nodes u, v ∈ V , u 
 v if and only if N(u) ⊆ N [v]. The dual preorder

∗ is defined by: u 
∗ v if and only if v 
 u.

A graph G = (V, E) is a threshold graph if and only if the vicinal preorder on
V is total, i.e., for any pair of nodes u, v ∈ V , either u 
 v or v 
 u.

Definition 4.1. A graph G = (V, E) is nearly three-threshold if it is possible to
partition the set of nodes V into three classes VK , VS1 , VS2 so that:

(a) The subgraph induced by K ∪ S1 is a threshold graph.
(b) The subgraph induced by K ∪ S2 is a threshold graph.
(c) The subgraph induced by S1 ∪ S2 is a bipartite graph.

Furthermore, the total vicinal preorder related to the graph induced by K ∪ S2

is the dual of the total vicinal preorder defined by the graph induced by K ∪ S1

(see Fig. 9(a)).

For the subgraph induced by S1 ∪ S2 we cannot deduce such a similar strong
property. However, we show that under some particular conditions, even in this
case, there must be a strong relationship between the neighborhoods of the nodes
in S1 ∪ S2.

In order to prove the next theorem, let us introduce a new definition. Consider a
pairwise compatibility graph G = PCG(T, dmin, dmax) and let w be the edge-weight
function for T . We define a total order 
w on the nodes of G such that for any
u, v ∈ V (G) it holds v 
w u if and only if w(elv ) ≤ w(elu) where, as usual, lu, lv
denote the leaves of T corresponding to the nodes u, v and elu , elv denote the unique
edges incident to these leaves in the tree.
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(a) (b) (c)

Fig. 9. (a) The structure of a PCG generated by a star; (b) an example of a PCG generated by a
star.

We can now prove the following:

Theorem 4.2. If a graph G is a PCG of a star then G is a nearly three-threshold
graph.

Proof. Let G = PCG(T, dmin, dmax) where T is a star centered in some node c and
let w be the edge weight function on the tree T .

Define three subsets of the set of nodes of T , VK , VS1 and VS2 as follows:

VK =
{

lv ∈ V (T ) :
dmin

2
≤ w((lv , c)) ≤ dmax

2

}
,

VS1 =
{

lv ∈ V (T ) : w((lv , c)) <
dmin

2

}
,

VS2 =
{

lv ∈ V (T ) : w((lv , c)) >
dmax

2

}
.

(4.1)

Let K, S1 and S2 be the sets of nodes of G whose corresponding leaves in T

belong in VK , VS1 and VS2 , respectively. Since the sum of the weights of two edges
whose leaf extremes are in VK is always between dmin and dmax (in view of the
definition of VK), easily K induces a clique; using similar reasonings, S1 and S2

induce two stable sets. From this latter consideration, it follows that the subgraph
induced by S1 ∪ S2 is a bipartite graph. So it remains to prove that the subgraphs
induced by K ∪ S1 and K ∪ S2 are threshold graphs.

The main idea of the proof is to show that there is a strong relation between
the vicinal preorder defined on K∪S1 and K∪S2 and the weights of edges incident
to the corresponding leaves of the tree. More in detail, we show that 
w is a total
vicinal preorder on K ∪ S1 and its dual 
∗

w is a total vicinal preorder on K ∪ S2.
First we prove that K ∪ S1 is a threshold graph. We will show, first, that the

vicinal preorder 
 defined is total on K ∪ S1 and then that it coincides with 
w.
To this purpose, consider any two arbitrary nodes v, u ∈ K ∪S1 and let w((lv, c)) ≤
w((lu, c)) (thus, v 
w u). We prove that v 
 u. Indeed, for any other node x ∈
NK∪S1(v), it must hold that dmin ≤ w((lx, c)) + w((lv , c)) ≤ dmax. Now, it is clear
that w((lx, c))+w((lu, c)) ≥ w((lx, c))+w((lv , c)) ≥ dmin. Furthermore, as w((lx, c))
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and w((lu, c)) are both less than or equal to dmax/2 their sum is less than or equal to
dmax. Thus, we have that x ∈ NK∪S1(u). Hence, NK∪S1(v)−{u} ⊆ NK∪S1(u)−{v}
meaning that the vicinal preorder 
 is total.

For the subgraph induced by K ∪ S2 we use similar arguments. We prove that
K ∪ S2 is also a threshold graph by showing that the vicinal preorder 
′ defined is
total on K ∪ S1 and moreover, it coincides with 
∗

w. To this purpose, consider two
nodes v, u ∈ K∪S2 and suppose again that w((lv, c)) ≤ w((lu, c)) (thus v 
w u). We
prove that u 
′ v, i.e., 
′ coincides with 
∗

w and NK∪S2(u) − {v} ⊆ NK∪S2(v) −
{u}. For any other node x ∈ NK∪S2(u), it must hold that dmin ≤ w((lx, c)) +
w((lu, c)) ≤ dmax. It is clear that w((lx, c)) + w((lv , c)) ≤ w((lx, c)) + w((lu, c)) ≤
dmax. Furthermore as lv, lx ∈ K∪S2, then w((lx, c))+w((lv, c)) ≥ dmax/2+dmin/2 ≥
dmin. Thus we have that x ∈ NK∪S1(v). Hence, NK∪S2(u)−{v} ⊆ NK∪S2(v)−{u}
meaning that the vicinal preorder 
′ is total.

In the next claim we show that in some cases, it is possible to reveal more of
the structure of the bipartite graph S1 ∪ S2.

Claim 1. Let G be a graph such that G = PCG(T, dmin, dmax) where T is a weighted
star and dmax

2 ≥ dmin. Let w be the edge-weight function on T, then G = (K, S1, S2)
is a nearly three-threshold graph and 
∗

w defines a vicinal preorder in the bipartite
graph S1 ∪ S2 which is total in the sets S1 and S2.

Proof. Let G = PCG(T, dmin, dmax), with dmax/2 ≥ dmin and where T is a
weighted star centered in some node c and let w be the edge weight function on
this star. Notice that Theorem 4.2 holds for any value of dmin and dmax ≥ dmin, so
G = (K, S1, S2) is a nearly three-threshold graph. Consider the induced bipartite
graph S1 ∪ S2.

We show that 
∗
w is a total vicinal preorder on S1, leaving to the reader

the identical proof on S2. Let us consider two arbitrary nodes v, u ∈ VS1 with
w((lv, c)) ≤ w((lu, c)). We prove that NS1∪S2(u) ⊆ NS1∪S2(v). For any other node
x ∈ S2 such that x ∈ NS1∪S2(u), we have dmin ≤ w((lx, c)) + w((lu, c)) ≤ dmax.
Again w((lx, c)) + w((lv , c)) ≤ w((lx, c)) + w((lu, c)) ≤ dmax. Furthermore as
w((lx, c)) + w((lv, c)) ≥ dmax/2 + w((lv, c)) ≥ dmin, we deduce that x ∈ NK∪S1(v)
(note that here we used the fact that dmin ≤ dmax/2). So, 
∗

w is a total vicinal
preorder on S1 and the claim is proven.

5. Conclusions and Open Problems

In this paper we present two different contributions: The first one oriented to
increase the number of specific classes of graphs that are PCGs and the other
one going toward the direction of characterizing subclasses of PCGs derived from a
specific topology of the pairwise compatibility tree. Both these results are related
to generalizations of threshold graphs.
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Fig. 10. The smallest split matrogenic graph for which it is still an open problem determining
whether it belongs to the PCG class or not. The triple lines between the split antimatching graph
and the split matching graph mean the composition operation.

For what concerns the first topic, we have proven that many split matrogenic
graphs are in PCG. Nevertheless, there are some split matrogenic graphs for which
we cannot say whether they are PCGs or not. In particular, it remains an open
problem to understand if it is possible to find a pairwise compatibility tree and
two values dmin and dmax for the split matrogenic graph H = G1 ◦ · · · ◦ Gt such
that for some split antimatching graph Gi and for some split matching graph Gj

it holds that i < j. In fact, it seems that the order of appearance of a matching or
an antimatching sequence in a split matrogenic graph is somehow strictly related
to the pairwise compatibility property, so it would be extremely interesting to even
understand whether only the split matrogenic graph in Fig. 10 is a PCG or not.

The second result presented in this paper is on the structure of graphs that
are PCGs of a star. We have proven that stars are pairwise compatibility trees of
a new class of graphs, the nearly three-threshold graphs, which is a superclass of
threshold graphs. A natural open problem consists in completely identifying the
class of graphs that are PCG of a star. Moreover, it is clear that we can ask similar
questions for other particular trees. For example, we have seen that the simplest
split matrogenic graphs (split matching and split antimatching graphs) are PCGs of
a particular tree structure: a caterpillar. Thus, it should be interesting to determine
the class of PCGs characterized by a caterpillar.
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