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a b s t r a c t

Given an integer c , an edge colored graph G is said to be rainbow c-splittable if it can be
decomposed into at most c vertex-disjoint monochromatic induced subgraphs of distinct
colors. We provide a polynomial-time algorithm for deciding whether an edge-colored
complete graph is rainbow c-splittable. For not necessarily complete graphs, we show that
the problem is polynomial if c = 2, whereas for c ≥ 3 it is NP-complete even if the
graph hasmaximumdegree 2c−1. Finally, it remains NP-complete even for 2-edge colored
graphs of maximum degree 7c − 14.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The problem. Throughout this paper graphs are always simple, i.e. without loops or multiple edges. As usual Kn will
denote the complete graph on n vertices. Let G = (V , E) be an edge-colored (not necessary properly) connected graph.
Then, G is called monochromatic if all its edges are of the same color. In this paper coloring would always refer to an edge-
coloring except when indicated otherwise. We say a graph is r-colored if at most r colors appear on its edges. For V ′ ⊆ V we
denote by G[V ′] the graph induced by V ′. We denote by [n] the set {1, . . . , n}. For undefined terms and concepts the reader
is referred to [2].

Fixed an integer c , an edge-colored graph G = (V , E) is said to be rainbow c-splittable if there exists a decomposition
of G into at most c monochromatic vertex-disjoint induced subgraphs of pairwise distinct colors (hence the name rainbow
splitting). The partition V1, . . . , Vc′ of V (with c ′ ≤ c) that generates such a decomposition is referred as a rainbow c-split
of G. We allow one or more sets of the partition to be of cardinality one. Indeed, in this case the induced subgraph has no
edges, so we consider it being of an arbitrary color. In this paper we study the computational complexity of the following
problem:
Rainbow c-Splitting Problem
Instance: An edge-colored graph G.
Question: Is G rainbow c-splittable?

Note that we deal only with the cases where c is a fixed integer (meaning that c is not part of the input).
It is worth observing that the rainbow c-splitting problem can be also considered as a relaxed vertex coloring problem.

Given an edge-colored graph, is there a coloring of the vertices with at most c colors such that two vertices can be of the
same color a only if they are either not adjacent or connected by an edge of color a?

Our results. It is clear that an edge-colored graph is rainbow 1-splittable if and only it is monochromatic. Thus the
first non trivial case of the Rainbow c-Splitting problem, is for c = 2. We show that rainbow 2-splittable graphs can be
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recognized in polynomial time by providing a reduction to the well-known 2-SAT problem [1,5]. Then we investigate the
class of complete graphs.We provide a polynomial-time algorithm that decides whether an edge colored complete graph Kn
is rainbow c-splittable. For not necessarily complete graphs, we show that the Rainbow c-Splitting problem is NP-complete
for c ≥ 3 and remains so even if the graph is c-colored and hasmaximum degree 2c−1. Furthermore, it is still difficult if we
limit the number of colors on the edges of the graph. In particular, the problem is NP-complete even for 2-colored graphs of
maximum degree 7c − 14.

Related works. Graph partitioning problems are extensively studied in the literature in many aspects and variations.
The well-known vertex coloring problem fits itself in this framework: Partition the vertex set into the minimum number
of subsets each of which induces a stable in the original graph. Several variations of this problem have been introduced,
leading to interesting new concepts and challenging problems [3,7,16,19].

Some graph partitioning problems require that the partition satisfies a color pattern. In particular, in [13] the authors
considered the problem of determining the minimum number of subsets in which the vertex set of a colored graph can
be partitioned such that each of the subsets induces a monochromatic clique proving that it is NP-hard. Observe that the
Rainbow c-Splitting problem concerning complete graphs not only requires a partition intomonochromatic cliques, but also
a rainbow partition, i.e. all the cliques must be of pairwise distinct colors.

In the same flavor is the problem of a-split colorings [11] which comes as a generalization of the well-known problem
of recognition of split graphs [9]. Fix an integer c , let a = (a1, . . . ac) be a vector of nonnegative integers. A c-coloring of
the edges of a complete graph is called a-split if there is a partition of the vertex set V into c subsets such that for any
i ∈ [c] every set of ai + 1 vertices in the class Vi contains an edge of color i. Clearly, for c-colored complete graphs the
(1, 1, . . . , 1)-splitting and the rainbow c-splitting are equivalent properties. However, observe that this kind of connection
cannot be extended to complete graphs with more than c colors on their edges or to graphs that are not complete. For c = 2
there are well-known simple algorithms that recognize (1, 1)-split complete graphs in polynomial time and the same result
holds also for arbitrary graphs (see for example [10]). Concerning the case c ≥ 3, the authors of [11] proved that the family
of a-split complete graphs can be characterized by a finite list of forbidden induced colored subgraphs. This implies that
once such a list is obtained, it would be possible to decide in polynomial time the rainbow c-splitting for c-colored complete
graphs. However, an explicit description of such a list seems very difficult and it is still unknown even for the case c = 3
(for the case c = 2 see [9]). Our result implies the first explicit polynomial-time algorithm for the (1, 1, . . . , 1)-splitting
problem. Moreover the algorithm is not based on forbidden induced colored subgraphs.

Finally, it is worth mentioning the connection with the adaptable coloring problem (see for example [6,12,15]). Given an
edge colored graph an adaptable coloring is a vertex coloring such that there is no edge e = {u, v}with c(u) = c(v) = c(e).
Considering the rainbow splitting problem as a vertex coloring problem, it is clear that these two problems impose opposite
requirements. They also present different kind of difficulties. Indeed, in [6] it is proved that deciding the existence of an
adaptable coloring with c colors for a c-colored graph is NP-complete for c ≥ 4 and for complete graphs. Moreover, for
c = 3 the complexity is still unknown even when restricting attention to complete graphs. However, in [8] some evidence
is given that this problem is not NP-complete. Despite their different nature in the case of graphs, their generalizations to
multigraphs define basically the sameproblem. Indeed, consider amultigraphwheremultiple colored edges appear between
two vertices. It is clear that for two vertices u, v allowing c(u) and c(v) to be of the same color a only if there is some edge of
color a connecting them (rainbow splitting), or allowing it if none of the edges is of color a (adaptable coloring), are mainly
the same type of requirements. They both allow c(u) = c(v) = a only if a belongs to some set of permissible colors. In the
first problem this set is Cuv , where Cuv denotes the set of colors appearing on the edges connecting u and v, in the second
the set is C \ Cuv , where C is the set of colors appearing on all the edges of the multigraph.

This kind of requirement provides natural interpretations for various problems; as matrix partitions of graphs [7,8,12],
full constraints satisfaction problems [6] or scheduling problems [15].

To get some intuition concerning rainbow splitting in case of graphs consider the following simple scenario: Suppose
there are n games to be scheduled in time. The constraint is that two games can be played simultaneously only on a particular
day. Now, given a fixed integer c , can we schedule the games such that all of them are played in a feasible way, within c
days? It should be clear that the Rainbow c-Splitting problem models this situation.

2. Rainbow 2-Splitting

In this section we deal with the case c = 2. We prove that the Rainbow 2-Splitting problem can be solved in polynomial
time. For 2-colored graphs, in [10] it is proved that the problem can be solved in linear time. Here we extend this result to
edge-colored graphs with an arbitrary number of colors. In order to simplify the forthcoming proofs we define the rainbow
splitting problem in correspondence to a set of colors. Given a set of colors Awe say that a graph G is rainbow A-splittable if
it can be decomposed into monochromatic induced subgraphs of pairwise distinct colors from A. Clearly a graph is rainbow
c-splittable if and only if there is a set A of at most c colors for which G is rainbow A-splittable. The proof will follow
straightforwardly by the next lemma.

Lemma 1. Given an edge-colored graph G on n vertices and two colors a, b, there is an algorithm that decides in time O(n2) if the
graph G is rainbow {a, b}-splitting.
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Proof. We prove the lemma by showing that the problem is reducible to the well-known problem 2-SAT where, given a
formula F in conjunctive normal form where each clause has two literals, we ask if there is some assignment of the literals
that makes the formula F true. It is known that 2-SAT can be solved in polynomial time [1,5]. Given an edge colored graph
G = (V , E) and the colors a, b we construct a formula F as follows: To each vertex v ∈ V and edge e ∈ E of color different
from a and b the Boolean variables xv and xe correspond respectively; to every edge uv of color a (b) corresponds the clause
xu ∨ xv (¬xu ∨¬xv) and to every edge uv of color different from u and v correspond the following three clauses:¬xu ∨¬xv ,
xu ∨ xuv and xv ∨ ¬xuv . Now, if F is satisfiable consider an assignment that makes F true and let Va and Vb be the set of
vertices whose corresponding variables are respectively true and false. It is not difficult to see that the partition (Va, Vb)
is a rainbow {a, b}-split in G. Indeed, they trivially partition the vertex set and every edge uv ∈ G[Va] must be of color a
otherwise the clause ¬xu ∨ ¬xv cannot be satisfied as xu, xv are both set to true. Similarly, every edge uv ∈ G[Vb]must be
of color b otherwise at least one from the clause xu ∨ xv , xu ∨ xuv and xv ∨ ¬xuv cannot be satisfied as (xu, xv are both set
to false). Conversely, let (Va, Vb) be the rainbow {a, b}-split of G. Assign true (false) to each variable whose corresponding
vertex belongs to Va (Vb) and assign true to each variable xuv whose corresponding edge uv does not belong in G[Va]. It is
simple to verify that this assignment makes F true. This concludes the proof. �

At this point given a r-colored graph G on n vertices, we can decide rainbow 2-splitting trivially considering all the
possible

r
2


pairs of colors. Thus, we can state the following:

Theorem 1. Given an r-colored graph G on n vertices, there is an algorithm that solves the Rainbow 2-Splitting problem in time
O(r2n2).

3. Rainbow c-Splitting of complete graphs

Themain purpose of this section is to provide a polynomial-time algorithm that decides if a given edge-colored complete
graph Kn is A-splittable for a given set A of c colors. Without loosing generality we can suppose from now on that the set
of colors A is the set [c]. It should be clear that if we have such a polynomial-time algorithm then we can decide rainbow
c-splitting trivially in polynomial time by considering all the possible

r
c


sets of c colors, where r is the number of colors

appearing on the edges of the graph Kn.
We begin by proving a technical lemma stating some properties related to the maximum monochromatic clique in

rainbow [c]-splittable complete graphs.

Lemma 2. Let K be a complete edge-colored graph with V (K) = V . For any color a ∈ [c] let C be the maximum monochromatic
clique of color a in K . Then K is rainbow [c]-splittable if and only if there are two sets of vertices X and Y where X ⊆ C with
|X | < c and Y ⊆ V \ C with |Y | ≤ |X | such that for the set Z = (C \ X) ∪ Y both of the followings hold

• K [Z] is a monochromatic clique of color a
• K [V \ Z] is rainbow [c]-splittable with Va = ∅ (i.e. there is no monochromatic clique of color a).

Proof. The only if part is trivial as if V1, . . . , Vc is the rainbow [c]-split of K [V \Z] and Va = ∅ then setting Va = Z we obtain
a [c]-split for K .
Concerning the if part let C be the maximum monochromatic clique of color a in K and let V1, . . . , Va, . . . , Vc be a
[c]-split of K . Let X = C \ Va and Y = Va \ C . Observe that |X | ≤ c − 1 as otherwise we will have an edge of color a
in some set Vi with i ≠ a. Furthermore |Y | ≤ |X |. Indeed |Va| = |Va \ C | + |Va ∩ C | = |Y | + |Va ∩ C | on the other hand
|C | = |C\Va|+|Va∩C | = |X |+|Va∩C | and as |Va| ≤ |C | the result follows. Now, let Z = (C\X)∪Y = (Va∩C)∪(Va\C) = Va
and clearly setting Va = ∅we obtain a rainbow [c]-split for K [V \ Z] and this concludes the proof. �

Now, it is well known that finding a maximum clique in a graph is an NP-hard problem [14]. However, if the graph is a
complete rainbow [c]-splittable graph then we can find the maximummonochromatic clique (monochromatic of a color in
[c]) in polynomial time as proved by the following lemma:

Lemma 3. For any rainbow [c]-splittable edge-colored complete graph Kn and a color a ∈ [c], there is an algorithm that in time
O(n4c−4) outputs a maximum monochromatic clique of color a.

Proof. The algorithm we provide will quite straightforwardly follow by the next claim:

Claim 1. Let K be an edge-colored [c]-splittable complete graph. For any color a ∈ [c] and every monochromatic clique C of color
a there exists a maximum monochromatic clique Cmax, of the same color, for which |C \ Cmax| ≤ 2c − 3.

Proof. Given an edge-colored [c]-splittable complete graph K , pick a color a ∈ [c] and let and C be an arbitrary
monochromatic clique of color a. As K is [c]-splittable let V1, . . . , Vc be a rainbow [c]-split of K . Consider the class
Va and observe that for any monochromatic clique C ′ of color a we have |C ′ \ Va| ≤ c − 1 as otherwise we will have
an edge of color a in some set Vi with i ≠ a. Now, if Va is a maximum clique then we are done. Otherwise, let Cmax
be the maximum monochromatic clique of color a in K for which the value of |C \ Cmax| is minimal. Now, suppose
on the contrary that |C \ Cmax| > 2c − 3. Then there are at least c − 1 elements of Va that do not belong to Cmax, i.e.
|Va \ Cmax| ≥ c − 1. Observe that

|Va| = |Va ∩ Cmax| + |Va \ Cmax| ≥ |Va ∩ Cmax| + c − 1
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Algorithm Split(G, [c])
Require: An edge colored complete graph G = (V , E) and a set [c] of colors.
Ensure: Returns TRUE if G is [c]-splittable and FALSE otherwise.

1: if c = 1 then
2: if G is a monochromatic clique then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end if
8: C ← MaxClique(G, c, c);
9: for all X ⊆ C with 0 ≤ |X | ≤ c − 1 do

10: for all Y ⊆ V (G) \ C with 0 ≤ |Y | ≤ |X | do
11: Z ← C \ (X ∪ Y );
12: if G[Z] is monochromatic of color c and Split(G[V \ Z], [c − 1]) then
13: return TRUE
14: end if
15: end for
16: end for
17: return FALSE

Fig. 1. Algorithm Split(G, [c]).

and also

|Cmax| = |Va ∩ Cmax| + |Cmax Va| ≤ |Va ∩ Cmax| + c − 1

which leads to a contradictions as |Va| < |Cmax|. �

According to the previous claimwe can think of an algorithm to produce themaximummonochromatic clique of some given
color a based on a local search. It starts from amonochromatic clique C consisting of a single vertex and at each step tries to
increment the size of C by removing at most k ≤ 2c − 3 vertices and inserting k+ 1 vertices. It can be easily seen that each
step has time complexity O

 n
2c−3

 n
2c−2


and as the number of steps is O(n) this algorithm requires O(n4c−4) time. And this

concludes the lemma. �

Remark. Note that the bound provided by Claim 1 cannot be improved. Indeed, consider the edge-colored complete graph
K composed by 4 disjoint monochromatic cliques C1, C2, C3, C4 each of the same color color c and with |C1| = |C3| = |C4| =

c − 1 and |C2| = c − 2. Let the edges between C1 and C2, C2 and C4 and C4 and C3 be all of color c and let the edges between
C2 and C3, and C1 and C4 be all of color c − 1. Finally we define the color of the edges between C1 and C3 as follows: Let
v1, . . . , vc−1 be the vertices of C1 or any i ∈ [c − 1] color by i all the edges incident to the vertex vi.

Observe that K is [c]-splittable as for instance C2 ∪ C4 induces a monochromatic clique of color c and the vertices of C1
and C3 can be split into c − 1 monochromatic edges of pairwise distinct colors in [c − 1]. At this point C = C1 ∪ C2 is a
monochromatic clique of color c of size 2c − 3 and clearly Cmax = C3 ∪ C4 is the only maximum clique of color c with size
2c − 2. Thus, we conclude by observing that |C \ Cmax| = |C | = 2c − 3.
Consider now Algorithm Split presented in Fig. 1. We claim that this algorithm correctly determines if a complete edge
colored graph is rainbow [c]-splittable. Observe first that we make use of the algorithm MaxClique(G, c, a) which refers to
the one explained in Lemma 3 that returns a monochromatic clique of color awhich is of maximum cardinality if the graph
is rainbow [c]-splittable.

Theorem 2. For every constant c and complete edge colored graph Kn, Algorithm Split presented in Fig. 1 decides in time O(nc2+1)
if Kn is rainbow [c]-splittable.

Proof. First we prove that this algorithm returns true if and only if the complete edge colored graph Kn is rainbow
[c]-splittable. The proof follows by induction on c and the base case c = 1 trivially holds. Now, suppose it holds for any
value till c − 1 and consider the case we want to decide if Kn is rainbow [c]-splittable. There are two cases to consider: If
Kn is [c]-splittable then from Lemma 3 we have that C is the maximummonochromatic clique of color c in Kn thus applying
Lemma 2 and using the induction hypothesis the algorithm will return true. Otherwise, if Kn is not rainbow [c]-splittable
then again from Lemma 2 there is no way to find a set Z as required in the lemma for which Kn[Z] is monochromatic of color
c and there is a rainbow [c]-split for Kn[V \ Z]with Vc = ∅, and thus the algorithm will return false.

Now, fix a constant c and let T (n, c) be the time complexity of Algorithm Split. We can prove that T (n, c) = O(nc2+1) by
induction on the value of c. It is clear that T (n, 1) = O(n2) so the base case holds. On the other hand it is not difficult to see
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Fig. 2. The truth setting component for the variable xi .

that the following holds

T (n, c) = O(n4c−4)+ O
 n

c−1

2T (n, c − 1)


= O(n4c−4)+ O(n2c−2+(c−1)2+1)

= O(nc2+1).

This concludes the proof of Theorem 2. �

Finally, if r is the number of colors that appear on the edges of a given complete graph then simply using Algorithm Split
over all

r
c


sets of c colors, we obtain the following:

Theorem 3. For every constant c and r-colored complete graph Kn, there is an algorithm that decides in time O(rcnc2+1) if Kn is
rainbow c-splittable.

4. Rainbow c-Splitting

In this sectionweprove that for graphs that are not necessarily complete the Rainbow c-Splitting problem isNP-complete
for c ≥ 3. Furthermore, it remains so, even if the graph has maximum degree 2c − 1 and is c-colored. One may think that
limiting the number of colors on the edges of the graph, changes the complexity of the problem. For instance, we trivially
have that monochromatic graphs are rainbow c-splittable for every c. To this purpose, in Section 4.1 we focus on 2-colored
graphs. We prove that even in this case the Rainbow c-Splitting problem is NP-complete for c ≥ 3. Obviously this implies
that the problem remains difficult even if more colors are allowed.

First we prove that Rainbow 3-Splitting Problem is NP-complete even for 3-colored graphs of maximum degree 5. The
reduction is obtained using a restricted version of SAT problem defined as follows:

Definition 1 ((3, 2)-SAT). Instance: A Boolean formula F in conjunctive normal form where each clause has two or three
literals and each literal appears in at most 2 clauses.
Question: Is there some assignment of true and false value that will make the formula F true?

It is known that (3, 2)-SAT is NP-complete [18]. We use this result to prove the following:

Lemma 4. Rainbow 3-Splitting Problem is NP-complete and it remains so even if the graph is 3-colored and has maximum
degree 5.

Proof. Let F be an instance of (3, 2)-SAT. To prove the lemma we show that it is possible to construct in polynomial time a
3-colored graph G(F), with maximum degree 5 such that F is satisfiable if and only if G(F) is rainbow 3-splittable. For the
sake of simplicity we assume in this proof that the set of edge colors is {0, 1, 2}.

Assume that F has n variables x1, . . . , xn and m clauses C1, . . . , Cm. To each variable xi, 1 ≤ i ≤ n, we associate a truth
setting component shown in Fig. 2.

The gadget has degree 5 and the two nodes labeled xi and ¬xi are called literal-vertices of the component. It is easy to
see that for any rainbow 3-split V0, V1, V2 of the component at least one of the vertices in {ai1, a

i
2, a

i
3} and at least one of the

vertices in {bi1, b
i
2, b

i
3} belong to set V2. This implies that c i1 must belong to one from the sets V0, V1 and the same is true for

c i2. Due to the monochromatic triangle c i1, c
i
2, c

i
3 this implies that c i3 belongs to V2. Finally, due to the triangle xi, c i3,¬xi it

holds that xi and ¬xi belong to different sets from V0, V1. Thus we have

Property 1. For any rainbow 3-split V0, V1, V2 of a truth setting component one of the two literal-vertices belongs to V0 and the
other to V1.
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a

b

Fig. 3. (a) The test 2-component for the clause Cj = {l
j
1, l

j
2}. (b) The test 3-component for the clause Cj = {l

j
1, l

j
2, l

j
3}.

To each clause with two literals Cj = {l
j
1, l

j
2}, 1 ≤ j ≤ m, we associate a test 2-component shown in Fig. 3(a). The two vertices

of the component are said literal-vertices of the component.
To each clause with three literals Cj = {l

j
1, l

j
2, l

j
3}, 1 ≤ j ≤ m, we associate a test 3-component shown in Fig. 3(b). The gadget

has degree 3 and again the three vertices labeled lj1, l
j
2 and lj3 are said literal-vertices of the component. Note that in any

rainbow 3-split V0, V1, V2 of the component, due to the monochromatic triangle dj1, d
j
2, d

j
3, at least one of the vertices dj1, d

j
2

and dj3 belongs to V0. This implies that at least one of the three literal-vertices of the component does not belong to V0. Thus
we have

Property 2. For any rainbow 3-split V0, V1, V2 of a test 2-component (test 3-component) whose literal-vertices belong to classes
V0 and V1, at least one literal-vertex belongs to V1.

Truth setting components and test components are connected by identifying the literal-vertices corresponding to the
same literal. In this fashion we obtain a 3-colored graph G(F) of maximum degree 5 (remember that each literal occurs at
most 2 times in F hence the degree of a literal-vertex in G(F) has degree at most 4).
It remains to show that F is satisfiable if and only if G(F) is rainbow 3-splittable.

• the if part. Consider a truth assignment that satisfies the formula F . We partition the literal-vertices of G(F) in the sets
V0 and V1 according to the assignment (i.e. we put the literal-vertex xi in V1 (resp. V0) and vertex ¬xi in V0 (resp. V1) if
xi is true (resp. false) in the assignment. We can complete the partition of the vertices in the truth setting components
inserting vertices {ai1, a

i
2, a

i
3, b

i
1, b

i
2, b

i
3, c

i
3} in V2, vertex c i1 in V0 and vertex c i2 in V2, 1 ≤ i ≤ n. Finally, we complete the

partition for the vertices in the test 3-components assigning for every 1 ≤ j ≤ m the three vertices {dj1, d
j
2, d

j
3} to V0 if all

the literal vertices {lj1, l
j
2, l

j
3} belong to set V1 or otherwise, inserting them in three different sets (remember that at least

one of the literal vertices belongs to set V1 since the assignment satisfies the formula F ). Thus the graph G(F) is rainbow
3-splittable.
• the only if part. Consider a rainbow 3-split V0, V1, V2 of the graph G(F). This induces a rainbow 3-split for each truth

setting component and by Property 1 each literal-vertex xi belongs to V0 or V1. We can consider this partition as a truth
assignment of the n variables of the formula F . Since the rainbow 3-split of G(F) implies also a rainbow 3-split of all the
test components, we have, by Property 2, that in this assignment at least one literal is satisfied for each clause of the
formula. Thus, the formula is satisfiable.

This completes the proof. �

We are now ready to consider the Rainbow c-Splitting problem, for an arbitrary but fixed c ≥ 3.

Theorem 4. The Rainbow c-Splitting problem is NP-complete for any fixed integer c ≥ 3 and remains so, even if the graph is
c-colored and has maximum degree 2c − 1.

Proof. We prove the theorem by induction on c ≥ 3. Observe that the base case is true due to Lemma 4. For the inductive
step we show how to construct in polynomial time from a (c−1)-colored graph Gwithmaximum degree 2c−3 a c-colored
graph G′ with maximum degree 2c − 1 such that G is rainbow (c − 1)-splittable if and only if G′ is rainbow c-splittable.

Consider the gadget Hc in Fig. 4 consisting of c2 vertices connected as follows: A vertex a is connected to all the vertices
{b1, b2, . . . , bc−1}with edges of color c. The vertices {b1, b2, . . . , bc−1} form a monochromatic clique of color c. Each vertex
bi, 1 ≤ i ≤ c − 1, is connected to all the vertices of a clique Di with edges of color 1. Finally Di is a monochromatic clique of
color c and size c .

ObviouslyHc hasmaximumdegree 2c−1.Moreover for any rainbow c-split V1, . . . , Vc ofHc at least one of the vertices of
the clique Di is in Vc . This implies that none from the vertices in {b1, b2, . . . , bc−1}may belong to Vc and, since these vertices
form a monochromatic clique of color c , they must be in different sets of the partition. Hence, vertex a can not be in any of
the c − 1 sets V1, V2, . . . , Vc−1 and consequently it must belong to set Vc . Thus, the gadget Hc has the following property

Property 3. Any rainbow c-split V1, . . . , Vc of the gadget H would put vertex a in set Vc .
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Fig. 4. The gadget Hc where B is a monochromatic clique of size c− 1 and color c and Di with 1 ≤ i ≤ c− 1 is a monochromatic clique of size c and color c.

Fig. 5. The truth setting component for the variable xi .

The graph G′ is constructed from graph G adding a gadget Hc for each vertex x in G and connecting the vertex a of the gadget
to the vertex xwith an edge of color 1. Since the degree of the gadget is 2c − 1, vertex a in the gadget has degree c − 1 and
any vertex in G has degree at most 2c − 3 we have that G′ has maximum degree 2c − 1. Moreover, due to Property 3 in any
rainbow c-split of G′, vertex a is in Vc and the edge {a, x} colored by 1 implies that no vertex of the graph G is in set Vc . Thus
any rainbow c-split of G′ induces a rainbow (c − 1)-split of G. Finally, observe that as the color of the edges of G belong to
[c − 1], it has no split set inducing a monochromatic clique of color c. In view of this, it is not difficult to see that from any
rainbow (c − 1)-split of G we can obtain a rainbow c-split of G′. This completes the proof. �

4.1. Rainbow c-splitting of 2-colored graphs

Here we prove that the Rainbow c-Splitting problem is NP-complete even if G is 2-colored. We first consider the case
c = 3. Thus, we define the following problem:
Rainbow (3, 2)-Splitting Problem
Instance: A 2-colored graph G.
Question: Is G rainbow 3-splittable?
For the sake of simplicity, assume that the two colors appearing on the edges are 0 and 1.

Lemma 5. Rainbow (3, 2)-Splitting problem is NP-complete even if the graph has maximum degree 7.

Proof. The proof follows the same lines of the proof of Lemma 4. The only difference is in the truth setting component that
we assign to each variable xi, 1 ≤ i ≤ n. The new gadget, shown in Fig. 5, has degree 7 (due to the vertex c i in the subgraph A).
It is easy to see that for any rainbow 3-split V0, V1, V2 of the component due to themonochromatic triangles of the subgraph
A, at least one of the vertices in {ai1, a

i
2, a

i
3} belongs to V1 and at least one of the vertices in {bi1, b

i
2, b

i
3} belongs to V0. Thus,

the vertex c i belongs to V2, deducing that each of the vertices of the cycle C i belongs to V0 or V1. It is not difficult to see
that as in the cycle C i the color of the edges alternates, xi and ¬xi belong to different sets from V0, V1. Thus, the following
property holds.

Property 4. For any rainbow 3-split V0, V1, V2 of a truth setting component one of the two literal-vertices belongs to V0 and the
other to V1.

The test component associated to each clause remains the same as shown in Fig. 3. Using the same argument as in Lemma 4
concerning the test component, Property 2 holds.

It is not difficult to see that if F is an instance of (3, 2)-SAT, it is possible to construct in polynomial time a 2-colored
graph G(F), with maximum degree 7 such that F is satisfiable if and only if G(F) is rainbow 3-splittable. Indeed, on one hand
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Fig. 6. The gadget H where Kc−3 is a monochromatic clique of size c − 3 and color 1 and K 0
c+1 and K 1

c+1 are monochromatic cliques of size c + 1 and
respectively of colors 0, 1.

for a truth assignment that satisfies the formula F , we partition the literal-vertices of G(F) in the sets V0 and V1 according to
the assignment. It is clear we can complete the partition of the vertices in the truth setting components inserting vertices
ai1, a

i
2, a

i
3 in V1, vertices bi1, b

i
2, b

i
3 in V0, vertex c i1 in V2, and assigning alternatively the vertices of the cycle C i to the sets V0

and V1, for any 1 ≤ i ≤ n. Finally, we complete the partition for the vertices in the test components in a similar way as in
Lemma 4. Thus, the graph G(F) has a rainbow 3-split.

On the other hand a rainbow 3-split V0, V1, V2 of G(F) induces a 3-partition for each truth setting component. By
Property 4 each literal-vertex xi belongs to V0 or V1. We can consider this partition as a truth assignment of the n variables
of the formula F . Since the rainbow 3-split of G(F) implies also a rainbow 3-split of all the test components, we have, by
Property 2, that in this assignment at least one literal is satisfied for each clause of the formula. Thus the formula is satisfiable.
This concludes the proof. �

Now, we are ready to consider the following problem:
Rainbow (c, 2)-Splitting Problem
Instance: A 2-colored graph G.
Question: Is G rainbow c-splittable?
Theorem 5. The Rainbow (c, 2)-Splitting problem is NP-complete for any constant c ≥ 3 even if the graph has maximum degree
7c − 14.
Proof. We show that Rainbow (3, 2)-Splitting problem is reducible to Rainbow (c, 2)-Splitting problem. To this purpose
we show how to construct in polynomial time from a 2-colored graph Gwith maximum degree 7 a 2-colored graph G′ with
maximum degree 7c − 14 such that G is rainbow 3-splittable if and only if G′ is rainbow c-splittable.

To this purpose consider the gadget H in Fig. 6 consisting of a monochromatic clique Kc−3 of color 1 where any vertex ai
of it (with 0 ≤ i ≤ c − 3) is connected to all the vertices of two monochromatic cliques K 0

c+1 and K 1
c+1 respectively of color

0 and 1. Furthermore, all the edges going to K 0
c+1 are of color 1 and conversely all those going to K 1

c+1 are of color 0. Now
given a 2-colored graph G we construct G′ as follows: For any edge xy ∈ E(G) we insert a copy of the gadget H in the graph
and connect x and y to all the vertices of Kc−3 with edges of color 1, as shown in Fig. 4.
It is not difficult to see that the maximum degree of G′ is 7c − 14. Indeed, any vertex that belongs to one of the cliques Kc+1
of a gadget is of degree c + 2, any vertex ai of Kc−3 of a gadget (with 1 ≤ i ≤ c − 3) is of degree c − 4+ 2(c + 1)+ 2, and
finally any vertex x ∈ V (G) has dG′(x) = dG(x)+ dG(x)(c − 3) ≤ 7c − 14 as every vertex in G is of degree at most 7.
Moreover for any rainbow c-split V0, V1, . . . , Vc−1 of H , at least two of the vertices of the cliques K 0

c+1 (K
1
c+1) are in the same

set inducing necessarily a subgraph of color 0 (1). Thus, any c-split of G′ must have two sets V0 and V1 which induce two
monochromatic subgraphs of colors 0 and 1 respectively. This implies that none of the vertices in a1, a2, . . . , ac−3 may be
either in V0 or in V1 and no two of them belong to the same partition set of the split. Thus the following property holds:
Property 5. Any rainbow c-split V0, V1, . . . , Vc−1 of the gadget H has exactly one empty partition set.

For any gadget H we denote this partition set by V ∗H . Now, observe that in any c-split of G′, for any edge xy of G we have
that x and y may belong only to one of the sets V0, V1, or V ∗H where H is the gadget in G′ corresponding to the edge xy.
Observing that x and y are also connected in G′ by an edge of color 0 or 1 we have that if x ∉ V0 ∪ V1 then y ∈ V0 ∪ V1. Thus
the following property holds:

Property 6. For any rainbow c-split V0, V1, . . . , Vc−1 of the graph G′ the set V̂ = ∪c−1
i=2 Vi induces a stable set in G.

It is clear now that if V0, V1, . . . , Vc−1 is a rainbow c-split of G′ then the sets V0 ∩ V (G), V1 ∩ V (G) and V̂ ∩ V (G) form a
rainbow 3-split of G. Conversely, it is not difficult to see that any rainbow 3-split of G can be extended to a rainbow c-split
V0, V1, . . . , Vc−1 of G′ by assigning to the split sets the vertices of any of the copies of the gadget H as follows: The vertices
of any of the cliques K 0

c+1 (K 1
c+1) belong to the set V0 (V1) and for 1 ≤ i ≤ c − 3, ai belongs to the set Vi+3. This completes

the proof. �
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5. Conclusions and open problems

In this paper we approached the problem of recognizing rainbow c-splittable graphs, for some fixed integer c . First, we
showed that rainbow 2-splittable graphs can be recognized in polynomial time by providing a reduction to the well-known
2-SAT problem. Next, we focused on the case of complete graphs for which we proposed a polynomial-time algorithm that
solves the Rainbow c-Splitting problem. For not necessarily complete graphs and c ≥ 3 we proved that the problem is
NP-complete even if the graph is c-colored and has maximum degree 2c − 1.

Observe that Brooks’ theorem [4] states that every connected non-complete graph G of maximum degree c ≥ 3 has a
chromatic number of at most c. Thus, it is clear that edge-colored graphs of maximum degree c ≥ 3 are trivially rainbow
c-splittable (note that Kc+1 is trivially rainbow c-splittable). However, in spite of our efforts, the following problem remains
unanswered.

Problem 1. What is the computational complexity of the Rainbow c-Splitting problem for edge-colored graphs ofmaximum
degree between c + 1 and 2c − 2?

We also showed that the Rainbow c-Splitting problem in case of 2-colored graphs is still NP-complete, even if the graph
has maximum degree 7c − 14. It seems reasonable to think that some relation must hold between the number of colors
on the edges of the graph and the maximum degree for which the rainbow c-splittance can be decided in polynomial time.
Therefore, investigating in this direction may be also interesting.
In this paper we considered only the case when c is fixed, although it should be clear that the problem makes sense for
non-fixed c. It should be interesting to study the rainbow c-splittance when c is part of the input. In particular, observe that
the polynomial-time algorithm that decides rainbow c-splittance of complete graphs, heavily relies on the fact that c is a
fixed constant. Thus, it would be nice to know:

Problem 2. If c is not fixed (i.e. c is part of the input), can rainbow c-splittance of complete graphs be still decided in
polynomial time?

We conclude this section with a further observation. Starting from the notion of adaptable coloring, Hell and Zhu [12]
introduced the notion of adaptable chromatic number.

Definition 2 ([12]). The adaptable chromatic number of a simple (non-colored) graph G, denoted χa(G), is the minimum
integer k such that for every edge-coloring f of G using k colors there exists a coloring f̂ of vertices using the same k colors
such that for every edge xy, f̂ (x) = f̂ (y) = a implies f (xy) ≠ a.

In the same flavor we can define a similar concept considering the rainbow splitting as a vertex coloring problem.

Definition 3. The relaxed chromatic number of a simple (non-colored) graph G, denoted χR(G), is the minimum integer k
such that for every edge-coloring f of G there exists a coloring f̂ of vertices using k colors such that for every edge xy,
f̂ (x) = f̂ (y) = a implies f (xy) = a.

It is not difficult to prove that for any graph G the following holds:

χa(G) ≤ χR(G) ≤ χ(G).

Webelieve that this new concept of chromatic number is of independent interest and paves theway formany interesting
and challenging problems. For instance it is not difficult to prove that determining the relaxed chromatic number of an
arbitrary graph is an NP-hard problem and in [12] it is proved that the same is true also for the adaptable chromatic number.
Another interesting problem is to determine the relaxed chromatic number for complete graphs. It is clear that χR(Kn) < n.
Moreover, we have an edge-coloring of Kn fromwhichwe deduceχR(Kn) ≥ n−log n. For the adaptable chromatic number of
complete graphs the problem was first studied in [12] and is completely solved in the asymptotic in [17] where it is proved
that χa(Kn) = (1+ o(1))

√
n.
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