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Introduction to the Research Activity  
  
 
 
 
 

Problem Statement 

Due to the huge number  and the (short) revisit time of 
high resolution satellites   

  valuable spatio-temporal information.   

 develop new methods to explore such big data   

Huge amount of  satellite images acquired at different resolution     

• Multi-resolution methods 
• Multi-temporal methods 
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Objectives 

•Supervised image classification 

•General and sufficiently robust to different types of images at different dates. 
 
  
 
 
 
 

Key points 

•Focus on multi-resolution optical images 

•extension to multi-temporal images 
 
  
 
 
 
 

General applications 

•Global detection of urban areas, that are critical w.r.t. populations (risk management). 

•Infrastructure mapping. Mapping the water after a flooding. 

•Land-cover or land-use maps after an earthquake. 
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Proposed method 

A novel hierarchical method  to fuse  multidate,  multiresolution,  and  multiband  
remote sensing imagery  for  multitemporal classification purposes. 
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 Pyramid Structure[1]. 

[1] J. M. Jolion, A. Rosenfeld. A Pyramid Framework for Early Vision: Multiresolutional Computer Vision. Norwell, MA, USA: Kluwer Academic Publishers, 2004. 
. 
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Images are organized according to their resolutions in a pyramid structure 
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   Quad-tree structure [2]. 

[2] M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah, and A. S. Willsky, “Modeling and estimation of multiresolution stochastic processes,”IEEE Trans. Inform. Theory, vol. 
38, pp. 766–784, Mar. 1992. 

Operators on the quad-tree : 
•  δ : the backward shift (one-to-one operator) 
•  α : the interchange  operator in the same scale 
•  β : the forward shift  (one-to-four operator) 
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 Proposed Multitemporal Quad-tree [3]. 
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[3] Ihsen Hedhli, Josiane Zerubia, Gabriele Moser, Sebastiano B. Serpico.  “ Fusion of multitemporal and multiresolution remote sensing data and application to natural 
disasters”. IGARSS, Jul2014, Québec, Canada. 
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 Bayesian Formulation 
 

∀ 𝒔 ∈ 𝑺, 𝒙 𝒔 = 𝒂𝒓𝒈𝐦𝐚𝐱
𝒙𝒔∈𝝎

𝑷(𝒙𝒔 |𝒚) 

The resulting Bayesian estimator is the mode of posterior marginals (MPM) estimator 

Considered cost function : [4]  

𝑪𝑴𝑷𝑴 𝑿, 𝒙 = 𝜹(𝑿, 𝒙)

𝒔∈𝑺

 

Where 𝛿(𝑋, 𝑥) is 1 when 𝑋 = 𝑥 and 0 otherwise.   

In order to classify the image, Y, we consider the problem of inferring the “best” 
configuration of  X (class labels).    
 
The standard Bayesian formulation of this inference problem consists in minimizing the 
average cost of an erroneous classification. 
 

𝒙 = 𝒂𝒓𝒈min
𝒙∈𝜴

𝑬[𝑪(𝑿, 𝒙)|𝒀 = 𝒚] 

 
where 𝑪(𝑿, 𝒙)  is the cost of estimating the true classification,  𝑿 , through the 
approximate classification,  𝒙. (𝛺 set of all possible configurations) 

[4]  Laferte, J.-M., Perez, P., and Heitz, F., “Discrete Markov modeling and inference on the quad-tree,” IEEE Trans. Image Process. 9(3), 390-404 (2000). 
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 𝒑 𝒙𝒔
  |𝒚 =  

 p xs
  , xs− , xs= | yd s

 

  p xs
  , xs− , xs= | yd s

 
xs

.  𝒑 𝒙𝒔−
 |𝒚  𝒑 𝒙𝒔=

 |𝒚

x s − , xs =

 

 

 Hierarchical Markovian Model 
 

A non-iterative algorithm is developed to integrate an exact estimator of the mode of 
posterior marginals (MPM).  
 The aim is to maximize recursively  the posterior marginal at each site s. 

𝒙 𝒔 = 𝒂𝒓𝒈𝐦𝐚𝐱
𝒙𝒔∈𝝎

𝑷(𝒙𝒔 |𝒚) 

 𝒑 𝒙𝒔
  |𝒚 =  

 p xs
  , xs− | yd s

 

  p xs
  , xs− | yd s

 
xs

.  𝒑 𝒙𝒔−
 |𝒚

x s − 

 

 

Single date case 
 
 
 
 
Multidate case 
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[4] 

[5] 

[4]  Laferte, J.-M., Perez, P., and Heitz, F., “Discrete Markov modeling and inference on the quad-tree,” IEEE Trans. Image Process. 9(3), 390-404 (2000). 

[5] Ihsen Hedhli, Josiane Zerubia, Gabriele Moser, Sebastiano B. Serpico.  “ Fusion of multitemporal and multiresolution remote sensing data and application 

to natural disasters”. IGARSS, Jul2014, Québec, Canada. 
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Calculate recursively the posterior marginal   p xs
  |y   while the probabilities 

 𝒑 𝒙𝒔
  , 𝒙𝒔− | 𝒚𝐝(𝐬)

   are made available. 

1 

3 
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Prior 

Posterior marginal 

Transition Probabilities over 
scale  
 

 Hierarchical Markovian Model 
 𝒙 𝒔 = 𝒂𝒓𝒈𝐦𝐚𝐱

𝒙𝒔∈𝝎
𝑷(𝒙𝒔 |𝒚) 
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Single date case 
 



 
  
 
 
 
 

These probabilities are calculated through an MPM algorithm runs in two passes on a quad tree, referred to as 
“bottom-up” and “top-down” passes. 

 𝒑 𝒙𝒔
  |𝒚 =  

 p xs
  , xs− , xs= | yd s

 

  p xs
  , xs− , xs= | yd s

 
xs

.  𝒑 𝒙𝒔−
 |𝒚  𝒑 𝒙𝒔=

 |𝒚

x s − , xs =

 

 

𝒑 𝒙𝒔
  | 𝒙𝒔− , 𝒙𝒔= .

 𝒑 𝒙𝒔− | 𝒙𝒔= .  𝒑 𝒙𝒔=  

 𝒑 𝒙𝒔
   

.  𝒑 𝒙𝒔
  |  𝒚𝒅(𝒔)  

4 
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Calculate recursively the posterior marginal   p xs
  |y   while the probabilities 

 𝒑 𝒙𝒔
  , 𝒙𝒔− , 𝒙𝒔= | 𝒚𝐝(𝐬)

   are made available. 
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Posterior marginal 

Transition Probabilities over 
scale and time  
 

 Hierarchical Markovian Model 
 

𝒙 𝒔 = 𝒂𝒓𝒈𝐦𝐚𝐱
𝒙𝒔∈𝝎

𝑷(𝒙𝒔 |𝒚) 
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Multidate case 
 



 
  
 
 
 
 

𝑝2 𝑥(1)  

𝑝2 𝑥(𝑟)  

𝑝2 𝑥(0)  

 𝒑 𝒙𝒔
  =   𝒑 𝒙𝒔 

   | 𝒙𝒔−
 .  𝒑 𝒙𝒔−

 
𝒙𝒔 −  

  1 Top-down 

Transition Probabilities over scale [6]  
 

 𝒑 𝒙𝒔 | 𝒙𝒔−  =    

𝜃              𝑥𝑠 = 𝒙𝒔− 

  
1 − 𝜃

M − 1
               xs

 ≠ xs− 
 

 

Prior 

 p xs
  | xs− , xs= =   

θ                  xs
 = (xs− = xs=)

φ                   xs
 = (xs− ≠ xs=)

1 − 𝜃

M − 1
               xs

 ≠ (xs− = xs=)

 
1 − 2φ 

M− 2
            xs

 ≠  (xs− ≠ xs=)

     

     
  
 

Transition Probabilities over scale and time  
 

4 
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 Hierarchical Markovian Model 
 

The Prior probabilities 
 

[6] C. Bouman and M. Shapiro, “A multiscale image model for Bayesianimage segmentation,” IEEE Trans. 

Image Processing, vol. 3, pp.162–177, Feb. 1994 f 
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𝑝2 𝑥𝑠
(0)
 | 𝑦𝑠

(0)
   

  𝑝2 𝑥𝑠 , 𝑥𝑠− , 𝑥𝑠= | 𝑦𝑠
(0)

  

𝑝2 𝑥𝑠
(1)
 | 𝑦𝑑(𝑠)

(1)
  

 𝑝2 𝑥𝑠 , 𝑥𝑠− 𝑥𝑠= | 𝑦𝑠
(1)

  

𝑝2 𝑥𝑟 | 𝑦𝑑(𝑠)  = 𝑝2 𝑥𝑟 | 𝑦   

𝑝2 𝑥(1)  

𝑝2 𝑥(𝑟)  

𝑝2 𝑥(0)  

               Posterior marginal  [4] 

 𝒑 𝒙𝒔
  |𝒚𝐝 𝒔 ∝  p ys| xs .  p xs

  .   
 𝒑 𝒙𝒕

  |𝒚𝒅(𝒕)

p(xt)
.  p xt

  |xs   xtt∈s+   

 

Bottom-up 2 

Likelihood term estimated using Gaussian mixture 

 𝒑 𝒙𝒔 |𝒚𝒔 ∝  𝒑 𝒚𝒔| 𝒙𝒔 .  𝒑 𝒙𝒔  Initialisation :  Urban area modeling 

PDF 
estimates 

Histogram 

 Hierarchical Markovian Model 
 

The Posterior marginal probabilities 

[4]  Laferte, J.-M., Perez, P., and Heitz, F., “Discrete Markov modeling and inference on the quad-tree,” IEEE Trans. Image Process. 9(3), 390-404 (2000). 
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𝑝2 𝑥𝑠
(0)
 | 𝑦𝑠

(0)
   

  𝑝2 𝑥𝑠 , 𝑥𝑠− , 𝑥𝑠= | 𝑦𝑠
(0)

  

𝑝2 𝑥𝑠
(1)
 | 𝑦𝑑(𝑠)

(1)
  

 𝑝2 𝑥𝑠 , 𝑥𝑠− 𝑥𝑠= | 𝑦𝑠
(1)

  

𝑝2 𝑥𝑟 | 𝑦𝑑(𝑠)  = 𝑝2 𝑥𝑟  | 𝑦   

𝑝2 𝑥(1)  

𝑝2 𝑥(𝑟)  

𝑝2 𝑥(0)  

 𝑥 𝑟= arg𝑚𝑎𝑥𝑥𝑟 [𝑝 𝑥𝑟 | 𝑦 ]  

 𝑥 𝑠
(1)

= arg𝑚𝑎𝑥𝑥𝑟 [𝑝 𝑥𝑠
(1)

 
 | 𝑦 ]  

 𝑥 𝑠
(0)

=  arg𝑚𝑎𝑥𝑥𝑟 [𝑝 𝑥𝑠
(0)

 
 | 𝑦 ]  

 Hierarchical Markovian Model 
 Maximisation step   

 Need to maximize the posterior 

probability at the coarsest scale 

(top-down pass). 

 Tool: modified Metropolis 

dynamics. [7]  

[7] Kato, Z. Zerubia, J. and Berthod, M., “Satellite image 

classification using a modified  Metropolis dynamics,” IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing, (ICASSP), Volume 3, 1992 . 
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  initialisation recursion 

Top-down 
Prior 
 𝒑 𝒙𝒔

   

 
Potts MRF model  

 𝑝 𝑥𝑠
  =   𝑝 𝑥𝑠 

   | 𝑥𝑠−
 .  𝑝 𝑥𝑠−

 

𝑥 𝑠 −

 

Bottom-up 
Partial 

Posterior 

 𝒑 𝒙𝒔
  |𝒚𝒅(𝒔)    

 𝑝 𝑥𝑠
  |𝑦𝑠

∝   𝑝 𝑦𝑠| 𝑥𝑠 .  𝑝 𝑥𝑠
    

 𝑝 𝑥𝑠
  |𝑦𝑑(𝑠) ∝ 

  𝑝 𝑦𝑠| 𝑥𝑠 .  𝑝 𝑥𝑠
  .  

 𝑝 𝑥𝑡
  |𝑦𝑑 𝑡

𝑝 𝑥𝑡
.  𝑝 𝑥𝑡

  |𝑥𝑠
𝑥𝑡𝑡∈𝑠+

  

Top-down 
Posterior 
 𝒑 𝒙𝒔

  |  𝒚   

 𝑝 𝑥𝑟
  |  𝑦𝑑(𝑟) =

  𝑝 𝑥𝑟
  |  𝑦   

𝑝 𝑥𝑠
  |  𝑦 = 

 
 𝑝 𝑥𝑠

  , 𝑥𝑠− , 𝑥𝑠= | 𝑦𝑑(𝑠)
 

  𝑝 𝑥𝑠
  , 𝑥𝑠− , 𝑥𝑠= | 𝑦𝑑(𝑠)

 
𝑥𝑠

.  𝑝 𝑥𝑠−
 | 𝑦  𝑝 𝑥𝑠=

 |𝑦

𝑥 𝑠 − , 𝑥𝑠 =

  

1 2 

 
  
 
 
 
 

Summary: Recursive Passes on the Quad-tree 
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 Time  series  of  panchromatic  and  multispectral  Pléiades  images  acquired over Port-au-Prince (Haiti) 

Port au Prince   
Pléiades ©CNES (2011), 
distribution Airbus DS 
 Panchromatic 0.7 m 

(resampled at 0.5 m)  

 Multispectral 2.8 m  
(resampled at 2 m) 

 

Port au Prince   
Pléiades ©CNES (2013), 
distribution Airbus DS 
 Panchromatic 0.7 m 

(resampled at 0.5 m)  

 Multispectral 2.8 m  
(resampled at 2 m) 

 

Port au Prince   
Pléiades ©CNES (2012), 
distribution Airbus DS 
 Pansharpened image 

(resampled at 0.5 m) 

0 



 
  
 
 
 
 

 water 
 urban 
 vegetation  
 bare soil 

 

    Experimental Results on Multitemporal Data 

Classification map using time series images  Classification map using  monotemporal images 

urban water vegetation bare soil 

  
  

GROUND 
TRUTH 

Urban 71.62 % 14.19% 5.67 % 8.53 % 

Water 2.08% 94.05 % 2.38 % 1.48% 

vegetation 1.26% 1.04% 96.69 % 1.1 % 

Bare soil 3.94%  2.15% 1.07 % 92.82 % 

  Overall accuracy 88,79 % 

Confusion matrix for the Port-au-Prince dataset. 
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Classification map for 
2012, obtained through 
the proposed cascade 
method using images 
acquired in 2011 and  
2012 
 

Classification map for 
2013, obtained through 
the proposed cascade 
method using all images 
(15 images in total).   

Change map derived 
from the classification 
result of the proposed 
method (change is 
indicated in black). 
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Conclusion 

 
Satisfying classification results obtained through the proposed Markovian 
method. 

 
Details provided by the multitemporal hierarchical model. 

 
 

 
  
 
 
 
 

Perspectives 

Further experimental validation with more spatially detailed ground truth on 
Haïti (provided by SERTIT, France in the near future) 
 
Propose a new hierarchical model  in order to :  

 
Use a different number of classes at each level of the pyramid.   
Update of the model according to the update of the ground truth made 
by SERTIT in collaboration with CNES  
Extend to multisensor optical-radar imagery 

 


