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Introduction 



Motivations 

• Appears in various types of natural images 
    e.g., retina, DNA, road network, cracks, facial wrinkles, ... 

• Shows complex geometry 

• Low contrast, surrounded by the similar background textures 
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Previous work 

• Blood vessel segmentation [Frangi 98, Staal 04, Law 08, ...] 
• To enhance visibility and aid diagnoses of vascular diseases 

• Bioimage analysis [Zhao 11, Wang 11, Peng 11, Turetken 13, ...] 
• To reconstruct physical structure of neural network 

• Facial wrinkle detection [Batool 12, Jeong 14, ...] 
• To evaluate skin condition for beauty and dermatology 

• Road network extraction [Lacoste 05, Hu 07, Valero 10, ...] 
• To extract geographical information from satellite images 

• Defects in the asphalts [Iyer 05, Chambon 10, ...] 
• To analyze large surfaces safely 
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• Issues: Automatization + Generalization 

     Reduce user-defined parameters  

     Employ machine learning systems 



Overview 

 

 

 

 

 

 

 
 

• Goal: Unified framework for curvilinear structure reconstruction 

• Assumption: can be decomposed into multiple line segments 

• Find an optimal set of line segments for curvilinear structure 
reconstruction 
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Overview 

 

 

 

 

 

 

 
 

• Stochastic model 
• Maximize a posterior probability of line segments for given image 

• Data likelihood: local curvilinear features 

• Prior energy: constrains local geometry of line segments 
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Overview 

 

 

 

 

 

 

 
 

• Structured ranking learning 
• Learn a function to evaluate correspondence between line segment and the 

underlying curvilinear structure 

• Orientation-aware curvilinear feature descriptor 
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Overview 

 

 

 

 

 

 

 
 

• Progressive curvilinear path reconstruction 
• Provide topological features and simplified curvilinear structure 

• Find the longest geodesic paths in the graph 
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Stochastic model 



Curvilinear features 

• Thin / Elongated / Symmetric / Locally oriented 

• Show different intensity values compared to its surroundings 

Image gradient 
• Can measure local intensity variation 

• 2nd derivative of Gaussian kernels 

 

 

 

 

Morphological filtering [Talbot 07] 
• Highlight structural similarity 
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Input 0⁰ 45⁰ 90⁰ 135⁰ 

Input Invert L=10 L=50 L=100 



• Line segment as tuple of pixel, length, and orientation  
  

 

• Find a set of line segments that maximize a posterior probability 

 
 

Data likelihood 

 

 
 

• To localize a line segment for a given image 

• Curvilinear feature vector           evaluates a pixel whether it is on the curvilinear 
structure according to the image gradient and morphological filtering 

 

Stochastic model 
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Stochastic model 

Prior energy 
 

 

 

• Define local geometry of line segments (line segments interact if they are close enough) 

• Smoothly connected line segments are desired 

• Connectivity: end-to-end distance of line segments 

• Curvature: angle difference between adjacent line segments  

• Reject congestion of lines within local configuration 

• Measured by the proportion of pixels falling in the same areas 
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Connectivity Curvature Congestion 



RJMCMC [Green 95] 

• Reversible jump Markov chain Monte Carlo 

• Each state of a discrete Markov chain               corresponds to a 
random configuration on 

• Markov chain eventually reaches an equilibrium state which 
maximizes the proposed density function 
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RJMCMC 

• Simulate a discrete Markov chain over the configuration space 
via sub-transition kernels i.e., Birth, Death, Affine transform 

• Birth kernel proposes a new segment 
•   

• Randomly select location, length, and orientation from sample space 

 

 

 

• Death kernel removes a segment 
• Randomly select an existing line segment from the current configuration 
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RJMCMC 

• Simulate a discrete Markov chain over the configuration space 
via sub-transition kernels i.e., Birth, Death, Affine transform 

• Affine transform updates intrinsic variables of the segment 
• Select a line segment and update its location, length, and orientation randomly 

•   

 

 

 

 

• Markov chain will remain at the current configuration, if the 
probability of proposed configuration is low 
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Delayed Rejection [Green 01] 

• Gives a second chance to a rejected configuration by enforcing 
the connectivity 

 

 

 

 

1. Let s={s1, s2, s3} be the current configuration  

2. Propose a new configuration via affine transform kernel 

3. If s′ is rejected, DR kernel searches for the nearest end points 
in the rest of the line segments 

4. An alternative line segment s* will enforce the connectivity 
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Create line hypotheses 

 

 

 

 

 

• Stochastic model is sensitive to the selection of hyperparameter 

• Learning is NOT feasible 
• Ground truth is given as a binary segmentation map 

• To avoid estimating hyperparameter,  
1. We build line hypotheses with respect to K different hyperparameter vectors 

2. Integrate line hypotheses to reduce sample space 

3. Find the most promising line hypothesis and use its hyperparameter vector 
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Input Gradient 



Integrate line hypotheses 

 

 

 

 

 

• Assumption 
• Prominent line segment will be observed more frequently 

• Mixture density  

 
 

• Shows consensus between line hypotheses 

• Reduce sampling space 

• Criterion for hyperparameter vector selection 
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Input Gradient 



Integrate line hypotheses 

 

 

 

 

 

• Update data likelihood 
 

• Induce reduction of sampling space 

• Find the most promising hyperparameter vector 

 

• Re-Simulate Markov chain 
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Input Gradient 



Experimental Results 
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Input Ground truth MPP Proposed [Talbot 07] [Becker 13] 



Experimental Results 
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Input Ground truth MPP Proposed [Talbot 07] [Becker 13] 



Experimental Results 
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DNA Wrinkles 

[Talbot 07], L=20 
[Talbot 07], L=80 
[Becker 13] 
MPP 
Proposed  

[Talbot 07], L=5 
[Talbot 07], L=80 
[Becker 13] 
MPP 
Proposed  
Human expert 



Summary 

• Stochastic model for curvilinear structures 
• e.g., Wrinkles, DNA filaments, road cracks, blood vessels, ... 

• Data term: Image gradient & morphological filtering responses 

• Prior term: To provide smoothly connected lines 

• Simulation: RJMCMC with delayed rejection 

• Reduce parameter dependencies of the stochastic modeling 
with hypotheses integration 
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• Limitation 

     Heuristically designed  prior energy 

     Fails to find varying thicknesses 

     Heavy computation 



Inference of Curvilinear Structure 



Supervised machine learning 

 

• Goal: obtain a function                       which maps an input space  
             to an output space 

• Supervised machine learning algorithm evaluates the quality of 
hypothesis                         with labeled examples 

 

Machine learning vs. Structured learning  

• Inputs can be any kind of objects (Both) 

• Output is a real number (Machine learning)  
       e.g., Classification, regression, ... 

• Outputs are complex / structured objects (Structured learning)  
      e.g., Segmentation, protein sequence, NLP, ranking, ... 
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Structured ranking learning 

• Learn a ranking function to evaluate correspondence between 
line segments and feature maps 

• Curvilinear structure will be reconstructed by the high ranked 
line segments 

• Score function 

 

 

 

 

 

 

• Orientation of line segments?  
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Output ranking scores 

High 

Low 



• Model parameter      determines the relative importance of 
feature maps 

• Permute the elements in the feature vector according to the 
given orientation 

Orientation-aware curvilinear feature 
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Spatial grouping of the features 

• Enhance spatial coherence of the output ranking scores 

• Weighted sum with neighboring set of line segments 
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High Low 



Learning 

• We need a training dataset 
• A list of line segments (Easy)  

• The relevant raking values (?)  

• Ground truth (GT) is given as a binary segmentation map 
• No shape information w.r.t. line segments, i.e., length, orientation, thickness 

• Evaluate the shape dissimilarity (F1) between the line segment 
and the corresponding image patch from ground truth 
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Image GT 0⁰ 22.5⁰ 45⁰ 67.5⁰ 90⁰ 112.5⁰ 135⁰ 157.5⁰ 

0.56 0.78 0.51 0.30 0.27 0.22 0.19 0.26 

2 1 3 4 5 7 8 6 

F1 

Ranking 

True positive False positive False negative 



Learning 

• Prediction is performed by finding rankings that maximize the 
score function 

 

• Joint feature map 

 
 

• Ranking matrix 
 

 

• Optimize constrained objective function via cutting plane 
algorithm [Joachims 09] 
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Output ranking score map 

• Output ranking scores highlight the latent curvilinear structure 

 High Low 
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Binary segmentation map 

• Compute the average proportion of pixels being part of the 
curvilinear structure from training images for stop criterion 
(≈threshold) 
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Binary segmentation map 

• Remain pixels  according to the output rankings 

• Topology can be broken 

 

34 



Dissimilarity score map 

• Each pixel encodes shape information (length, orientation, and 
thickness) 

 

35 



Dissimilarity score map 

• Values are used to generate a graph for curvilinear path 
reconstruction 
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Progressive curvilinear path reconstruction 

1. Induce a subgraph G′ using 
structured output  ranking scores 

2. Randomly select a vertex t and find 
the longest geodesic path (t → u) 

3. Find the longest geodesic path from 
u to a vertex v at the maximum 
distance from u 

    The distance of path u → v is a diameter of G′ 

4. Assign 0 weight for all edges on this 
path (u → v) 

5. Repeat the process step 2 to 4 to 
add branches which are longer than 
pre-defined length 
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Progressive curvilinear path reconstruction 

• Iteratively find the longest geodesic path in the graph 

• Can illustrate topological features in different levels of detail 
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Proposed Input image Ground truth 



Progressive curvilinear path reconstruction 

• Iteratively find the longest geodesic path in the graph 

• Can illustrate topological features in different levels of detail 
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Proposed Input image Ground truth 



Progressive curvilinear path reconstruction 

• Iteratively find the longest geodesic path in the graph 

• Can illustrate topological features in different levels of detail 
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Proposed Input image Ground truth 



Progressive curvilinear path reconstruction 

• Iteratively find the longest geodesic path in the graph 

• Can illustrate topological features in different levels of detail 
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Proposed Input image Ground truth 



Experimental results: Aerial 
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Input Ground truth [Law 08] 

[Becker 13] [Sironi 14] Proposed 



Experimental results: Cracks 
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Input Ground truth [Law 08] 

[Becker 13] [Sironi 14] Proposed 



Experimental results 

• Proposed curvilinear path reconstruction shows the highest F1 
performance with the minimum number of pixels 
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Aerial Cracks 



Summary 

• Structured ranking learning for curvilinear structures 
• Learn a ranking function: to evaluate correspondence between line segments and 

feature maps 

• Orientation-aware feature vector: permute elements in feature vector according to 
the given orientation 

• Structured SVM:  employed to obtain model parameter 

• Progressive curvilinear path reconstruction shows topological 
features in different levels of detail 
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• Limitation 

     Ambiguous stopping criterion 

     Fails to interpret varying thicknesses 

     Few parameters are manually chosen, e.g., pre-defined length 



Conclusions  

• Generic curvilinear structure reconstruction models 
• Retina, DNA filament, Road, Cracks, ...  

• Curvilinear features 
• Image gradients 

• Morphological filtering 

• Line segment 

• Find an optimal set of line segments 

• Stochastic modeling 
• Maximize a posterior probability of lines segments for given image 

• Structured ranking learning 
• Learn a function to evaluate the correspondence between lines and feature maps 

• Progressive curvilinear path reconstruction algorithm 
• Provides topological features in different levels of detail 

 
46 



Perspectives 

• Multiscale approach 
• To take into account varying thickness 

• Stochastic model 
• Hierarchical modeling 

• Bezier curve [Bama 15] 

• Structured ranking learning 
• Employing non-line shape templates (bifurcation patterns [Azzopardi 11]) to 

evaluate rankings 

• Speed up 
• Applying parallel  MCMC sampler [Verdie 14] 
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Thank you! 
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