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a b s t r a c t

A graph G = (V , E) is called a pairwise compatibility graph (PCG) if there exists a tree T ,
a positive edge weight function w on T , and two non-negative real numbers dmin ≤ dmax,
such that each leaf lu of T corresponds to a vertex u ∈ V and there is an edge (u, v) ∈ E
if and only if dmin ≤ dT ,w(lu, lv) ≤ dmax where dT ,w(lu, lv) is the sum of the weights of the
edges on the unique path from lu to lv in T .

In this paper we analyze the class of PCGs in relation to two particular subclasses
resulting from the cases where the constraints on the distance between the pairs of leaves
concern only dmax (LPG) or only dmin (mLPG). In particular, we show that the union of LPG
and mLPG classes does not coincide with the whole class of PCGs, their intersection is not
empty, and that neither of the classes LPG and mLPG is contained in the other.

Finally, we study the closure properties of the classes PCG, mLPG and LPG, under some
common graph operations. In particular, we consider the following operations: adding an
isolated or universal vertex, adding a pendant vertex, adding a false or a true twin, taking
the complement of a graph and taking the disjoint union of two graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A graph G = (V , E) is a pairwise compatibility graph (PCG) if there exists a tree T , a positive edge weight function w on T
and two non-negative real numbers dmin and dmax, dmin ≤ dmax, such that each vertex u ∈ V is uniquely associated to a leaf
lu of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT ,w(lu, lv) ≤ dmax where dT ,w(lu, lv) is the sum of the weights
of the edges on the unique path from lu to lv in T . In such a case, we say that G is a PCG of T for dmin and dmax; in symbols,
G = PCG(T , w, dmin, dmax). In Fig. 1(b) the pairwise compatibility graph corresponding to the weighted tree and the two
values dmin and dmax of Fig. 1(a) is depicted.

Clearly, if a tree T , an edge weight function w and two values dmin and dmax are given, the construction of a PCG is a
trivial problem. We focus on the reverse of this problem, i.e., given a graph G we have to find out a tree T , an edge weight
functionw and two suitable values, dmin and dmax, such that G = PCG(T , w, dmin, dmax). Such a problem is called the pairwise
compatibility tree construction problem. Meanwhile, the pairwise compatibility graph recognition problem asks to determine
whether a given graph is a pairwise compatibility graph or not (without necessarily exhibiting the corresponding pairwise
compatibility tree T ).

The concept of pairwise compatibilitywas introduced in [12] in a computational biology context. A fundamental problem
in computational biology is the reconstruction of the phylogeny, or the evolutionary history, of a set of species, populations,
individuals or genes (generally referred as taxa) usually represented as a phylogenetic tree. In a phylogenetic tree each leaf
represents a distinct known taxon and the edges indicate possible ancestors that might have led to this set of taxa. Thus, the
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Fig. 1. (a) A pairwise compatibility tree. (b) The corresponding pairwise compatibility graph.

phylogenetic tree reconstruction problem is the following: given a set of taxa find a fully labeled phylogenetic tree that
‘‘best’’ explains the given data. Due to the difficulty in determining the criteria for an ‘‘optimal’’ tree, the performance of
the reconstruction algorithms is evaluated through experimental methods. However, as the tree reconstruction problem
is proved to be NP-hard, these heuristics are usually slow and as real phylogenetic trees are of a large dimension, testing
these algorithms on real data is difficult. Thus, it is interesting to find efficient ways to sample subsets of taxa from a large
phylogenetic tree, subject to some biologically-motivated constraints, in order to test the reconstruction algorithms on the
subtree induced by the sample. In particular, given a phylogenetic tree, we want to select a subset of leaves, uniformly at
random, according to certain constraints on the subtree induced by the sample. An interesting constraint is the one dealing
with the pairwise distance between any two taxa in the induced subtree. This is important because, as observed in [10], very
close or very distant taxa can create problems for phylogeny reconstruction algorithms. Given a phylogenetic tree T and two
integers dmin, dmax, the aim is to select a sample from the leaves of T such that the pairwise distance of any two leaves in
the sample is at least dmin and at most dmax. By the definition of PCG, a subset of leaves of a tree T such that the distance of
any two leaves belongs to the interval [dmin, dmax], corresponds to a subset of vertices in the pairwise compatibility graph G
of T , in which any two of them are connected by an edge (for example the set of vertices {b, c, d} in Fig. 1). Thus, it is clear
that this sampling problem reduces to selecting a clique uniformly at random from the graph PCG(T , w, dmin, dmax). In view
of this, it is interesting to determine which graphs are PCGs as it would help to solve the clique problem [11] in polynomial
time for a restricted class of graphs. Moreover, since the space and the time required by the polynomial algorithm for the
sampling problem with pairwise leaf distance constraints is not feasible for large phylogenetic trees, the investigation of
properties of PCGs may give new insights for finding more efficient algorithms for this problem.

Initially, the authors of [12] conjectured that every graph is a PCG, but this conjecture has been confuted in [17], where
a particular bipartite graph is proved not to be a PCG. However, there are several known specific graph classes of pairwise
compatibility graphs, e.g., graphs with five vertices or less [15], graphs with at most seven vertices [6], cliques and disjoint
union of cliques [1], chordless cycles and single chord cycles [18], ladder graphs [16], some particular subclasses of bipartite
graphs [17] and graphs with Dilworth number 2 [7] .

Aswe have seen, the pairwise compatibility concept is definedwith respect to two bounds concerning dmin and dmax. If we
relax these conditions, requiring only that the distance between some pairs of leaves is smaller than or equal to dmax (i.e. we
set dmin = 0) thenwe are considering a particular subclass of PCGs, namely the leaf power graphs (LPGs) [14].More formally,
G(V , E) is a leaf power graph if there exists a tree T , a positive edge weight function w on T and a nonnegative number dmax
such that there is an edge (u, v) in E if and only if for their corresponding leaves in T , lu, lv , we have dT ,w(lu, lv) ≤ dmax,
in symbols G = LPG(T , w, dmax). Although there has been a lot of work on this class of graphs (see e.g. [1,2,4,5,9,13]), a
complete description of leaf power graphs is still unknown.

In [8] the subclass of PCGswhen the constraint concerns only theminimumdistance has been introduced. In this case dmax
is set to themaximumweighted distance between any pair of leaves, i.e. there is an edge in E if and only if the corresponding
leaves are at a distance greater than dmin in the tree. This subclass of PCGs is called mLPG (minimum Leaf Power Graphs) for
highlighting the similitude with LPGs, even if these graphs are not power of trees. More formally, G = (V , E) is an mLPG if
there exists a tree T , a positive edge weight function w on T and an integer dmin such that there is an edge (u, v) in E if and
only if for their corresponding leaves in T lu, lv we have dT ,w(lu, lv) ≥ dmin; in symbols, G = mLPG(T , w, dmin). The relations
between the classes of PCGs, LPGs and mLPGs are studied in Section 4.

Furthermore, it is known that many graph classes can be built by means of recursive applications of some graph
operations. For this reason we focus on this issue, trying to understand whether the PCG, LPG and mLPG classes remain
close under some well-known graph operations. More specifically, when a graph operation is performed on one or more
PCGs (or LPGs or mLPGs), we investigate whether the resulting graph still belongs to the class of PCGs (or LPGs or mLPGs).

This paper is organized as follows: in Sections 2 and 3, we present information useful for the forthcoming work. Namely,
in Section 2 we introduce some terminology and recall some known concepts, while in Section 3 we prove some technical
results. As we said, in Section 4 we study the relations between the PCG, LPG and mLPG classes. In particular, we show that:
the union of LPG and mLPG does not coincide with the whole PCG class, neither of the classes LPG and mLPG is contained
in the other and their intersection is not empty, as threshold graphs belong to both the classes mLPG and LPG and in each
of the cases the associated trees can be stars. In Section 5, we investigate whether and in which cases the PCG class and
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its subclasses LPG and mLPG are closed under several graph operations. To this purpose we study the operations of adding
an isolated vertex, an universal vertex and a pendant vertex. Moreover, we analyze the operations of adding a false or a
true twin and finally we study the graph complement and the disjoint union of two given graphs. All the claims presented,
except for the results regarding the complement of a graph, are proved in a constructive way, so we not only solve the PCG
recognition problem but we also exhibit the corresponding tree.

In the last section of this paperwe summarize the achieved results and propose some open questions arisen by this work.

2. Basic definitions

In this section we introduce some terminology and recall some definitions that will be used in the rest of the paper. The
reader is referred to [3] for undefined terms and notation.

In this paper we consider simple graphs G = (V , E) with vertex set V and edge set E. For a vertex v of a graph G,
N(v) = {u|(u, v) ∈ E} denotes the open neighborhood while N[v] = N(v) ∪ {v} is the closed neighborhood. For a graph
G = (V , E) and a subset V ′

⊆ V we denote by NV ′(v) (NV ′ [v]) the open (closed) neighborhood of v in the graph induced by
V ′.

Two vertices in a graph are called true (respectively false) twins if they have the same closed (respectively open)
neighborhood.

A vertex of a graph is universal (isolated) if it is adjacent to all (none of) the other vertices of the graph.
A vertex v of a graph G having degree one is called a pendant vertex.
Given a graph G = (V , E), its complement GC has the same vertex set V of G and two vertices are adjacent if and only if

they are not adjacent in G. Extending the concept of the complement from single graphs to graph classes, we have that, two
classes of graphs A and B, are complements of each other if for each graph G belonging to A, it holds that GC belongs to B,
and vice-versa.

The disjoint union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph whose vertex and edge sets are the disjoint
unions of the vertex and edge sets of G1 and G2, respectively.

A caterpillar is a tree in which all the vertices are within distance one of a central path which is called the spine.
A cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, every

edge in such a graph may belong to at most one cycle. We will denote by C the class of cacti with at least a cycle of length
n ≥ 5.

A graph G = (K , S, E) is said to be split if there is a vertex partition V = K ∪ S such that the subgraphs induced by K and
S are complete and stable, respectively.

A setM of edges is a perfect matching of dimensionm of A onto B if and only if A and B are disjoint subsets of vertices both
of cardinality m and each vertex in A is adjacent to exactly one vertex in B and no two edges share a point. We say that the
split graph G = (K , S, E) is a split matching if the subset of edges in E not belonging to the clique forms a perfect matching.
We denote by SM the class of split matching graphs.

An antimatching of dimension m of A onto B is a set of edges such that the non-edges between A and B form a perfect
matching. We say that the split graph G = (K , S, E) is a split antimatching if the subset of edges in E not belonging to the
clique forms an antimatching. We denote by SA the class of split antimatching graphs.

Given a split matching (respectively, split antimatching) G = (K , S, E), with |K | = |S| = n, in the following we will call
k1, . . . , kn its vertices in K and s1, . . . , sn its vertices in S and we will implicitly assume that they are ordered so that ki and
si are connected (respectively, not connected).

Given two split graphs G1 = (K1, S1, E1) and G2 = (K2, S2, E2) their composition G1 ◦ G2 is formed by taking the disjoint
union of G1 and G2 and adding all the edges {u, v} such that u ∈ K1 and v ∈ (K2 ∪ S2). Observe that G1 ◦ G2 is again a split
graph.

Given a sequence of t split graphs Gi = (Ki, Si, Ei) with i = 1, . . . , t , we say the graph H = G1 ◦ . . . ◦Gt is a split matching
(antimatching) sequence if each of the graphs Gi is either a split matching (antimatching), or a stable graph or a clique graph.

Given a connected graph G whose distinct vertex degrees are δ1 > . . . > δr , we define Bi = {v ∈ V (G) : deg(v) = δi},
for any i = 1, . . . , r . The sets Bi are usually referred as boxes and the sequence B1, . . . , Br is called the degree partition of G
into boxes. Given a graph G with degree partition B1, . . . , Br , G is a threshold graph if and only if for all u ∈ Bi, v ∈ Bj, u ≠ v,
we have (u, v) ∈ E(G) if and only if i + j ≤ r + 1. We will denote by T the class of threshold graphs.

In this paper we will consider some well-known operations on graphs in relation to the property of being PCG, mLPG or
LPG. More specifically we will consider the following operations:

1. adding an isolated vertex;
2. adding an universal vertex;
3. adding a pendant vertex;
4. adding a vertex that is a false twin for the old vertex v;
5. adding a vertex that is a true twin for the old vertex v;
6. graph complement;
7. disjoint union of two graphs



Author's personal copy

26 T. Calamoneri et al. / Theoretical Computer Science 468 (2013) 23–36

It is known that many graph classes can be obtained by recursively applying one or more graph operations among the
previous list (see for e.g. [3]). In particular we will deal with the following graph classes:

Threshold graphs can be recursively built from the one vertex graph by adding either an universal or an isolated vertex.
Quasi-threshold graphs can be recursively built from the one vertex graph by adding a universal vertex or by the disjoint

union of two quasi-threshold graphs.
Distance-hereditary graphs can be recursively built from the one vertex graph by adding either an isolated vertex or a

new pendant vertex or a new vertex that is a false or true twin for an old vertex v. Notice that if the constructed distance
hereditary graph is bipartite, the operation concerning the addition of a true twin is never used.

3. Technical results

In this section we prove some technical results that will be used in the rest of the paper.
Throughout the paper we will assume w.l.o.g. that any non trivial tree T with at least three leaves does not contain

vertices of degree 2. Indeed, we couldmerge the two incident edges of a vertex of degree 2 into a unique edge whose weight
is the sum of the weights of the original edges. The distance between the leaves does not change.

Proposition 1. Let G be a graph that does not belong to some class L from the set {PCG, LPG, mLPG}; then every graph H that
contains G as an induced subgraph does not belong to L either.

Given two vertices u, v in a tree T , Puv denotes the unique path in T connecting the vertices u and v. A subtree induced
by a set of leaves of T is the minimal subtree of T which contains those leaves. Tuvx denotes the subtree of a tree induced by
three leaves u, v and x.

Lemma 1 ([17]). Let T be a tree, w be a positive edge weight function on T , and u, v, x be three leaves of T such that Puv is the
largest path in Tuvx (i.e. dT ,w(u, v) ≥ dT ,w(u, x) and dT ,w(u, v) ≥ dT ,w(v, x)). Let y be a leaf of T other than u, v and x. Then,
either dT ,w(x, y) ≤ dT ,w(u, y) or dT ,w(x, y) ≤ dT ,w(v, y).

Observe that here we always assume dmin, dmax and the weight of the edges of the tree of a PCG all positive real numbers.
In the original problem concerning the LPGs, these quantities are required to be natural numbers. This is not a loss of
generality as in [5] it is proved that it is equivalent to consider positive real numbers instead of naturals for LPGs. Here
we give a simpler prove of this result while extending it to the general case of PCGs.

Lemma 2. Let G = PCG(T , w, dmin, dmax), where dmin, dmax are non-negative real numbers and the weight w(e) of each edge e
of T is a positive real number. Then it is possible to choose natural numbers ŵ, d̂min, d̂max such that G = PCG(T , ŵ, d̂min, d̂max).

Proof. Wewill assume that dmin, dmax > 0. This, is not restrictive as if dmin or dmax is equal to 0 we can increase by 1 all the
weights of the edges incident to a leaf in the tree. Then, increasing dmin and dmax by 2 the modified tree defines the same
pairwise compatibility graph.

Now, the result will be proved in two steps. First we show that it is possible to approximate all the real numbers with
rational numbers, and then we will define d̂min, d̂max ∈ N and ŵ such that ŵ(e) is a natural number for each edge e of T .

Since Q is dense in R, for any ϵ > 0 and any r ∈ R there exists qr ∈ Q such that

0 < r − qr < ϵ. (1)

Note that qr is a rational approximation of r such that qr < r .
Now let us introduce the following two numbers:

L = min
(u,v)∈E


|dmin − dT ,w(lu, lv)|, |dmax − dT ,w(lu, lv)|


, N =

n
2


,

L is the smallest distance between the weighted distances of the paths on the tree and the quantities dmin, dmax and N is the
number of the paths joining two leaves of T . Suppose first L > 0.

Define ϵ0 = L/3 and ϵ1 = L/3N .
By (1), we can fix some rational numbers such that it holds:

0 < dmin − qdmin < ϵ0, 0 < dmax − qdmax < ϵ0, 0 < w(e) − qw(e) < ϵ1 for each edge e of T .

If we denote by w the weight function such that w(e) = qw(e), it is not difficult to check that G = PCG

T , w, qdmin , qdmax


,

since all the distances of the paths decrease for a positive quantity (less than L/3, by the choice of ϵ1) and, similarly, the
bounds qdmin and qdmax (recall that ϵ0 < L/3), so that all the new quantities preserve the original ordering.

Consider now qdmin , qdmax and w(e) for each e of T ; they are all numbers in Q, so let K be the least common multiple of
their denominators. Define:

ŵ(e) = Kqw(e) for each edge e of T , d̂min = Kqdmin , d̂max = Kqdmax ∈ N.

Since K > 0 and the multiplication by K preserves the ordering, the claim follows.
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Finally, observe that it is not restrictive to assume L > 0. Indeed, if L = 0, i.e. there are some pair of leaveswhose distance
is exactly dmax or dmin then we define

r = min
(u,v)


dT ,w(lu, lv) : dT ,w(lu, lv) > d′

max


and set d′

max =
1
2 (r − d′

max). Similarly, we can define d′

min. Observe that G = PCG(T , w, d′

min, d
′
max) and there are no pair of

leaves whose distance equals d′
max or d

′

min. Thus, L > 0 and thus we return to the previous case. �

Lemma 3. Let G = PCG(T , w, dmin, dmax). If dmin = dmax = d then there exist ϵ > 0 such that G = PCG(T , ŵ, d − ϵ, d + ϵ)

Proof. First, observe that if there is no pair of leaves whose distance is exactly d then the graph is null and it is easy to find
an ϵ > 0 sufficiently small such that the claim holds. Otherwise, there is some pair of leaves at a distance d; then we define

rmax = min
(u,v)


dT ,w(lu, lv) : dT ,w(lu, lv) > d


,

rmin = min
(u,v)


dT ,w(lu, lv) : dT ,w(lu, lv) < d


.

Define 2ϵ = min{d − rmin, rmax − d}. It is easy to check that G = PCG(T , w, d − ϵ, d + ϵ). �

Lemma 4. Let G = PCG(T , w, dmin, dmax). For any two positive numbers m < M such that

m >
M(dmin − 2minw(e))
(dmax − 2minw(e))

, (2)

there is an edge weight w on T such that G = PCG(T , w,m,M).

Proof. Observe that from Lemma 3 we can assume dmin < dmax. Given the tree T with edge weight function w, we define a
new edge weight function w as follows: for each edge e = (u, v) ∈ T non incident to any leaf of T , define w(e) = a · w(e)
for an opportune positive constant a that we will define later. Otherwise, if u is a leaf in T , define the weight of its unique
incident edge e = (u, v) as w(e) = a · w(e) + b/2 for an opportune real constant b that we will define later.

Clearly, for any two leaves u and v of T such that dT ,w(u, v) = x it turns out that dT ,w(u, v) = ax + b.
Hence, we have to choose a, b in order to satisfy

admin + b = m
admax + b = M,

it is easy to see that we have to fix a > 0 and b ∈ R such that
a =

M−m
dmax−dmin

b = m − admin.
(3)

These relations are an admissible choice for the weight function w provided that

min
e = (u, v) with u leaf of T

a · w(e) +
b
2

> 0,

since it is not possible that w possesses a non-positive component, this is means that

a > 0 and b > −2 min
e = (u, v) with u leaf of T

a · w(e).

Note that the positivity of a is equivalent to require that m < M (since it holds dmax > dmin) and the hypothesis on b
becomes

m = admin + b > admin − 2 min
e = (u, v) with u leaf of T

a · w(e) > 0,

putting these relations into (3) it is possible to verify that are equivalent to (2), and this concludes the proof. �

The following proposition shows that the LPG and mLPG classes are complements of each other.

Proposition 2. The complement of every graph in LPG is in mLPG and conversely, the complement of every graph in mLPG is in
LPG.

Proof. Observe that the proof trivially holds for complete graphs. So, consider first a graph G ≠ Kn such that G =

LPG(T , w, dmax). This means that two vertices u and v are adjacent in G if and only if dT ,w(lu, lv) ≤ dmax, where lu, lv are
the corresponding leaves in T . Recall that by definition GC does not contain (u, v). Let r = min{u,v}∉E(G) dT ,w(lu, lv). It is
enough to define dmin = r > dmax. It is trivial to verify that GC

= mLPG(T , w, dmin).
The same argument can be used to prove that the complement of a mLPG is a LPG. �
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Fig. 2. Relationships between PCG, LPG and mLPG.

4. Relationships between PCG, LPG and mLPG classes

In this section we study the relationships between the classes of PCGs, LPGs and mLPGs.1 First, in Section 4.1 we show
that the union of mLPG and LPG classes does not contain the whole class of PCGs. Next, in Section 4.2 we show that their
intersection LPG ∩ mLPG is not empty. Finally, in Section 4.3 we show that neither of the classes LPG andmLPG is contained
in the other one by providing for each of these classes a particular graphwhich is proper to it. These relations are graphically
shown in Fig. 2.

4.1. PCG ⊃ (LPG ∪ mLPG)

Let us prove that the PCG class does not coincide with the union of LPGs andmLPGs. To this aim, observe that it is known
that any cycle is a PCG [18] and that LPGs are a subclass of strongly chordal graphs (see, for example, [1]); so cycles of length
n ≥ 5 are not LPGs as they are not strongly chordal graphs. The following lemma states that cycles do not belong to mLPGs,
deducing that (LPG ∪ mLPG) ⊂ PCG.
Lemma 5. Let Cn be a cycle of length n ≥ 5, then Cn ∉ mLPG.
Proof. Let v1, . . . , vn be the ordered vertices of a cycle Cn with n ≥ 5. Suppose by contradiction that Cn = mLPG(T , w, dmin)
and let li be the leaf in T corresponding to the vertex vi, for any i ≤ n. Let v1, v2, v3 be the first three consecutive vertices in
Cn and consider the largest path in Tl1 l2 l3 . As (v1, v3) ∉ E (as n ≥ 5) then dT ,w(l1, l3) < dmin. Hence, the largest path must be
one from Pl1 l2 and Pl2 l3 .

Suppose first the largest path is Pl1 l2 . Using Lemma 1 with x = l4 we have that either dmin ≤ dT ,w(l4, l3) ≤ dT ,w(l4, l2) or
dmin ≤ dT ,w(l4, l3) ≤ dT ,w(l4, l1), deducing that at least one from the edges (v4, v2) and (v4, v1)must be inCn, a contradiction.

If Pl2 l3 is the largest path, we arrive at the same result by taking this time x = ln. This concludes the proof. �
From the previous lemma and from Proposition 1 it easily descends that the class C of cacti with at least one cycle of

length n ≥ 5 belongs neither to LPG nor to mLPG.

4.2. LPG ∩ mLPG ≠ ∅

We prove that the intersection of LPG and mLPG classes is not empty by showing that threshold graphs belong to
LPG ∩ mLPG (besides trees and cliques which trivially belong to this intersection). In our proof we use the definition of
threshold graphs in terms of boxes.
Theorem 1. Let G be a threshold graph, then G ∈ LPG ∩ mLPG. In both of the cases a tree T , an edge weight function w and a
value dmin or dmax associated to G can be found in polynomial time.
Proof. Let G be a threshold graph on n vertices and let B1, . . . , Br be the degree partition into boxes of G. We consider an
n-leaf star with center a vertex c as the pairwise compatibility tree T .

To prove that G ∈ LPG, we define the edge weight function w that, for each vertex v of G, assigns weight i to the edge
(lv, c) in T if v ∈ Bi. Define dmax = r + 1. As for each u ∈ Bi, v ∈ Bj, u ≠ v, we have (u, v) ∈ E(G) if and only if i+ j ≤ r + 1;
it is straightforward that G = LPG(T , w, dmax).

On the other hand, to prove G ∈ mLPG for any v ∈ V (G), define the edge weight function w′ that assigns r + 1 − i
to the edge (lv, c) in T if v ∈ Bi. Note that, as i ≤ r we assign non-negative weights to the edges of the star. Define
dmin = r + 1. For any two vertices v ∈ Bi and u ∈ Bj, we have that if i + j ≤ r + 1 (meaning that (u, v) ∈ E(G))
then dT ,w(lu, lv) = 2(r + 1) − (i + j) ≥ r + 1 = dmin. Otherwise, if i + j > r + 1 (meaning that (u, v) ∉ E(G)) then
dT ,w(lu, lv) = 2(r + 1) − (i + j) < r + 1 = dmin. Easily, G = mLPG(T , w′, dmin) and this concludes the proof. �

1 A preliminary version of the results presented in this Section are reported in [8].
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Fig. 3. (a) A threshold graph. (b) The pairwise compatibility tree witnessing that G is a LPG. (c) The pairwise compatibility tree witnessing that G is anmLPG.
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Fig. 4. (a) A splitmatching graph. (b) A pairwise compatibility caterpillar tree for a splitmatching graph. (c) A pairwise compatibility tree for a splitmatching
graph.

Fig. 3 shows an example of the construction described in the proof above.

4.3. LPG \ mLPG ≠ ∅ and mLPG \ LPG ≠ ∅

In conclusion of this sectionwe show that neither of the classes LPG andmLPG is contained in the other one by providing,
for each of these classes, a particular graph which is proper to it.

Theorem 2. Let G be a split matching graph, then G ∉ mLPG and G ∈ LPG. A tree T , an edge weight function w and a value dmax
associated to G can be found in polynomial time.

The proof will follow immediately by the next two lemmas.

Lemma 6. Let G be a split matching graph. Then G ∉ mLPG.

Proof. Given a split matching graph G = (K , S, E) with |K | = |S| = n, we assume by contradiction G = mLPG(T , dmin).
Then let a1, a2, a3 be three leaves of T corresponding to three vertices of K , k1, k2, k3. Without loss of generality let Pa1a2
be the largest path in the subtree Ta1a2a3 . Consider the vertex s3 in S associated to the leaf b3 in T , with (k3, s3) ∈ E. From
Lemma 1 we deduce that either dT (b3, a3) ≤ dT (b3, a2) or dT (b3, a3) ≤ dT (b3, a1). The existence of the edge (k3, s3) in G
implies dT (b3, a3) ≥ dmin, therefore one from (k1, s3) and (k2, s3) must be an edge in G, a contradiction. �

Lemma 7. Let G be a split matching graph, then G ∈ LPG. A tree T , an edge weight function w and a value dmax associated to G
can be found in polynomial time.

Proof. Given a split matching graph G = (K , S, E) with |K | = |S| = n (for example, see Fig. 4(a)), we associate a caterpillar
tree T as in Fig. 4(b). The leaves ai, corresponding to the vertices ki of K , are connected to the spine with edges of weight
1 and the leaves bi, corresponding to vertices si ∈ S, with edges of weight n. It is clear that G = LPG(T , n + 1). Indeed, for
any two ai, aj it holds that 3 ≤ dT (ai, aj) ≤ n + 1, for any two bi, bj we have dT (bi, bj) ≥ 2n + 1 and for any ai, bi we have
dT (ai, bi) = n + 1 (hence the edge (ki, si) ∈ E) and for any ai, bj with i ≠ j we have dT (ai, bj) ≥ n + 2 (hence the edge
(ki, sj) ∉ E). �

Note that this representation is not unique. Indeed, one can easily check that the binary tree T in Fig. 4(c) also is a pairwise
compatibility tree of a split matching graph when dmax = 4.

It is worth to note that the previous construction can be generalized to split matching sequences as shown by the next
theorem:

Theorem 3. Let H be a split matching sequence, then H ∈ LPG. A tree T , an edge weight function w and a value dmax associated
to H can be found in polynomial time.



Author's personal copy

30 T. Calamoneri et al. / Theoretical Computer Science 468 (2013) 23–36

✉ ✉✉ ✉ ✉✉ ✉ ✉ ✉

✉Ti
. . . . . . . . . . . .

a1 b1 a2 b2 an bn

1
dmax−2i

i

1 dmax−2i

i

1
dmax−2i

i

(a)

✉
. . . . . .

T1 Ti Tt

(b)

Fig. 5. (a) The pairwise compatibility tree for the split matching graph Gi . (b) The pairwise compatibility tree for the split matching sequence H .
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Fig. 6. (a) A split antimatching graph. (b) A pairwise compatibility caterpillar tree for a split antimatching graph. (c) A pairwise compatibility tree for a split
antimatching graph.

Proof. Let H = G1 ◦ · · · ◦ Gt be a split matching sequence. For each graph Gi we define a tree Ti as shown in Fig. 5(a)
(where the leaves ai (bi) may not possibly appear if Gi is a stable (clique) graph). It is clear that Gi = LPG(Ti, dmax) where
dmax is a value to be defined later, but surely greater than or equal to 2(i + 1). Indeed, let a1, . . . , an be the leaves of Ti
corresponding to vertices of Ki and let b1, . . . , bn be those corresponding to vertices of Si. For any two leaves ar , as it holds
that dTi(ar , as) = 2+ 2i ≤ dmax and for any two bs, br we have dTi(br , bs) = 2dmax − 2i ≥ dmax + 2i+ 2− 2i > dmax. Finally,
for any two leaves as, bs that correspond to an edge of the matching their distance is dmax − 2i + 1 ≤ dmax and for any two
leaves corresponding to a non edge ar , bs their distance is dmax + 1.

In order to prove that H ∈ LPG, we define a new tree T starting from the trees T1, . . . , Tt , simply by contracting all their
roots to a single vertex as shown in Fig. 5(b). We claim that H = LPG(T , dmax) where we set dmax = 2(t + 1). In order
to prove it, consider two graphs Gi and Gj with i < j. Let a, a′, b and b′ be four distinct leaves corresponding to vertices in
Ki, Kj, Si and Sj, respectively. Observe that the vertices in Ki are connected to all the other vertices in Kj ∪ Sj as the distances
in T are dT (a, a′) = 1 + i + j + 1 ≤ 2(j + 1) ≤ dmax and dT (a, b′) = 1 + i + j + dmax − 2j = dmax + (i − j + 1) ≤ dmax (as
j ≥ i + 1). Finally, any vertex in Si is not connected to any vertex Kj and to any vertex Sj as in these cases the distances are
dT (b, a′) = dmax − 2i+ i+ j+ 1 > dmax (as j ≥ i+ 1) and dT (b, b′) = dmax − 2i+ i+ j+ dmax − 2j ≥ 2dmax − 2j > dmax. �

Analogously, we can show that the setmLPG \ LPG is not empty.

Theorem 4. Let G be a split antimatching graph, then G ∉ LPG and G ∈ mLPG. A tree T , an edge weight function w and a value
dmin associated to G can be found in polynomial time.

We omit the proof of this theorem, as it is almost identical to the proof we supply for Theorem 2. Two feasible edge
weighted trees associated to the split antimatching graph in Fig. 6(a) are depicted in Fig. 6(b) and 6(c).

Again observe that, using arguments similar to the proof of Theorem 3, we can generalize the last result to split
antimatching sequences. The edge weighted tree T associated to a split antimatching sequence is the one depicted in
Fig. 7).

Theorem 5. Let H be a split antimatching sequence, then H ∈ mPCG. A tree T , an edge weight function w and a value dmin
associated to H can be found in polynomial time.

5. Graph operations

In this section we study the effect of some classical graph operations on the PCG property. In particular, when a graph
operation is performed on one or more PCGs (or LPGs or mLPGs), we investigate whether the resulting graph still belongs
to the class of PCGs (or LPGs or mLPGs). We study the operations listed in Section 2, i.e. adding an isolated vertex or an
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Fig. 7. The pairwise compatibility tree for the split antimatching graph Gi .

operation o PCG LPG mLPG

adding an isolated vertex PCG (Theorem 6) LPG (Theorem 7) mLPG (Theorem 9)
adding an universal vertex ? LPG (Theorem 8) mLPG (Theorem 9)
adding a pendant vertex PCG (Theorem 10) LPG (Theorem 10) PCG (Theorem 10, Proposition 3)
adding a false twin PCG (Theorem 11) PCG (Theorem 11) mLPG (Theorem 11)
adding a true twin ? LPG (Theorem 12) ?
graph complement ? mLPG (Proposition 2) LPG (Proposition 2)
disjoint union PCG (Theorem 14) LPG (Theorem 14) PCG (Theorem 14)

Fig. 8. Summary of the results obtained applying an operation o to a class D ∈ {PCG, LPG, mLPG}.

universal vertex, adding a pendant vertex, adding a false or a true twin, the graph complement and the disjoint union. These
closure results are summarized in the table in Fig. 8. It is worth to note that some classes are not closed under some specific
graph operations. In this case, we are interested to identify the class containing the result. However, as shown in the table,
four cases remain unsolved.

5.1. Adding a universal or an isolated vertex

Here we consider the operations of adding either an universal or an isolated vertex. We prove that the classes of LPGs
and mLPGs are closed under both operations, whereas for the PCG class we are able to prove the closure only under the
operation of adding an isolated vertex.

Theorem 6. Given a graph G = PCG(T , w, dmin, dmax), any graph G+i obtained from G by adding an isolated vertex is still a PCG.
It is polynomial to find a treeT , an edge weight function w and two valuesdmin anddmax such that G+i

= PCG(T , w, dmin, dmax).

Proof. Given G = PCG(T , w, dmin, dmax) let u be the isolated vertex to be added. Consider an internal vertex p of T . We
obtainT by adding to T a new leaf lu, corresponding to u and the edge (lu, p). The weight function w is defined onT as w,
and w((lu, p)) is set to dmax. Clearly, G+i

= PCG(T , w, dmin, dmax). �

Following to the previous constructive proof it is easy to convince oneself that the next theorem holds, too.

Theorem 7. Given a graph G = LPG(T , w, dmax), any graph G+i obtained from G by adding a new isolated vertex is still a LPG. It
is polynomial to find a treeT , an edge weight function w and a valuedmax such that G+i

= LPG(T , w, dmax).

Concerning the addition of an universal vertex we prove the following results:

Theorem 8. Given a graph G = LPG(T , w, dmax), any graph G+u obtained from G by adding a new universal vertex is still a LPG.
It is polynomial to find a treeT , an edge weight function w and a valuedmax such that G+u

= LPG(T , w,dmax).

Proof. Consider G = LPG(T , w, dmax) and let u be the universal vertex to be added. Choose any internal vertex p in T . The
new treeT is built from T by adding a new leaf lu corresponding to u and a new edge (p, lu). Consider the weighted paths
from p to any other leaf of T . Let lv be a leaf for which dT ,w(lv, p) attainsmaximumvalue.We distinguish two cases according
to the fact that dT ,w(lv, p) ≥ dmax or not.

If dT ,w(lv, p) < dmax, then it is enough to define the edge weight function w as identical to w on the edges of T andw((p, lu)) = dmax − dT ,w(lv, p); the value ofdmax is set equal to dmax.
Otherwise, let dT ,w(lv, p) > dmax. Then, it is possible to modify the weight function w adding a value h to the weights

of the edges incident to all the leaves; in order to keep the feasibility, dmax must be increased by 2h. So we can define
w and dmax according to the previous modifications. It is easy to see that there exists an opportune value of h, such that
dT ,w(lv, p) < dmax; in this way, we fall in the previous case, and the statement follows. �
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Fig. 9. (a) An mLPG G and (b) its corresponding pairwise compatibility tree T . (c) The graph G+p .

Now, observe that adding an isolated vertex to a graph G is equivalent to complementing the graph obtained by adding
an universal vertex to the complement of G. Using this simple property we are able to prove the following results:

Theorem 9. Given a graph G = mLPG(T , w, dmin), any graph G+u (G+i) obtained from G by adding a new universal (isolated)
vertex is still a mLPG. It is polynomial to find a tree T , an edge weight function w and a value dmin such that G+u

=

mLCG(T , w,dmin) (G+i
= mLCG(T , w,dmin)).

Proof. Let G be an mLPG. According to Proposition 2, its complement GC is a LPG. We can follow the constructive proof
of the Theorem 7 and add to GC an isolated vertex v, so that GC

∪ {v} is still a LPG. The thesis follows observing that the
complement of GC

∪ {v} is G+u, obtained from G to which the universal vertex v is added. The same argument can be used
in proving the closure of mLPG under the addition of an isolated vertex. �

It is to notice that the results of this subsection show that threshold graphs are in both mLPG and LPG. Finally, we want
to remark that the construction provided in the proof of Theorem 8 does not necessarily work on PCGs, because there is no
way to handle at the same time dmax and dmin. It remains an open problem to determine whether the PCG class is closed
under the operation of adding an universal vertex.

5.2. Adding a pendant vertex

Here we prove that if we add a new pendant vertex to a given PCG, the new graph is still a PCG and we provide the
corresponding tree. Thus, the PCG class is closed under this operation.

Theorem 10. Given G = PCG(T , w, dmin, dmax) (LPG(T , w, dmax)), any graph G+p obtained by G adding a pendant vertex
is still a PCG (LPG). It is polynomial to find a tree T , an edge weight function w and two values dmin and dmax such that
G+p

= PCG(T , w,dmin,dmax) (G+p
= LPG(T , w,dmax)).

Proof. Supposewe are adding a newvertex v to the neighborhood of an old vertex u belonging toG = PCG(T , w, dmin, dmax).
Consider the tree T and, in particular its leaf lu associated to the vertex u. Let p be the only vertex adjacent to lu in T and call
h the weight w((p, lu)) associated to the edge (p, lu).

Consider any 0 < ϵ < min{h/2, dmax}. We can setdmin = dmin anddmax = dmax and easily construct T as follows:
eliminate from T the edge (p, lu), add vertices lv and p′ and edges (p, p′), (p′, lu) and (p′, lv). Assign to these edges the
following weights: w((p′, lu)) = ϵ, w((p′, lv)) = dmax − ϵ and w((p, p′)) = h − ϵ, while on all the other edges w is equal
to w. It is easy to see that G+p is PCG for this new tree. This proof holds even if dmin = 0 and hence G is a LPG, proving that
G+p is a LPG, too. �

The constructive method exploited in the previous proof cannot be applied to the mLPG class. Indeed, in this case, we
can prove that the mLPG class is not closed under the operation of adding a pendant vertex. To this purpose consider the
graph G in Fig. 9(a). It is not difficult to see that G = mLPG(T , w, 7), where T and w are defined in Fig. 9(b). Now let G+p be
the graph obtained by adding a new vertex s3 and connecting it with the vertex k3 in G (see Fig. 9(c)). From Lemma 6 the
resulting graph cannot belong to the mLPG class. Hence the next proposition holds.

Proposition 3. The mLPG class is not closed under the operation of adding a new pendant vertex.

5.3. Adding a (false or true) twin

In this subsection we prove that the PCG class is closed under the addition of a false twin. For what concerns adding a
true twin, we are able to provide a tree for the increased graph in the case in which G is either a LPG or an mLPG, but not
when G is a PCG, and this remains an interesting open problem.

Theorem 11. Given G = PCG(T , w, dmin, dmax)(mLPG(T , w, dmin)), any graph G+ft obtained from G by adding a false twin to
any of its vertices is still a PCG (mLPG). It is polynomial to find a treeT , an edge weight function w and two valuesdmin anddmax
such that G+ft

= PCG(T , w,dmin,dmax) (G+ft
= mLPG(T , w,dmin)).
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Proof. Let us consider G, its associated tree T and the corresponding edge-weighted function w. Let v be any of the vertices
in G to which we want to add a false twin v′. So G+ft has vertex set V ∪ {v′

} and edge set E ∪ {(u, v′)|u ∈ N(v)}. Consider
now the leaf lv of T corresponding to the vertex v; call p the father of lv in T and let h be the value of w((p, lv)). The values
ofdmin anddmax are set equal to dmin and dmax, respectively.

We distinguish two cases according to the value h.

• If h < dmin/2 or h > dmax/2 then we construct the treeT by simply adding a new leaf lv′ to p. The weights on the edges
ofT are set equal to the weights on the edges of T , so we only need to define w((p, lv′)) equal to h in order to guarantee
that edge (v, v′) is not present in G+ft while all the edges in (u, v′)|u ∈ N(v) are in G+ft and this concludes the proof.

• If dmin/2 ≤ h ≤ dmax/2 we eliminate the edge (p, lv) from T and add vertices p′ and lv′ and edges (p, p′), (p′, lv) and
(p′, lv′). We define the weight function w on these edges in the following way: w((p′, lv)) = w((p′, lv′)) = dmin/2 − ϵ
and w((p, p′)) = h − (dmin/2 − ϵ) for some positive constant ϵ guaranteeing that all these weights are positive. On
all the other edges w is defined equal to w. This assignment guarantees that the distances inT between lv , lv′ and the
leaves associated to v’s neighbors remain equal to the distances in T between v and the leaves associated to its neighbors.
Nevertheless, the distance between lv and lv′ inT is dmin − 2ϵ and hence v and v′ are not connected in G+ft .

Observe that the previous proof can be exploited to show also that the mLPG class is closed under the operation of adding
a false twin. �

However, the same argument cannot be applied to the LPG class as in this case, when h ≤ dmax/2, it is not possible to
locally transform the tree so that v and v′ are not connected in G+ft due to the bound concerning only dmin. Nevertheless, as
LPG is in PCG, by adding a false twin to a LPG, due to Theorem 11, we clearly obtain a PCG.

Theorem 12. Given G = LPG(T , w, dmax), the graph G+tt obtained from G by adding a true twin to any of its vertices is still a
LPG. It is polynomial to find a treeT , an edge weight function w and a valuedmax such that G+tt

= LPG(T , w,dmax).

Proof. This proof is very similar to the previous one. The only difference is that we have tomodify T so that the newly added
vertex v′ is now connected even to its twin v.

Let lv be the leaf of T associated to vertex v, let p be its father, and h be w((lv, p)). If h ≤ dmax/2, then it is enough to
add a new child lv′ to p and the weight of this new edge is h. If, on the contrary, h > dmax/2, then we remove from T the
edge (p, lv) and add vertices p′ and lv′ and edges (p, p′), (p′, lv) and (p′, lv′). To these edges we assign the following weights:w((p′, lv)) = w((p′, lv′)) = dmax/2 and w((p, p′)) = h − dmax/2. It is easy to see that these values guarantee that G+tt is
leaf power of the transformed tree fordmax = dmax. �

Observe that it is not possible to state a similar result for the more general PCG class. The reason is that, if h < dmin/2,
there is no way to locally transform the tree so that v and v′ are connected in the graph. It remains an open problem to
understand if adding a true twin in a PCG results in a PCG; if this is possible, it would probably require to completely modify
the tree.

We conclude observing that the results of this subsection together with the results of Section 5.1 and Section 5.2,
respectively, imply that distance-hereditary bipartite graphs are PCGs.

5.4. The complement

We have already highlighted in Proposition 2 that the complement of a LPG is an mLPG and vice-versa, moreover in
Section 4 it is proved that these classes do not coincide. So we can affirm that LPGs and mLPGs are not closed under the
complement operation, but they are transformed one into the other one. We now study the more general class of PCGs. To
this purpose, let G = (V , E) = PCG(T , w, dmin, dmax) and let Λ be the set of the edges of T , Λ =


e1, . . . , e|Λ|


. Without loss

of generality we introduce any ordering in the set of N =
 n
2


paths connecting any pair of leaves and let Γ = {γ1, . . . , γN}

be this ordered set of paths. Letw =

w1, . . . , w|Λ|


and d = (d1, . . . , dN) be two vectors, wherewi is the weight associated

to edge ei and di is the distance between the leaves connected by path γi. The edge-path incidence matrix is an N ×|Λ|matrix
M such thatMij is equal to 1 if ej ∈ γi and to 0 otherwise.

As an example, consider the tree shown in Fig. 10(a), which is the weighted tree T realizing a 5-cycle as a
PCG(T , w, dmin, dmax), with w = (2, 12, 1, 12, 2, 1, 1), dmin = 6 and dmax = 14 (see [18] Theorem 3). The path set results:
Γ = {γ1 = Pab,γ2 = Pac , γ3 = Pad, γ4 = Pae, γ5 = Pbc , γ6 = Pbd, γ7 = Pbe, γ8 = Pcd, γ9 = Pce, γ10 = Pde}. Hence, the distance
vector is d = (14, 4, 16, 6, 14, 26, 14, 4, 14). In Fig. 10(b) the corresponding matrix is represented.

The introduction of matrix M leads us to describe the connection between weights and distances by the formula:
Mwt

= dt . Observe that the vertices of V corresponding to the leaves of T connected by path γi are adjacent in G if and
only if

dmin ≤ di =

Mwt

i ≤ dmax.

Nowwe wonder under which conditions the complement of a PCG is still a PCG with the same tree, possibly varying the
weights; in other words, if G = PCG(T , w, dmin, dmax), under which conditions is it possible to choose a newweight functionw such that GC

= PCG(T , w,dmin,dmax).
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e1 e2 e3 e4 e5 e6 e7

1 1 0 0 0 0 0
1 0 1 0 0 1 0
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 1 1 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 1 0 0


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γ2
γ3
γ4
γ5
γ6
γ7
γ8
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(a) (b)

Fig. 10. (a) The tree T ; (b) its corresponding edge-path incidence matrix.
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Fig. 11. The pairwise compatibility tree of (a) an odd cycle; (b) even cycle.

This problem is equivalent to finding a positive solution w′ of the linear system:

Mw̃
t
= d̃

t
(4)

subject to the following requirements on the positive distances vector d̃:

∃Ĩ =
dmin,dmax


⊆ (0, +∞) such that d̃i ∈ Ĩ ⇔ di ∉ I = [dmin, dmax] . (5)

This means that the question is equivalent to looking for a distance vector d̃ ∈ (R+)
N which is a linear combination

(with positive coefficients) of the columns of matrix M and which verifies the relations in (5). These arguments prove the
following result:

Theorem 13. Given G = PCG(T , w, dmin, dmax) then GC
= PCG(T , w,dmin,dmax) for somedmin ≤dmax if and only if it exists a

solution of (4)–(5).

As an example, we apply this theorem to the construction given in [18] where it is proven that cycles are PCGs. Solving
the system generated by the edge-path incidence matrix corresponding to an odd cycle C2n+1, it is possible to show that
its complement CC

2n+1 is in PCG with respect to the same tree T , dmin = 3.5, dmax = n + 4.5 and weight functionw = (w1, . . . , w|Λ|) defined as follows:

w1 = w2n+1 = 2, wi = 1 for any i ≠ 1, 2n + 1.

Similarly, the complement GC
2n+2 of any even cycle is a PCG with respect to the same tree T and boundsdmin = 3.5,dmax = 2 + 3n/2 and weight function w such that

w1 = w2n+1 = 2, w2n+2 = n, wi = 1 for any i ≠ 1, 2n + 1, 2n + 2.

We have hence proven the following:

Proposition 4. The complement of any cycle C is a PCG.

The pairwise compatibility trees of the complement of an odd and even cycle are depicted in Fig. 11.
We conclude by observing that the previous result does not imply that if a solution of (4)–(5) does not exists, then GC is

not a PCG. Thus, it remains an open problem to establish the graphs in the PCG class for which their complement is still in
PCG.
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5.5. The disjoint union

In this last subsection we prove that the disjoint union of two PCGs G1 and G2 is still a PCG. Notice that adding an isolated
vertex is a particular case of disjoint union of two graphs when one of the graphs consists of a single vertex so here we
generalize the techniques used in Theorem 6 and Theorem 7.

Theorem 14. Given two graphs G1 = PCG(T1, w1, d1min, d1max) and G2 = PCG (T2, w2, d2min, d2max), (G1 = LPG(T1, w1, d1max)
and G2 = LPG(T2, w2, d2max)) their disjoint union G = G1 ∪G2 is still a PCG (LPG). It is polynomial to determine a treeT , an edge
weight function w and two valuesdmin anddmax such that G = PCG(T , w,dmin,dmax) (G = LPG(T , w,dmax)) .

Proof. Considering Lemma 4, we can modify the weight functions such that for some integer m ≥ max{d1min, d2min} and
two integers M1,M2 it holds G1 = PCG(T1, ŵ1,m,M1) and G2 = (T2, ŵ2,m,M2). Moreover, Lemma 2 guarantees us that
it is not restrictive to assume m ≠ M1 and m ≠ M2. Finally, let M = min{M1,M2}. Observe that m < M , then using again
Lemma 4 we can find two edge weight functions w′

1 and w′

2 such that G1 = PCG(T1, w′

1,m,M) and G2 = (T2, w′

2,m,M).
Let G = G1 ∪ G2. Define a new treeT with V (T ) = V (T1) ∪ V (T2) and E(T ) = E(T1) ∪ E(T2) ∪ {v1, v2} where v1 and v2 are
non-leaf vertices in T1 and T2, respectively. Define the weight of the edge (v1, v2) equal to M , while keeping the weights of
all the other edges unchanged. It is clear that G = PCG(T , w,m,M). �

Using the same argument it is easy to prove that a similar result holds for LPG graphs (hence LPG is closed under this
operation), while there is no weight to assign to edge (v1, v2) able to guarantee that no edge between vertices of G1 and G2
is created in G1 ∪ G2 when G1 and G2 are mLPGs.

We conclude this section observing that these results imply that quasi-threshold graphs are LPGs.

6. Conclusions and open problems

In this paper, we focus on the general pairwise compatibility tree construction problem by approaching a number of
subproblems.

Namely, we first analyze the relations between the three classes of PCGs, LPGs and mLPGs. In particular, we show that
the union of LPG and mLPG classes does not coincide with the whole class of PCGs, that neither of the classes of LPGs and
mLPGs is contained in the other and that their intersection is not empty as threshold graphs belong to both the classes of
mLPGs and LPGs (besides trees and cliques which trivially belong to this intersection).

Finally, we investigate whether the graph resulting when a graph operation is performed on one or more PCGs (or LPGs
or mLPGs) still belongs to the class of PCGs (or LPGs or mLPGs). The considered graph operations consist in adding a new
special vertex (either isolated or universal vertex, pendant vertex, either true or false twin), in complementing the old graph
or in performing the disjoint union of two graphs. As a side effect, we prove that bipartite distance-hereditary graphs are
PCGs and quasi-threshold graphs are LPGs.

A number of open problems arise from this work.
Since the pairwise compatibility problem has been investigated only for few classes of graphs, the first open problem is

to identify other graph classes that are PCGs. This is even more interesting because it is known [12] that the clique problem
can be solved in polynomial time for the class of compatibility graphs if we are able to construct in polynomial time the
pairwise compatibility tree.

Another issue consists in completing the table in Fig. 8. Considering the results presented in the table, it is to underline
that only in the case involving the operation of adding a new pendant vertex, we were able to prove that the mLPG class is
not closed. Thus, it remains an open problem to determine those operations for which a class is closed.

We have proved that the complement of a PCG is a PCG, too, only if some precise conditions are verified. We conjecture
that it is not true in general that the complement of a PCG is always a PCG. Thus, it would be interesting to prove (or disprove)
this conjecture.

Finally, we are interested in determining the structure of graphs that are PCGs of a star, in the light of the fact that both
LPG-tree and mLPG-tree associated to a threshold graph are stars.
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