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A family of subsets of an n-set is 2-cancellative if for every four-tuple {A, B, C, D}
of its members A ∪B ∪C = A ∪B ∪D implies C = D. This generalizes the concept
of cancellative set families, defined by the property that A ∪B 6= A ∪C for A, B, C
all different. The asymptotics of the maximum size of cancellative families of subsets
of an n-set is known, (Tolhuizen [7]). We provide a new upper bound on the size of
2-cancellative families improving the previous bound of 20.458n to 20.42n.

1. Introduction

Extremal set theory or extremal hypergraph theory is an important and highly applicable
part of combinatorics, [6]. Although problems of this kind have been studied systemati-
cally, almost none of them has been solved even in an asymptotic sense. The only notable
exception is Tolhuizen’s solution of an old problem of Erdős and Katona regarding the
maximum size of cancellative set families. A family F of subsets of a ground set of n

elements is cancellative if for any three of its elements A ∪ B = A ∪ C implies B = C.
Frankl and Füredi [4] have introduced an upper bound for the maximum cardinality of
cancellative set families as a function of n. Tolhuizen, disproving the original conjecture
of Erdős and Katona, showed in [7] that the upper bound of [4] is tight in the sense
of exponential asymptotics. Given the exceptional status of this problem among similar
ones about families with excluded triples of subsets, inasmuch as no other problem of
a similar kind has been solved, it is reasonable to look for an analogous property con-
cerning excluded four-tuples, in the hope that this might give rise to the ”easiest” of all
such problems for four-tuples. In what follows, we define what we claim is the needed
natural generalization of the cancellative property. The corresponding problem has not
been treated in the literature neither explicitly nor implicitly, even though corresponding
bounds can be derived from those for similar properties. In particular, we will improve
on the upper bound obtainable from the one in [3] for a similar but weaker property.

Let F be a family of subsets of an n-set with the property that A∪B∪C = A∪B∪D

implies C = D for any four of its sets A,B, C, D. We call such a family 2-cancellative. Let
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M(n) be the maximum size of such a family. We would like to determine the exponential
asymptotics

t(4) = lim sup
n→+∞

1
n

log M(n).

As usual all logarithms have base two. We define the weight of a binary vector x of
length n by w(x) =

∑n
i=0 xi, and denote by h the binary entropy function

h(p) = −p log p− (1− p) log (1− p), where 0 ≤ p ≤ 1.

Without loss of generality we can suppose that the n-set underlying F is [n] = {1, . . . , n}.
We associate to every subset A in the family, its characteristic binary vector, x = x1 . . . xn,
with xi = 1 if i ∈ A and xi = 0 else. One can immediately see that requiring the family
F to have the desired property is equivalent for its representation set of binary vectors,
F , to satisfy the following: for every four-tuple {w,x,y, z} of distinct vectors in the set,
considered in an arbitrary but fixed order (w,x,y, z) there exist at least three different
values of k ∈ [n], such that the corresponding ordered quadruples (wk, xk, yk, zk) are all
different while for each of them we have that wk + xk + yk + zk = 1 (we will sometimes
refer to wkxkykzk as the k’th column of the ordered four-tuple (w,x,y, z)).

This problem can be seen in a more general context. We can require that for every
ordered four-tuple of vectors in the set, there exists at least t different columns, k1, . . . , kt

which sum up to 1 (obviously t ∈ [4]). In the case t = 4 we get back a well-known problem,
the one about the largest cardinality of 3-cover-free families (see, for example [5], [6]).
Instead, the case of t = 1 corresponds to 4-locally thin sets originally introduced by Alon
et al. [1]. The best upper bound known for this problem comes from [3]. Unfortunately
nothing more is known for the case t = 2 or t = 3 (which is the case we are considering).
The best upper bound known for both these problems remains the bound on 4-locally
thin sets. So, it follows from the main result of [3], that t(4) < 0.4561. Here we will
improve this result by showing that t(4) < 0.42.

2. The Main Result

The following theorem is the main result of this article.

Theorem 1.

0.11 < t(4) ≤ 0.42

Proof: In order to prove the lower bound, we first reformulate the 2-cancellative
property. Consider the ordered four-tuple of different binary vectors (w,x,y, z) of length
n. We require that the following holds

∃i ∈ [n] such that ({wi, xi}, {yi, zi}) = ({0, 0}, {0, 1}). (2.1)

For the sake of brevity we say that the underlying set {w,x,y, z} has the critical prop-
erty if the corresponding relation (2.1) holds for any ordering of its vectors. Observe
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that once the set of four distinct vectors is fixed, the configuration of ordered pairs of un-
ordered couples that we introduced is uniquely determined by the first couple of the pair.
Therefore, given an arbitrary set T = {w,x,y, z} of distinct binary vectors, we will refer
to each of the configurations it generates, by the the first couple A ∈ (

T
2

)
of the ordered

pair. It can be seen that T has the critical property if and only if it is 2-cancellative.
The ”if” part is obvious. If we have three different columns of length 4 and weight 1,
then, necessarily, for every couple A ∈ (

T
2

)
, one of these vectors has a 0 in both positions

defined by the vectors of A. On the other hand, if we have a set of columns such that
for every A at least one of them satisfies (2.1), then they must contain at least three
different columns of length 4 and weight 1; in fact, if there were only two of them, then
their positions of 1’s would define a couple A for which the relation (2.1) is not satisfied.
Thus, we can say that a set F of binary vectors is 2-cancellative if every four-tuple of its
vectors {w,x,y, z} has the critical property.
The lower bound is obtained by a standard random choice argument. Let F be a random
collection of N binary vectors of length n, constructed by letting each coordinate of each
member of F be, randomly and independently 1 with probability p and 0 with probabil-
ity 1 − p for a p that will be chosen later. Now, the expected number of configurations
in F which don’t have the critical property is

(
N
4

)(
4
2

)
[1 − 2p(1 − p)3]n. By deleting an

arbitrarily chosen string from each of these forbidden configurations we obtain a set F

of vectors having the 2-cancellative property, of cardinality

|F | ≥ N − 6
(

N

4

)
[1− 2p(1− p)3]n.

Choosing p = 1/4, N = b(101/128)n/3c and recalling that M(n) ≥ |F |, it follows that

t(4) = lim sup
n→+∞

1
n

log M(n) ≥ 1
3
(7− log 101) > 0.11

as claimed.
We next give the proof of the upper bound.
Consider a 2-cancellative set of binary vectors of length n, with the additional property
that all its members have the same weight. Let N(n) be the maximum cardinality of such
a set. It is clear that N(n) and M(n) have the same exponential asymptotics, as we have
that N(n) ≤ M(n) ≤ (n + 1)N(n). As we are only interested in the asymptotic behavior
of M(n), we can restrict ourselves to the case of sets in which each of the member vectors
has the same weight. Let F = Fn be such a set, which achieves maximum cardinality. In
other words, the vectors in F have the same weight equal to np for some p, 0 ≤ p ≤ 1.
In order to proceed with the proof we next give some definitions:
Given a vector x, its projection onto the set of coordinates I = {i1, ...im}, (with the
natural ordering i1 <, . . . , < im), is the vector x|I = xi1 ...xim .
For every x ∈ F define the set of all the coordinates where x has a zero

Ix = {i : i ∈ [n];xi = 0}.
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Obviously, |Ix| = (1− p)n.
For all x ∈ F define the projection of F onto the set of coordinates Ix as follows:

Fx = {y : y ∈ {0, 1}(1−p)n; ∃z ∈ F \ {x};y = z|Ix}.
Now let us fix x ∈ F and consider Fx. The next observations follow directly from the
2-cancellative property:

1 |F | = |Fx|+ 1.
2 For every three vectors w,y, z in the set Fx there exist at least two integer val-

ues k ∈ [0, n(1− p)], such that the ordered triples (wk, yk, zk) are all different and
wk + yk + zk = 1.

Indeed, let (w,x,y, z) be an arbitrary four-tuple of distinct vectors in the set F , where
x is the fixed element of F . We know that F is a 2-cancellative family. Hence there
exist at least three different values of k, such that the ordered quadruples (wk, xk, yk, zk)
are all different and wk + xk + yk + zk = 1. This implies that xk = 0 for at least two
different values of k ∈ [n]; observe that this forces k to belong to Ix. Furthermore, in
correspondence to these values of k we have at least two different triples (wk, yk, zk)
such that wk + yk + zk = 1. Now, recalling that k ∈ Ix and considering the projections
w|Ix , y|Ix , z|Ix , it is easy to verify the properties we claimed.
We can view Fx as the set of characteristic vectors of a family Fx of subsets of an
n(1− p)-set. In the terminology of Frankl and Füredi [4], Fx is a cancellative family. In
[4], they estimated the size of the largest cancellative family Fk, consisting of k-element

subsets of [n]. They proved that if k ≤ n/2 then |Fk| ≤
(

n

k

)
2k/

(
2k

k

)
.

Thus,

|Fx| = |Fx| ≤
k̂∑

k=0

(
n̂

k

)
2k/

(
2k

k

)
, (2.2)

where n̂ = n(1 − p) is the length of the binary vectors of Fx and k̂ is their maximum
weight. The following claim is at the base of our proof.

Claim 1. Let F be the set of characteristic vectors of a 2-cancellative family F of
subsets of cardinality np, (for some 0 < p ≤ 1), of an n-set. Let ε be an arbitrary
nonnegative constant, to be specified later. There is a binary vector x ∈ F and a constant
γ = γ(ε,p), (0 < γ(ε,p) ≤ 1), such that at least γ|F x| − 1 vectors in F x have at most a
weight n(1− p)(p + ε).

Proof: For each coordinate j, (1 ≤ j ≤ n), denote by cj =
∑

y∈F yj , the sum of the
projections of all the vectors of F , to the j’th coordinate. With this notation, the overall
weight of the projections of the vectors of F onto every possible set of coordinates Ix,
(x ∈ F ), can be expressed as

∑

x∈F

∑

y∈Fx

w(y) =
∑

x∈F

∑

j∈Ix

cj =
n∑

j=1

cj(|F | − cj). (2.3)
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The first equality is simply obtained by ”double counting” the number of coordinates
equal to one in the set F (observe that xj is also considered when calculating cj , but
its contribution to the sum is zero, as xj = 0 when j ∈ Ix). The second equality follows
by observing that each cj appears in the precedent sum in correspondence with all the
vectors x ∈ F for which j ∈ Ix, in other words, for all the vectors x such that xj = 0.
Obviously, the number of vectors having zero at their j’th coordinate is |F | − cj . Now,
by a simple application of Jensen’s inequality to the function x2, we can upper bound
the right-most end of (2.3) by

n∑

j=1

cj |F | −
n∑

j=1

cj
2 ≤

n∑

j=1

cj |F | − 1
n

( n∑

j=1

cj

)2

. (2.4)

Again, a simple ”double counting” argument shows that

n∑

j=1

cj =
∑

y∈F

w(y) = |F |pn,

whence we can rewrite the last expression of (2.4) as

|F |2np− 1
n
|F |2n2p2 = |F |2n(1− p)p. (2.5)

Hence, recalling that |F | = |Fx|+ 1, the relations (2.3)-(2.5) give the upper bound

1
|F |

∑

x∈F

∑

y∈Fx

w(y) ≤ (|Fx|+ 1)n(1− p)p.

This immediately shows the existence of an x ∈ F such that
∑

y∈Fx

w(y) ≤ (|Fx|+ 1)n(1− p)p. (2.6)

Given such an x, we will show that a constant fraction of the vectors of Fx has a weight
smaller than (1 − p)n(p + ε). Observing that a vector y in Fx has a length equal to
n(1− p), we can define its density py, (0 < py ≤ 1) as

py =
w(y)

n(1− p)
.

Denote by Fx
1 the set of all the vectors y of Fx for which we have py < p + ε and by Fx

2

its complement in Fx, i.e., y ∈ Fx
2 whenever py ≥ p + ε. Thus,

∑

y∈Fx

w(y) ≥ |Fx
2 |n(1− p)(p + ε).

Combining this with the inequality (2.6), we get

|Fx
2 | ≤

p

p + ε
(|Fx|+ 1).



On Cancellative Set Families 5

Recalling that |Fx
2 | = |Fx| − |Fx

1 | we obtain

|Fx
1 | ≥

ε

p + ε
|Fx| − p

p + ε
. (2.7)

This bound shows that there is a constant γ =
ε

p + ε
, (0 < γ(ε,p) ≤ 1), such that at least

γ|Fx| − 1 vectors in Fx have a weight at most n(1− p)(p + ε). This completes the proof
of the claim.
Now we are ready to prove the theorem. Applying the previous result to our set F , for
every fixed ε > 0 we can find an x ∈ F and a γ, such that at least a γ-fraction of the
vectors of Fx, has a weight smaller than k̂ = n(1 − p)(p + ε). Combining this with the
Frankl-Füredi bound [4] we have for 0 < p ≤ 1/2 that

γ|Fx| − 1 ≤ |Fx
1 | ≤

k̂∑

k=0

(
n̂

k

)
2k/

(
2k

k

)
, (2.8)

where γ =
ε

p + ε
, and since we are considering vectors in Fx, n̂ = (1− p)n, therefore

k̂ = n̂(p + ε) = n(1− p)(p + ε). We need the following exponential bound for binomial
coefficients, (see, e.g, Section 1.2 in Csiszár and Körner [2])

(
n̂

k

)
≤ exp2

(
n̂h

(k

n̂

))
,

(
2k

k

)
≥ 1

2k + 1
exp2(2k) (2.9)

Combining (2.8) and (2.9) we have

γ|Fx| ≤ (k̂ + 1) max
k≤k̂

(
n̂

k

)
exp2(k)/

(
2k

k

)
(2.10)

≤ n̂ exp2

(
n̂

(
max
k≤k̂

(
h

(
k

n̂

)
− k

n̂
+

log n̂

n̂

)))
. (2.11)

Thus,

1
n

log |Fx| ≤ 1
n

log
(

n(1− p)
γ

)

+ (1− p)max
k≤k̂

(
h

(
k

n̂

)
− k

n̂
+

log n̂

n̂

)
.

(2.12)

Now, set q =
k

n̂
and rewrite the right hand side of (2.12) as

=
1
n

log
(

n(1− p)
γ

)
+ (1− p) max

q≤p+ε

(
h(q)− q +

log n̂

n̂

)
. (2.13)
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Thus,

t(4) = lim sup
n→+∞

1
n

log M(n) (2.14)

≤ lim sup
n→+∞

1
n

log
(
(n + 1)N(n)

)
(2.15)

≤ lim sup
n→+∞

(
1
n

log(n + 1) +
1
n

log
(

n(1− p)
γ

)

+ (1− p) max
q≤p+ε

(
h(q)− q +

log n̂

n̂

))
.

(2.16)

Whence it follows that

t(4) ≤ max
0≤p≤ 1

2

(1− p) max
q≤p+ε

(
h(q)− q

)
. (2.17)

Now, since h(q)− q is monotonically increasing in [0, 1/3] and monotonically decreasing
elsewhere, we have for every ε > 0

max
0≤p≤ 1

3−ε
(1− p) max

q≤p+ε

(
h(q)− q

)
≤ max

p≤ 1
3−ε

(1− p)
(
h(p)− p

)
(2.18)

and

max
1
3−ε<p≤ 1

2

(1− p) max
q≤p+ε

(
h(q)− q

)
≤ max

1
3−ε<p≤ 1

2

(1− p)

(
h

(
1
3

)
− 1

3

)
. (2.19)

In conclusion, (2.17), (2.18) and (2.19) can be summarized as

t(4) ≤ max
{

max
p≤ 1

3−ε
(1− p)(h(p)− p), max

1
3−ε<p≤1/2

(1− p)
(

h

(
1
3

)
− 1

3

)}

= max
{

max
p≤ 1

3−ε
(1− p)(h(p)− p), max

1
3−ε<p≤1/2

(1− p)(log 3− 1)
}

.

Choosing ε = 0.01 we obtain

t(4) ≤ max
{
0.42, 0.4

}
= 0.42

as claimed.

As already mentioned in the introduction, the asymptotic version of the Frankl–Füredi
upper bound [4] for cancellative set families is tight, as proved by Tolhuizen [7]. This is
the only non–trivial problem in extremal set theory where for an excluded configuration
of size greater than two, the exact exponential asymptotics is known. Unfortunately, in
our generalization there remains a huge gap between the two bounds on the exponent.
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