Scalability of Population-based Stochastic Metaheuristics

Daniela Zaharie

Department of Computer Science
West University of Timisoara, Romania
e-mail: dzaharie@info.uvt.ro

Workshop on ”Stochastic Geometry and Big Data” - 24.11.2015
Outline

Motivation

Population-based stochastic metaheuristics

Exploration vs Exploitation. Case Study: Differential Evolution

Cooperative Coevolution
Black box optimization

Example:

- given a parameterized module for image registration encapsulated in a proprietary software
- find the parameters values which:
 - ensure that the registration error is smaller than a given threshold
 - the running time is as small as possible
Black box optimization

Example:

- given a parameterized module for image registration encapsulated in a proprietary software
- find the parameters values which:
 - ensure that the registration error is smaller than a given threshold
 - the running time is as small as possible

Characteristics of the black box problems

- only partial/uncertain apriori knowledge on the influence of parameters on accuracy
- only objective function values are known, no gradient information
Large scale optimization

Example 1: non-rigid multi-modal image registration

- find the parameters of a free form deformation model
- which minimize a similarity measure (e.g. mutual information)
- Remarks:
 - problem size: for a $8 \times 8 \times 8$ mesh there are 1536 parameters; used optimizer
 - optimizer: cat swarm optimization

1. Yang at al., Non-rigid Multi-modal Medical Image. Registration by Combining L-BFGS-B with Cat Swarm Optimization, Information Sciences 2015
Large scale optimization

Example 1: non-rigid multi-modal image registration

- find the parameters of a free form deformation model
- which minimize a similarity measure (e.g. mutual information)
- Remarks:
 - problem size: for a $8 \times 8 \times 8$ mesh there are 1536 parameters; used optimizer
 - optimizer: cat swarm optimization

Example 2: (hyper)spectral unmixing

- find the abundancy values which maximizes the log-likelihood function from the E-step in an EM framework
- problem size: number of pixels \times number of endmembers (750 for a 50×50 subimage and 3 endmembers)
- optimizer: particle swarm optimization

1. Yang at al., Non-rigid Multi-modal Medical Image Registration by Combining L-BFGS-B with Cat Swarm Optimization, Information Sciences 2015
Outline

Motivation

Population-based stochastic metaheuristics

Exploration vs Exploitation. Case Study: Differential Evolution

Cooperative Coevolution
Population-based search

- an iterative optimization method which uses a population of candidates to search the solutions space
- it is based on two main mechanisms:
 - search space exploration
 - exploitation of the knowledge collected during the previous search steps
Main Components

- **Mutation**: random perturbation of elements
 - distribution independent of the current population
 - distribution influenced by the current population
- **Recombination**: mixing information from several elements
 - discrete
 - arithmetical
- **Selection**: choice of promising elements
 - proportional
 - tournament

An Evolutionary Algorithm
Outline

Motivation

Population-based stochastic metaheuristics

Exploration vs Exploitation. Case Study: Differential Evolution

Cooperative Coevolution
Differential Evolution

... is a simple but rather powerful metaheuristic

- developed in 1995 by Rainer Storn and Kenneth Price as a continuous optimization method
 - starting problem: Chebyshev polynomials fitting (33 variables)
 - initial variant: genetic annealing algorithm developed by Kenneth Price (1994)

- main idea: use a mutation/recombination operator based on difference(s) between pairs of elements

- similarities with older direct search methods:
 - pattern search (Hooke-Jeeves, 1961)
 - simplex methods (Nelder-Mead, 1965)

- other population based methods involving differences:
 - Particle Swarm Optimization (Kennedy & Eberhart, 1995)
Standard Differential Evolution

Problem to be solved: minimize \(f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R} \)

DE in a phrase:

A population of \(m \) elements is randomly initialized in \([a_1, b_1] \times \ldots \times [a_n, b_n]\) and then iteratively transformed by applying difference based recombination and greedy-like selection

Initialization: \(x_i = U(a_i, b_i), \quad i = 1, m \)
Standard Differential Evolution

Problem to be solved: minimize \(f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R} \)

Initialization: \(x_i = U(a_i, b_i), \quad i = 1, m \)

while \langle \text{NOT termination} \rangle do

- **Mutation** - for each element \(x_i \) (target or current element) a mutant is constructed:

\[
y_i = x_{r_1} + F \cdot (x_{r_2} - x_{r_3})
\]

- base element
- scaled difference

\(m \) - population size
\(F \in (0, 2) \) - scale factor
Standard Differential Evolution

Problem to be solved: minimize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

Initialization: $x_i = U(a_i, b_i), \quad i = 1, m$

while (NOT termination) do

 ▶ Mutation:

 $y_i = x_{r_1} + F \cdot (x_{r_2} - x_{r_3}), \quad i = 1, m$

 ▶ Crossover:

 $z^j_i = \begin{cases}
 y^j_i, & \text{if } rand(0, 1) < CR \text{ or } j = j_0 \\
 x^j_i, & \text{otherwise}
 \end{cases}, \quad i = 1, m, j = 1, n$

m - population size

$F \in (0, 2)$ - scale factor

$CR \in [0, 1]$ - crossover rate

j_0 - randomly selected component
Standard Differential Evolution

Problem to be solved: minimize \(f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R} \)

Initialization: \(x_i = U(a_i, b_i), \quad i = 1, m \)

while \(\langle \text{NOT termination} \rangle \) do

- **Mutation:**
 \[
 y_i = x_{r1} + F \cdot (x_{r2} - x_{r3}), \quad i = 1, m
 \]

- **Crossover:**
 \[
 z^j_i = \begin{cases}
 y^j_i & \text{if } \text{rand}(0, 1) < CR \text{ or } j = j_0 \\
 x^j_i & \text{otherwise}
 \end{cases}
 \]

- **Selection:**
 \[
 x_i(g + 1) = \begin{cases}
 z_i & \text{if } f(z_i) \leq f(x_i(g)) \\
 x^j_i & \text{if } f(z_i) > f(x_i(g))
 \end{cases}
 \]

- **Parameters:**
 - \(m \) - population size
 - \(F \in (0, 2) \) - scale factor
 - \(CR \in [0, 1] \) - crossover rate
 - \(j_0 \) - randomly selected component
Differential Evolution Variants

DE taxonomy: \[\text{DE/ base element/ no. of differences/ crossover type} \]

- Base element:
 - random(\(x_{r1}\)): DE/rand/*/*
 - best (\(x_\star\)): DE/best/*/*
 - combination of current and best elements (\(\lambda x_\star + (1 - \lambda)x_i\)): DE/current-to-best/*/*
 - combination of random and best elements (\(\lambda x_\star + (1 - \lambda)x_{r1}\)): DE/rand-to-best/*/*
 - combination of current and random elements (\(\lambda x_i + (1 - \lambda)x_{r1}\)): DE/current-to-rand/*/*

- Number of differences: usually 1 (DE/*/1/*) or 2 (DE/*/2/*)

- Crossover type: binomial: DE/*/1/bin, exponential: DE/*/1/exp)

At least 20 DE variants ...
Motivation
Population-based stochastic metaheuristics
Exploration vs Exploitation
Cooperative Coevolution

Mutation variants

- **DE/rand/L/***

\[y_i = x_{r_1} + \sum_{l=1}^{L} F_l \cdot (x_{r_1(l)} - x_{r_2(l)}) \]

- Typical variant: \(L = 2 \)
- Allows to define new mutant directions \(\Rightarrow \) stimulates exploration

- **DE/current-to-best/1**

\[y_i = (1 - \lambda)x_i + \lambda x_\ast + F \cdot (x_{r_1} - x_{r_2}) \]

- Introduces a bias toward the currently best element \(\Rightarrow \) stimulates exploitation
Crossover variants

- **Binomial (DE/*//*/bin)**

\[
z^j_i = \begin{cases}
 y^j_i & \text{if } \text{rand}(0,1) < CR \text{ or } j = j_0 \\
 x^j_i & \text{otherwise}
\end{cases}, \quad i = 1, m, j = 1, n
\]

- **Exponential (DE/*//*/exp)**

\[
z^j_i = \begin{cases}
 y^j_i & \text{for } j \in \{j_0, \langle j_0 + 1 \rangle_n, \ldots, \langle j_0 + K - 1 \rangle_n\} \\
 x^j_i & \text{otherwise}
\end{cases}, \quad i = 1, m, j = 1, n
\]

\(CR \in [0,1] - \text{crossover rate, } j_0 \sim U(\{1, \ldots, m\}), K \sim \text{Geom}(CR)\)
Other variants

- Arithmetical (DE/*/*/arithmetical)
 \[z_i = (1-q)x_i + qy_i, \quad i = 1, m, \quad q \in [0, 1] \]

- Either mutation or recombination (DE/either-or)
 \[z_i = \begin{cases}
 x_{r_1} + F \cdot (x_{r_2} - x_{r_3}) & \text{if } \text{rand}(0, 1) \leq p_F \\
 x_{r_1} + K \cdot (x_{r_2} - x_{r_1}) \\
 + K \cdot (x_{r_3} - x_{r_1}) & \text{if } \text{rand}(0, 1) > p_F
\end{cases} \]

- Remark: DE/either-or was created to compensate the lack of rotational invariance of DE involving binomial crossover
Which variant to choose?

Recommendations

- no specific knowledge on the problem: use DE/rand/1/*
- need for an exploitative method: use DE/best/1/*
- need for a more explorative method: use DE/rand/2/*
- need for a rotationally invariant method: use DE/either-or

Remark: different variants could be appropriate in different stages of the optimization process \implies need for adaptation
(Self)adaptive variants

Self adaptation

- use a pool of variants and assign to each element one of these variants
- record the success/failure information of the variant attached to each element
- decide which variant to select based on the success/failure information (a probability distribution is usually constructed)
- self-adaptation of mutation/crossover is usually combined with self-adaptation of parameters
- Examples: SaDE \(^3\), Competitive DE \(^4\), EPSDE \(^5\) etc.

\(^3\) Qin et al., Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization, IEEE TEVC, 2009
\(^4\) Tvrdík, Competitive Differential Evolution, Mendel 2006
\(^5\) [Mallipeddi et al., Differential evolution algorithm with ensemble of parameters and mutation strategies, ASOC 2011]
Searching for Exploration - Exploitation Balance

Usage of differences \Rightarrow implicit adaptation of the amount of change in the population

- First stage of evolution: large differences \Rightarrow exploration
- Second stage of evolution: small differences \Rightarrow exploitation
- There is no clear separation between these stages
Motivation

Population-based stochastic metaheuristics

Exploration vs Exploitation

Cooperative Coevolution

Searching for Exploration - Exploitation Balance

Usage of differences ⇒ implicit adaptation of the amount of change in the population

- First stage of evolution: large differences ⇒ exploration
- Second stage of evolution: small differences ⇒ exploitation
- There is no clear separation between these stages

Main difficulty: find the balance between exploration and exploitation:

- less exploration, too much exploitation ⇒ premature convergence
- too much exploration ⇒ slow convergence
Searching for Exploration - Exploitation Balance

Population convergence:

Method convergence:

Ideal situation:

population convergence is synchronized with method convergence

Still unclear how to ensure this synchronization ...
Analysis of the DE behavior

Many empirical parameter studies led to statements as:

- for the same crossover rate (CR), the number of components taken from the mutant is highly depending on the crossover type (binomial vs. exponential) ... why?

- the control parameters (m, F, CR) influence in an interrelated manner the population diversity ... how?

- high values of the scale factor, F, are needed to avoid premature convergence ... does there exist a lower bound?
Analysis of the DE behavior

Many empirical parameter studies led to statements as:

- for the same crossover rate (CR), the number of components taken from the mutant is highly depending on the crossover type (binomial vs. exponential) ... why?

- the control parameters (m, F, CR) influence in an interrelated manner the population diversity ... how?

- high values of the scale factor, F, are needed to avoid premature convergence ... does there exist a lower bound?

It would be desirable to have theoretical results which explain such empirical remarks ...
Binomial vs. Exponential Crossover

Binomial crossover:
- the probability to take a component from the mutant vector is:
 \[p_m = CR \left(1 - \frac{1}{n}\right) + \frac{1}{n} \]
- the number of mutated components: binomial distribution

Exponential crossover:
- the probability to take a component from the mutant vector is:
 \[p_m = \frac{1 - CR^n}{n(1 - CR)} \]
- the number of mutated components: truncated geometric distribution

Remark: In the case of exponential crossover larger values of \(CR \) should be used in order to have the same number of mutated components as for binomial crossover.

Choice of crossover rate

- the DE behavior is influenced by the mutation probability, p_m, but the user provides a value for CR.
- What value should have CR in order to ensure a given value for p_m?

Binomial crossover

$$CR = \frac{p_m - 1/n}{1 - 1/n}$$

Practical remark: Exponential crossover is more sensitive to the problem size.

Exponential crossover

$$CR^n - np_mC + np_m - 1 = 0$$
Population diversity

Importance

- small diversity in the DE population \Rightarrow small values of the differences \Rightarrow limited progress \Rightarrow premature convergence (all population concentrated in a point which is NOT the optimum)

Question: What is the impact of mutation and crossover on the population diversity?
Population diversity

Theoretical results

- **Diversity measure**: population variance (component level)
 \[\text{Var}(X) = \sum_{i=1}^{m} (x_i - \bar{x}_i)^2 / m \]

- **Notations**:
 - \(\text{Var}(X) \) = variance of current population;
 - \(\mathbb{E}(\text{Var}(Z)) \) = expected variance of the trial population

- **DE/rand/L/***
 \[
 \mathbb{E}(\text{Var}(Z)) = \left(1 + 2p_m \sum_{l=1}^{L} F_l^2 - \frac{p_m(2 - p_m)}{m} \right) \text{Var}(X)
 \]

7 D. Zaharie, Critical values for the control parameters of differential evolution algorithms, Mendel 2002
Population diversity

Theoretical results

- Diversity measure: population variance (component level)
 \(\text{Var}(X) = \frac{\sum_{i=1}^{m} (x_i - \bar{x}_i)^2}{m} \)

- Notations: \(\text{Var}(X) \) = variance of current population;
 \(\mathbb{E}(\text{Var}(Z)) \) = expected variance of the trial population

- DE/random-to-best/1/*

\[
\mathbb{E}(\text{Var}(Z)) = \left(1 + 2p_m F^2 - \frac{p_m (2-p_m)}{m} - \lambda p_m^2 \frac{m-1}{m} \right) \text{Var}(X)
\]
\[
+ \lambda^2 \frac{p_m (1-p_m)}{m} \sum_{i=1}^{m} (x_* - x_i)^2
\]

Population diversity

Theoretical results

- **Diversity measure**: population variance (component level)
 \[\text{Var}(X) = \frac{\sum_{i=1}^{m} (x_i - \bar{x}_i)^2}{m} \]

- **Notations**: \(\text{Var}(X) = \) variance of current population;
 \(\mathbb{E}(\text{Var}(Z)) = \) expected variance of the trial population

- **DE/current-to-rand/1** (arithmetical recombination)

 \[\mathbb{E}(\text{Var}(Z)) = \left(1 + 2F^2 - 2q + \frac{2m - 1}{m} q^2 \right) \text{Var}(X) \]
Population diversity

Theoretical results

- **Diversity measure**: population variance (component level)
- **Notations**: $\text{Var}(X) =$ variance of current population; $\mathbb{E}(\text{Var}(Z)) =$ expected variance of the trial population
- **DE/either-or**

$$
\mathbb{E}(\text{Var}(Z)) = (p_F^2 (1 + 2F^2 - \frac{1}{m}) + 2p_F (1 - p_F)(\frac{m-1}{m} + F^2 + 3K^2 - 2K) \\
+(1 - p_F)^2 (\frac{m-1}{m} + 2\frac{m-2}{m}(3K^2 - 2K))) \text{Var}(X)
$$
Population diversity

Theoretical vs empirical evolution

- Evolution of population variance after mutation and crossover (no selection)
- **Practical remark:** the population variance can decrease even in the absence of selection pressure

![Graph showing the evolution of population variance](image)

DE/either-or
Population diversity

From theory to practical insights

\[E(\text{Var}(Z)) = c(F, CR, p_F, q, m, n) \text{Var}(X) \]
Population diversity
From theory to practical insights

\[\mathbb{E}(\text{Var}(Z)) = c(F, CR, p_F, q, m, n) \text{Var}(X) \]

- if \(c(F, CR, p_F, q, m, n) < 1 \) the algorithm will probably prematurely converge
Population diversity

From theory to practical insights

\[E(\text{Var}(Z)) = c(F, CR, p_F, q, m, n) \text{Var}(X) \]

- if \(c(F, CR, p_F, q, m, n) < 1 \) the algorithm will probably prematurely converge
- one can control the impact which mutation and crossover have on the population variance by changing the values of the parameters involved in the factor \(c \)
Population diversity
From theory to practical insights

\[\mathbb{E}(\text{Var}(Z)) = c(F, CR, p_F, q, m, n)\text{Var}(X) \]

- if \(c(F, CR, p_F, q, m, n) < 1 \) the algorithm will probably prematurely converge
- one can control the impact which mutation and crossover have on the population variance by changing the values of the parameters involved in the factor \(c \)
- this is a particularity of DE, as in EAs using mutation based on additive perturbation involving an arbitrary distribution:

\[\mathbb{E}(\text{Var}(Z)) = a\text{Var}(X) + b \]

with \(b \) not necessarily zero
Population diversity
From theory to practical insights

$$\mathbb{E}(\text{Var}(Z)) = c(F, CR, p_F, q, m, n)\text{Var}(X)$$

- The value of $c(F, CR, p_F, q, m, n)$ is highly influenced by the type of mutation and crossover.
Population diversity
Avoiding premature convergence

- choose the DE control parameters (F, CR, m etc) such that the population diversity does not decrease too fast ($c(CR, F, q, m, n) > 1$)
- by solving $c(F, CR, p_F, q, m, n) = 1$ we can find a lower bound for F under which the population variance decreases even in the absence of selection
Motivation
Population-based stochastic metaheuristics

Exploration vs Exploitation

Cooperative Coevolution

Population diversity
Avoiding premature convergence

- choose the DE control parameters \((F, CR, m\text{ etc})\) such that the population diversity does not decrease too fast \((c(CR, F, q, m, n) > 1)\)
- by solving \(c(F, CR, p_F, q, m, n) = 1\) we can find a lower bound for \(F\) under which the population variance decreases even in the absence of selection
Population diversity
Avoiding premature convergence

Example:
- DE/rand/1/bin for Neumaier fct,
 \(n = 2 \)
- \(m = 20, \ CR = 0.9, \ F = 0.2 \)
- lower bound \(F_{\text{low}} = 0.23 \)
Population diversity

Avoiding premature convergence

Example:

- DE/rand/1/bin for Neumaier fct, $n = 2$
- $m = 20$, $CR = 0.9$, $F = 0.5$
- lower bound $F_{low} = 0.23$
High-dimensional problems

- The problem size influences directly the relationship between p_m and CR (especially for exponential crossover)
 - CR values tuned for small size problems are not necessarily good for large size problems

![Graphs showing the relationship between c and n for different CR values for DE/rand/1/bin and DE/rand/1/exp.](image)
Scalability issue

- a large number of variables means a larger search space
- asks for a larger volume of resources (larger populations and/or longer evolution time) to reach the same performance
- the performance of the search method may deteriorate as the problem size increases
- **Scalable method**: the volume of resources grows (almost) linearly with the problem size

Addressing the scalability issue:

- design new evolutionary operators and/or control parameter adaptation
- use a "divide and conquer" approach ➡️ cooperative coevolution

Measure of used resources: number of function evaluations (nfe)
Outline

Motivation

Population-based stochastic metaheuristics

Exploration vs Exploitation. Case Study: Differential Evolution

Cooperative Coevolution
Cooperative coevolution

Main idea: split the problem into smaller sub-problems

- a potential solution consists of several components
- evolve independently the population corresponding to each component (coevolution)
- each component is evaluated in the context of other components (cooperation)
Implementation issues

- Choosing the components
 - how many components?
 - how to assign a variable to a component?

- Components coevolution
 - how to construct the evaluation context for each component?
 - how long should be the evolution of a component in the same context?
Components

- each solution $x = (x_1, x_2, \ldots, x_n)$
- should be decomposed into components $x = \langle C_1(x), C_2(x), \ldots, C_K(x) \rangle$
- where
 - K is the number of components
 - $C(x)$ is a set of variables (not necessarily consecutive in the solution vector)
 - $\langle \cdot \rangle$ denotes the merging operation
Choosing the components

There are two main decisions to take:

- choose the number, \(K \), of components
- define an assignment function of variables to components:
 \[c : \{1, \ldots, n\} \rightarrow \{1, \ldots, K\} \]

Variants:

- **Simplest case** \(^{10}\): \(K = n, c(i) = i, C_i(x) = x_i \) (each component corresponds to one variable)
 - similar to line search techniques; adequate for **separable** problems
 - the behavior for nonseparable problems can be improved by choosing the adequate context

\(^{10}\) Potter & deJong, A Cooperative Coevolutionary Approach to Function Optimization, PPSN 1994
A problem is separable if its components do not interact (they are uncorrelated)

The relative quality of two values of the same component does not depend on the context:

- if \(f(x_1, \ldots, x_i, \ldots, x_n) < f(x_1, \ldots, x'_i, \ldots, x_n) \) then \(f(y_1, \ldots, x_i, \ldots, y_n) < f(y_1, \ldots, x'_i, \ldots, y_n) \) for any context \(y \)
- i.e. if \(x_i \) is better than \(x'_i \) in a given context then it is better in any context, thus ...
- in this case the choice of the context is not critical

Example (additively separable): \(f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} f_i(x_i) \)
Separability vs. nonseparability

- **Nonseparable functions:** the variables are correlated
- **Example:** \(f(x_1, x_2) = 100(x_1 - x_2)^2 + (1 - x_1)^2 \)
- Some simple computations lead to:
 - \(f(1, x_2) < f(2, x_2) \) if \(x_2 < 2.501 \)
 - \(f(1, x_2) > f(2, x_2) \) if \(x_2 > 2.501 \)
- In this case the relative quality of values 1 and 2 for \(x_1 \) depends on the context represented by \(x_2 \)
- Thus, the context used to evaluate the quality of a component is important; for this example the variables should be evolved together.
- Fully nonseparable functions: each variable interacts with at least another variable
- Real world problems: partially separable
Choosing the components

- **Ideal case**: each component contains a group of highly interacting variables
 - difficult to identify the groups of highly correlated variables for black box optimization
- **Compromise variant**: assign the variables to components in a random manner\(^{11}\)
 - \(K\) is randomly chosen
 - equally sized components: \(c(i) = \left\lceil \sigma^{-1}(i) \cdot \frac{K}{n} \right\rceil + 1\), \(\sigma = (\sigma(1), \ldots, \sigma(n))\) is a random permutation
 - components with variable size: \(c(i) = \text{rand}(\{1, \ldots, K\})\)

\(^{11}\) Yang et al, Large scale evolutionary optimization using cooperative coevolution, *Inf. Sci.*, 2008
Random choice of components (motivation12)

The probability of assigning two interacting variables x_i and x_j to the same component in at least g cycles out of the total number of cycles, G:

$$P_g = \sum_{r=g}^{G} \binom{G}{r} \left(\frac{1}{K} \right)^r \left(1 - \frac{1}{K} \right)^{G-r}$$

Remarks.

- For $K = 10$ and $G = 50$: $P_1 = 0.9948$, $P_2 = 0.9662$
- any two variables (correlated or not) have a high chance to belong to the same component at least for a few number of cycles.

12 Yang et al, Large scale evolutionary optimization using cooperative coevolution, Inf. Sci., 2008
Random choice of components (limits13)

The probability of assigning ν interacting variables x_i and x_j to the same component in at least g cycles out of the total number of cycles, G:

$$P_g = \sum_{r=g}^{G} \left(\binom{G}{r} \left(\frac{1}{K^{\nu-1}} \right)^r \left(1 - \frac{1}{K^{\nu-1}} \right)^{G-r} \right)$$

Remarks.

- For $K = 10$, $G = 1000$, $\nu = 5$: $P_1 = 0.0951$, $P_2 = 0.0046$
- the chance of placing more than 4 interacting variables in the same component is small

13 Omidvar et al., Cooperative Co-evolution for large scale optimization through more frequent random grouping, CEC 2010
Delta grouping14

Idea:

- the improvement interval decreases when there are interactions \implies variables with small changes are interacting
- compute the difference between the population centroids at two consecutive generations: $\Delta = (\delta_1, \delta_2, \ldots, \delta_n)$
- sort Δ and split the set of variables in equally sized components

Disadvantages:

- the number of components should be specified
- not appropriate if there is more than one subcomponent of interacting variables

14M. Omidvar et al., Cooperative co-evolution with delta grouping for large scale for non-separable function optimization, CEC 2010.
Differential grouping

- incremental construction of components by identifying pairs of interacting variables
- two variables i and j satisfying (for an arbitrary selected vector x and arbitrary perturbations δ_i and δ_j)

$$f(\ldots, x_i + \delta_i, \ldots, x_j + \delta_j, \ldots) - f(\ldots, x_i + \delta_i, \ldots, x_j, \ldots) \neq f(\ldots, x_i, \ldots, x_j + \delta_j, \ldots) - f(\ldots, x_i, \ldots, x_j, \ldots)$$

are considered interacting variables

15M. Omidvar et al., Cooperative Co-evolution with Differential Grouping for Large Scale Optimization, TEVC 2013
Choosing the evaluation context

- to evaluate a component c_k one have to construct a virtual full solution, $\langle c_1, \ldots, c_k, \ldots, c_K \rangle$, by defining an evaluation context consisting of collaborators c_i provided by the subpopulations corresponding to each other components

- a collaborator, c_i, can be:
 - the current best value of component i (best individual of the subpopulation corresponding to ith component)
 - the ith component of the best individual in the entire population (it is not necessarily composed of the best components)
 - the ith component of a random individual
 - the ith component of the current individual (that from which the component c_k was evolved)
Implementation issues

- most evolutionary algorithms can be
 - synchronous
 - asynchronous

- the same can be said about the Cooperative Coevolution framework
 - **synchronous**: the population used to provide the context is updated only after all components were evolved
 - **asynchronous**: the population used to provide the context is updated after the evolution of each component
sCC Synchronous vs Asynchronous

Synchronous

Asynchronous

D. Zaharie

Population-based Stochastic Metaheuristics

UVT
Results

- analysis approaches:
 - analyze approximation accuracy for increased computational budget
 \[\frac{nfe(kn)}{nfe(n)} = k \]
 - analyze the scalability factor
 \[\frac{nfe(kn)}{nfe(n)} \] for a given approximation accuracy (e.g. \(\epsilon = 10^{-10} \))

Results:

- no significant differences between synchronous and asynchronous approach
- no critical impact of the context choice (current element context is slightly better)
- cooperative coevolution enhances the scalability

16 C. Craciun, M. Nicoara, D. Zaharie, Enhancing the scalability of metaheuristics by cooperative coevolution, LSSC 2009
Parallelization models

- Objective function evaluation ⇒ master-slave model
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)
Parallelization models

- Objective function evaluation \Rightarrow master-slave model
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)

- Large size population \Rightarrow island model
 - the population is divided into several subpopulations on which the same or different algorithms are executed
 - the subpopulations communicate by transferring elements according to a given topology
Parallelization models

- **Objective function evaluation** ⇒ **master-slave model**
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)

- **Large size population** ⇒ **island model**
 - the population is divided into several subpopulations on which the same or different algorithms are executed
 - the subpopulations communicate by transferring elements according to a given topology

Particularities in the case of coevolution:

- context broadcasting instead of a topology based migration
- the communication frequency depends on the sensitivity to the context
Summary

- DE is an easy to implement, (mostly) effective and an (almost) efficient algorithm for black-box optimization
 - important aspect: choice of the operators and parameters
- cooperative coevolution is a robust approach for enhancing scalability
 - key issue: choice of the components in accordance with the interaction between variables
- most of the current results are reported for problem sizes around 1000
Summary: DE-based image processing

- **Image registration**
 - **Aim:** Estimate the parameters of a rigid transformation
 - **Optimization problem:** minimizes the disimilarity between scene and model images
 - **Method:** DE/rand-to-best/1/exp\(^{17}\), (DE/rand/1/bin + DE/rand/1/exp)\(^{17}\) + AIS\(^{18}\)

\(^{17}\) Salomon et al., 2005

\(^{18}\) Santamaria et al., 2012

\(^{19}\) Osuna-Enciso et al., 2013
Summary: DE-based image processing

- **Image registration**
 - **Aim:** Estimate the parameters of a rigid transformation
 - **Optimization problem:** minimizes the disimilarity between scene and model images
 - **Method:** DE/rand-to-best/1/exp \(^{17}\), \((\text{DE/rand/1/bin + DE/rand/1/exp}) + \text{AIS}^{18}\)

- **Segmentation through multi-level thresholding**
 - **Aim:** estimate threshold values starting from of a mixture of Gaussians which matches the image histogram
 - **Optimization problem:** minimizes the Hellinger distance between the mixture of Gaussians and the image histogram
 - **Population elements:** parameters of each gaussian (mean and standard deviation) and apriori probability of each class \(^{19}\)
 - **Method:** DE/best/1/bin

\(^{17}\) Salomon et al., 2005
\(^{18}\) Santamaria et al., 2012
\(^{19}\) Osuna-Enciso et al., 2013
Summary: DE-based image processing

- **Segmentation through deformable models**
 - **Aim:** Localization of objects in an image
 - **Optimization problem:** maximizes the similarity between an object and the model or minimizes an energy function
 - **Population elements:** coordinates of an active net, parameters of a deformable model
 - **Method:** DE/rand/1/bin

20 Novo et al., 2012
21 Mesejo et al., 2013
22 Das & Kumar, 2009
Summary: DE-based image processing

- Segmentation through deformable models
 - **Aim:** Localization of objects in an image
 - **Optimization problem:** maximizes the similarity between an object and the model or minimizes an energy function
 - **Population elements:** coordinates of an active net, parameters of a deformable model
 - **Method:** DE/rand/1/bin

- Segmentation through clustering
 - **Aim:** Identifying homogeneous regions in the image (the number of regions is not apriori known)
 - **Optimization problem:** maximizes a clustering validity index
 - **Population elements:** cluster centroids and cluster activation values
 - **Method:** DE/rand/1/bin with adaptive parameters

20 Novo et al., 2012
21 Mesejo et al., 2013
22 Das & Kumar, 2009
West University of Timisoara, Romania
www.uvt.ro

...in figures

- 11 faculties
- 82 undergraduate programs
- 135 master programs
- 10 doctoral school
- 15000 students
Faculty of Mathematics and Informatics

... in figures
- 1500 students
- 55 teachers
- 2 research centers (Mathematics, Informatics)
- 1 spin-off for research - Institute e-Austria (www.ieat.ro)

Research Center in Informatics (http://research.info.uvt.ro):
- Distributed and Parallel Computing
- Artificial Intelligence
- Theory of Computing
- Computational Mathematics
Research Topics Overview

Different topics but similar challenges:

- Large sets of data or large search spaces
- Computationally intensive tasks
Research Topics Overview

Different topics but similar challenges:

- Large sets of data or large search spaces
- Computationally intensive tasks

... which require high performance solutions

http://hpc.uvt.ro
Distributed Computing

Current research topics:

- Tools for deployment of applications in multiple clouds
- Monitoring tools for data-intensive cloud applications
- Scheduling algorithms for resource provisioning

Related projects:
- MODAClouds (www.moda-clouds.eu, FP7 2012-2015)

Results: Multi-cloud toolbox for developers and operators of applications running on multi-clouds
Distributed Computing

Current research topics:
- Tools for deployment of applications in multiple clouds
- Tools for developing data-intensive cloud applications
- Scheduling algorithms for resource provisioning

Related projects:
 Aim: develop tool chain containing
 - IDE for data-intensive cloud applications
 - Tools for quality analysis: monitoring + anomaly detection (using machine learning)
Distributed Computing

Current research topics:
- Tools for deployment of applications in multiple clouds
- Tools for developing data-intensive cloud applications
- Algorithms for scheduling and resource provisioning

Challenges in solving scheduling problems:
- Large search space
- Complex optimization problem (multiple objectives, constraints, dynamic)

Related projects:
- AMICAS - Automated Management in Cloud and Sky Computing Environments (RO 2012-2016)
Current research topics:

- Machine learning techniques in:
 - Prediction for auto-scaling of resources in distributed systems
 - Analysis of financial, meteorological, medical data

- Multi-agent approaches in:
 - Stock trading systems
 - Frameworks for strategy games

- Ontologies for
 - Context modelling in IoT
 - Semantic services
Data Mining

Research topics:
- Distributed architectures for data mining
- Unsupervised classification of distributed data
- Extracting classification/prediction rules from data
- Taxonomy/ontology based similarity measures for medical data
- Anomaly detection in data

Challenges in data mining:
- Large sets of data
- Response in real-time (prediction models)

Data mining and machine learning as a Service:
- Access through lightweight web services (REST)
- Access to algorithms’ parameters
- User experience enhancements
- Semantic modeling
Remote Sensing Data Processing

Challenges:
- Large images (many pixels, many spectral bands)
- Computational intensive image analysis algorithms

Research topics:
- Processing multi/hyper spectral images:
 - Identify homogeneous regions
 - Identify reference substances

Results:
- Parallel/efficient implementations of spatial variants of fuzzy clustering algorithms for spectral mixture analysis (end-members extraction and abundances estimation)
Remote Sensing Data Processing

Efficiency of parallel fuzzy clustering tested on:
- InfraGrid cluster (400 cores)
- BG/P (1024 CPUs)

Algorithm: Spatial Fuzzy Cmeans
Implementation: C, MPI (MPICH-2)

Test images:
- LANDSAT (7856 x 8786 pixels, 4 spectral bands)
- AVIRIS (1087x614 pixels, 224 spectral bands)

Remote Sensing Data Processing

- Efficient implementation of endmembers extraction algorithms
 - AMEE (Automated Morphological Endmembers Extraction)

AMEE on BG/P
- Split the image + extract local information (local endmembers)
- exploit the structure of spectral angle metric to optimize the paired distances between local endmembers
- avoid a global computation by a particular procedure to merge local sets of endmembers
- control the synchronization among processes in the context of using collective communications (MPIBarrier)

Test image: AVIRIS Cuprite (224 bands, 614x2206 pixels)

Remote Sensing Data Processing

- Efficient implementation of endmembers extraction algorithms
 - MVSA (Minimum Volume Simplex Analysis)

MVSA on GPU

- Sequential implementation (Matlab): 3h
- Parallel implementation:
 - IBM blade with two Intel Xeon quad-core processors and one FermiTesla M2075 GPU, C+CUDA):
 - Time: 2 minutes

Fast MVSA

- Sequence of “approximate” constrained quadratic optimization problems solved by interior point method
- Time (for AVIRIS Cuprite data set, 250x190 pixels subscene):
 - Fast MVSA: 3 min
 - Other methods: 7 h (MVES) or 50 min (MVC-NMF)

Remote Sensing Data Processing

Collaborations
- IBM CAS Cairo, Egypt
- Ain Shams University, Cairo, Egypt
- University of Extremadura, Spain

Related projects:
- IBM OCR – High-Performance Satellite Multi/Hyperspectral Image Processing (2010-2011)
- GiSHEO - On demand Grid services for high education and training in Earth observation (ESA-PECS, 2008-2010)
- HPC-SEE - High-Performance Computing Infrastructure for South East Europe’s Research Communities (FP7-Infrastructures, 2010-2013)
- HOST – HPC Service Center (FP7-REGPOT, 2012-2014)
Computational Sciences

Computational Mathematics:
- Efficient methods for solving large systems of equations
- Preconditioning through bandwidth reduction

Computational Physics:
- Efficient computational methods in nanoscale optics
- Simulation of crystallization processes, transport phenomena, acoustic lining

Computational Biology:
- Simulating the dynamics of thymus cells populations based on experimental data

Related projects:
- Analysis of some mathematical physics problems occurring in the sound attenuation in an acoustically lined duct carrying gas flow (RO PN-II-ID-PCE, 2011-2013)
- SIMTIM - Modeling and simulation of the dynamics of thymocyte populations and cells of the thymus medulla under normal and pathological situations (RO PN-II-ID-PCE, 2012-2016)
Computational Sciences

Computational Biology:

- Multi-compartmental models:
 - Systems of (non)linear differential equations (from 4 to more than 20)
 - Various models for biological processes (proliferation, transfer, death)
 - Many parameters to estimate (from 30 to 55)

- Challenges for parameter estimation
 - no explicit relationship between objective function and parameters ("semi-transparent" model)
 - parameter (non)identifiability
 - hard to check constraints

- Approach:
 - use of population-based metaheuristics

[D. Zaharie, L. Moleriu, V. Negru, Evolutionary Parameter Estimation in Multi-stage Compartmental Models of Thymocyte Dynamics, Proc. GECCO 2013]