Université Montpellier II - SIBAGHE 16 / 11 / 2012

Application de l'identification d'objets sur images à l'étude de canopées de peuplements forestiers tropicaux : cas des plantations d'*Eucalyptus* et des mangroves

Direction : Pierre Couteron et Josiane Zerubia Encadrement : Christophe Proisy et Xavier Descombes

Plan de la présentation

- Introduction
 - Enjeux liés aux forêts
 - Etude des forêts par télédétection
 - Objectifs
- Données
 - Paramètres forestiers
 - Images à très haute résolution spatiale (THRS)
- Processus Ponctuels Marqués
 - Principes
 - Evaluation de la qualité de la détection
- > Applications
 - Forêts naturelles de mangroves
 - Plantations d'Eucalyptus
- Conclusions & Perspectives

Forêt tropicale en Guyane

Image Geoeye de mangrove

Forêt de mangrove

Applications

Enjeux des forêts

- Les forêts jouent un rôle important :
 - régulations hydrologique et climatique
 - protection et reconstitution des sols
 - conservation des espèces animales et végétales
- Le cas des forêts tropicales (dans un contexte de la dégradations et de la déforestations):
 - préservation de la biodiversité
 - rôle important dans le cycle de carbone
 - un milieu beaucoup plus complexe et difficile d'accès, moins bien connu que les forêts tempérées.
- Etudes des forêts par télédétection
 - cartographie des couvertures forestières
 - aide aux inventaires forestiers

Observation de la Terre

Potentiel de la très haute résolution spatiale

Proisy et al., 2012

© L'Avion Jaune

5

un extrait d'une photographie aérienne à 20cm (juillet 2010)

un extrait d'image SPOT5 mode fusion à 2,5m (octobre 2010)

300 m

Introduction

Méthode

Applications

Conclusions

Détection des arbres individuels

Maxima locaux

Blazquez, 1989

Popescu, 2002

- Approche contour
 - valley-following

Gougeon, 1995

region-growing

Culvenor, 2002

Objectifs

- Détection des houppiers sur images THRS
 - évaluer le potentiel de la détection par PPM
- > Déduire des informations forestières à partir des détections
 - à l'échelle de l'arbre:
 - ✓ positionnement et taille de houppier
 - à l'échelle du peuplement forestier (~ 1ha) :
 - \checkmark la structure: distribution des tailles d'arbres

Applications

Conclusions

Forêts naturelles de mangroves

L'écosystème présente une grande dynamique forestière.

Un gradient de structures différentes

Jeune

Adulte

Mature

Sénescent

Images IKONOS

Plantation d'Eucalyptus

Etude réalisée avec l'UMR TETIS et ECO&SOLS

La structure forestière est bien connue:

G. le Maire et Y. Nouvellon

✓ densité de tiges, modèle de croissance, …

- Enjeu: suivre la croissance de la plantation
 - ✓ identifier les zones où les arbres poussent mal

© Y. Nouvellon, CIRAD & USP

Données forestières

- Paramètre forestiers:
 - diamètre de tronc (DBH)
 - diamètre de houppier
 - hauteur d'arbre
 - distribution d'arbres

- Relation allométrique:
 - Les principales caractéristiques géométriques de la forêt sont étroitement corrélées les unes aux autres.

 $Y = Y_0 imes DBH^\Phi$ e.g. West et al. 2009

- Y : variable dendrométrique
- Y_o: constante de normalisation
- *ф* : exposant allométrique

 $R_{Houppier} \propto DBH^{\frac{2}{3}}$

Simulation de la maquette

Projet TOSCA/CNES « FOTO-METRICS »

Proisy et al., 2012

Maquettes de mangrove

Projet TOSCA/CNES « FOTO-METRICS »

Proisy et al., 2012

Introduction

Données images

> Images réelles:

Forêt	Capteur	Date d'acquisition	Résolution spatiale
Plantation d' <i>Eucalyptus</i>	WorldView-2	11 – 05 - 2010	0.5 m
	WorldView-2	01 - 08 - 2010	0.5 m
	WorldView-1	29 - 01 - 2011	0.5 m
mangrove	IKONOS	12 - 10 - 2003	1 m
	Lidar	10 - 2004	1 m

Images de réflectances simulées par DART à partir des maquettes

Projet TOSCA/CNES « FOTO-METRICS »

Proisy et al., 2012

Méthode de détection par Processus Ponctuels Marqués

Descamps et al., 2007

Descombes et al., 2009

Perrin, 2003

Processus Ponctuels Marqués

Espace : χ

Configuration

$$\mathbf{x} = \{x_1, \dots, x_n\}, \ n \in \mathbb{N}$$

un ensemble dénombrable et non ordonné de points de χ

Processus Ponctuels Marqués

Configuration

$$\mathbf{x} = \{u_1 = (p_1, m_1), \dots, u_n = (p_n, m_n)\}_{n \in \mathbb{N}}$$

un ensemble dénombrable et non ordonné d'objets de χ

- Caractéristiques d'une configuration
 - nombre d'objets : n
 - position de chacun dans l'espace $P: \{p_1, \cdots, p_n\}_{n \in \mathbb{N}}$
 - marque de chacun dans l'espace *M*: $\{m_1, \cdots, m_n\}_{n \in \mathbb{N}}$

Introduction

Données

Méthode

Applications

Conclusions

Modélisation par PPM

une image simulée par DART sur une parcelle de forêt naturelle

modélisée par un ensemble de disques

© Barbier, 2009

Chaque configuration est caractérisée par une énergie:

 $U(\mathbf{x})$

interactions entre objets

cohérence avec données d'images

Energie a priori : *Up*

Introduction des connaissances forestières :

• régler le chevauchement entre houppiers

Energie d'attache aux données: *Ud*

Cohérence avec la variance d'intensités dans une image

contraste exigé entre un houppier et son voisinage

 $u \in \mathbf{x}$

Principe de détection

Minimiser l'énergie totale de la configuration

selon les modèles d'énergies

Energie d'attache aux données

Processus d'optimisation:

Algorithme de naissances et morts multiples

Algorithme de naissances et morts multiples

Qualité de détection

Score global de détection:

$$SD_G = 100 \times \frac{Ns}{Nd + No}$$

- Nd : le nombre total de détections
- Ns : le nombre de bonnes détections
- No : le nombre d'arbres non détectés
- Critères de mise en correspondance:
 - écart de positionnement
 - différence de rayon de houppiers
 - autres critères: distance maximale,...

Paramétrage du modèle

- Paramètres de l'algorithme de naissances et morts multiples
 - paramètres initiaux du recuit: T_0 , δ_0
 - pas de décroissance: a_{τ} , a_{δ}
 - nombre d'itérations: Nit
 - → Déterminés par expérience :
 - vérification en pratique pour nos applications
- Paramètres du modèle de PPM:
 - pondération entre les énergies a priori et d'attache aux données: γ_p , γ_d

tant que $\Upsilon_p > \Upsilon_d$: faible influence sur la détection

- intervalle de rayons de houppiers : $[r_{min}, r_{max}]$
- recouvrement entre disques: Θ
- seuil de contraste radiométrique: *d*₀
 - Déterminés selon l'étude de sensibilité ou connaissances a priori

Descombes et al., 2009 J Math Imaging Vis

Applications -- Forêts naturelles de mangrove

[©] J. ZHOU, 2010

Applications

Conclusions

Maquettes de mangrove

Applications

Conclusions

Maquettes de mangrove

Images simulées dans le projet « FOTO – METRICS »

Arbres de références

Problème: les arbres ne sont pas tous détectables

Définition des arbres détectables ?

Critère de la sélection des arbres de référence

 indice de fermeture: g – condition d'accès à la lumière pour chaque arbre dans la parcelle

$$g = \sum_{i=1}^{n} \sin\beta$$

Méthode

Applications

Conclusions

Indice de fermeture

Classes d'indice de fermeture

Définition des classes

Distribution des arbres selon la classe d'indice de fermeture

Visualisation des arbres de référence

Sensibilité aux paramètres du modèle

recouvrement entre disques: Θ

modèle d'énergie a priori

seuil de contraste radiométrique : d₀ modèle d'énergie d'attache aux données

Sensibilité à l'intervalle [r_{min} , r_{max}] des rayons de houppiers

≻ r_{min}

Si r_{max} trop grand: détection de plusieurs couronnes par un seul disque

32

Données

Méthode

• $\Theta = 20\%$

Résultats de détection

Introduction

Données

Résultats de détection

Distributions des rayons des disques

Distribution des DBH (des arbres détectables) des maquettes (cm)

Cohérence avec l'allométrie

régression entre les modes (celui dans la distribution des DBH et celui dans la distribution des rayons de disques) de chaque parcelle

Applications -- Plantations d'*Eucalyptus*

Plantation d'Eucalyptus

Etude réalisée avec l'UMR TETIS et ECO&SOLS

• 112 plots (~ 25*25m) où la densité d'arbres est connue (~ 100 arbres)

Détection sur images WorldView (50cm)

Méthode

Introduction Données

Applications Conclusions

Introduction

Scores de détection

sur images sur-échantillonnées (10cm)

41

Problèmes de détection

> Exemples: omissions

- houppiers trop petits pour être détectés
 - => cohérente avec l'objectif de travail

jaune: référence
rouge: détection

- Exemples: fausses détections
 - si r_{min} très petit
 - => réduire l'intervalle de rayon

Estimation du rayon des houppiers

Les tailles de houppiers sont sous-estimées en août.

=> Limités par r_{max}

Détection sur grande surface

Zhou et al. FEM, 2012

- Validation de la détection sur 18 plots de 50*50m
- Etude du paramétrage
 - recouvrement entre disques:

 $\Theta = 0.1$

• seuil de contraste radiométrique:

$$d_0 = 0.1$$

• l'intervalle de rayon:

$$r_{min} = 0.7 m, r_{max} = 1.1 m$$

La détection est meilleure sur l'image d'août (les SD_G sont > 80 en général).

La direction des rangées d'arbres influence peu les résultats de détection.

Résultats de détection sur 4 plots

Estimation de la densité locale

> Conclusion : on peut cartographier les zones à faible survie (objectif principal).

Conclusions & Perspectives

Bilan

Résultats assez satisfaisants dans les cas des deux types de forêts étudiés

- Forêts naturelles de mangrove:
 - la structure forestière détectée cohérente avec les données introduites dans les maquettes
- Plantation d'*Eucalyptus*:
 - capable d'extraire des houppiers de taille de quelques pixels
 - possibilité de détection de la croissance des houppiers individuels (multi-temporelle) Zhou et al. ACPR, 2011

Modélisation d'un arbre sur deux images simultanément

Détection multi-temporelle

Prise en compte des paramètres d'acquisition

- Etude de la sensibilité aux conditions d'acquisition d'image
 - angles d'acquisition du capteur et angle solaire
 - effet d'ombre sur images optiques

© Barbier, 2009

Modèle d'attache aux données tenant compte de l'effet d'ombre: découpage d'un disque et son voisinage selon la direction de la lumière

Comparaison avec d'autres méthodes

- Nombreux méthodes de détection : \geq
 - region growing, valley-following, template-matching, ...

Gougeon, 1995

region-growing

Culvenor, 2002

- Données d'images et d'inventaires forestiers pour la comparaison
 - avec images réelles de forêts

Utilisation des analyses texturales

- Réglage de paramétrage de la méthode de PPM
 - paramètres importants à déterminer: Θ , [r_{min} , r_{max}]
- Apport des analyses texturales pour guider le paramétrage
 - spectres FOTO (« FOurier-based Textural Ordination ») pour calibrer l'intervalle des rayons de houppiers: $[r_{min}, r_{max}]$ Proisy et al., 2007, 2012

Fusion de données

- Combiner les données de différentes sources dans la détection
 - introduire une distance multidimensionnelle dans le modèle d'énergie d'attache aux données
 - applications : données multi-temporelles, multi-spectrales, optiques
 + LiDAR, etc.

Un extrait d'une composition colorée d'une image multi-spectrale Geoeye sur une forêt tropicale de Centrafrique

Application écologique

> Contribution de la détection par PPM à l'aspect écologique

Article:

• <u>Zhou et al., Mapping local density of young Eucalyptus plantations by individual tree</u> <u>detection in high spatial resolution satellite images, Forest Ecology and Management,</u> <u>2012</u>

Conférences internationales:

• <u>Zhou et al., Tree crown detection in high resolution optical and LiDAR images of</u> <u>tropical forest, SPIE 2010</u>

• <u>Zhou et al. Tree crown detection in high resolution optical images during the early</u> <u>growth stages of Eucalyptus plantations in Brazil, ACPR 2011</u>

• <u>le Maire et al., Very high resolution satellite images for parameterization of tree-scale</u> <u>forest process-based model, IGARSS 2012</u>

