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Introduction and Background

Remote sensing and applications ]

Remote sensing has extensive applications:

Mmeral exploratlon Weather prediction




Introduction and Background

Remote sensing and applications
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The proliferation of data gives rise to the increasing complexity of RS data,
As well as to the diversity and higher dimensionality characteristic of the data.

Complementary informations



Introduction and Background ]

Remote sensing data ]
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Introduction and Background

Focus on image classification as part of risk management ]




Introduction to the Research Activity

\

rFocus of the talk ]

Due to the huge number and the (short) revisit time of
high resolution satellites

“Huge amount of satellite images can be acquired at different resolutions

n
L H valuable spatio-temporal information.

[Problem Statement ]

:> develop methods to explore such huge data

 Multiresolution information
* Multitemporal information
*  Multisensor information



[Introduction to the Research Activity ]

[Objectives ]

v’ Joint classification of coregistered mono-/multi-band, multi-resolution and/or multi-sensor

(SAR, optical) acquisitions into M classes.

v’ Hierarchical graph: use multi-resolution data.

v Flexible enough and sufficiently robust to different types of images at different dates

and/or from different sensors.

[Key points ]

v Focus on multi-resolution and multi-temporal optical images

v Extension to multi-sensor images (SAR+ optical) and multi-frequency SAR

rProposed methods ]

Three novel hierarchical methods have been proposed to fuse multi-date, multi-
resolution, multi-band and multi-sensor remote sensing imagery for multi-temporal

classification purposes. Experimentally validated with challenging multi-modal
imagery from Haiti test sites 7
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'Hierarchical Markov Model on quad-trees

General presentation: Hierarchical method ]

*»Classification: Estimate the labels X at the finest resolution given all the
observations.

**Quad-tree structure: causality that allows to use a non-iterative algorithm.

+*MPM (Marginal Posterior Mode) criterion: penalizes the errors according to
their number and the scale at which they occur.

10



:Hierarchical Markov Model on quad-trees ]

rCausaIity ]

* Define an order over the set of sites S. In such a way, we characterize the past of a site s(i, j)
* Forinstance:

s(m, 1) s(m, n)

11



:Hierarchical Markov Model on quad-trees ]

' Pyramid structure ]

Pléiades sensor
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* Images are organized according to their resolutions in a pyramid structure
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:Hierarchical Markov Model on quad-trees ]

Quad-tree structure ] . .
. Missing levels might appear

Operators on the quad-tree :
* § : the backward shift 1
* a : the interchange operator at the same scale wavelets

* B : the forward shift
.-
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'Hierarchical Markov Model on quad-trees
rMPM criterion ]

X, = argmax P(x|y)
XsEW

p(Xs,Xs= |y
p (X IyJ=Z{ (x5 %s ““5}) .p (xs-1y)
o 1 4axs P(xs:xs— |Y¢|{5})

Calculate recursively the posterior marginal p (xs|y) while the probabilities

p(xs, x| V4 ) are made available.
|

E @) \ o € Prior
p(x;]|xs- )0 (x5-) Posterior marginal
p(x,) © P (% |3’d{s)) 2 .

€@ Transition Probabilities over
scale

These probabilities are calculated through a MPM algorithm which runs in two passes on a quad tree, referred to as

“bottom-up” and “top-down” passes. 14




'Hierarchical Markov Model on quad-trees

Global scheme

]

The leaves of the quad-tree

The root node r of the quad-tree

Preliminary pass
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'Hierarchical Markov Model on quad-trees

r Blocky artifacts ]
R

2 -

| a) nades data ANEST
[ ] distibution,  Airbus DS
(2011)

Two neighboring sites at a given scale may not have the

same parent.

A boundary is more likely to appear than when they are
linked to the same parent node.
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:Multi-temporal Hierarchical Markov Model

Novel hierarchical cascade structure ]

To coarser scales >

Time

d(s)

So|eJs Jaul} O




:Multi-temporal Hierarchical Markov Model

r MPM formulation ]

X, =argmaxP(xg|y)
XsEW

p (xs, X5~ Xs= | Yars))
p(xs|y) = Z 8 7S TS b (xs-|y) P (x=1y)
sz p (xs ) Xs= ) Xs= | yd(s))

xs_, xs=

Calculate recursively the posterior marginal p (X5 |y) while the probabilities
p (x5, %5, %= | ¥4(5)) are made available.
I ® Prior
| @ @ Post
2 T P (o | 22 ). p (=) o ) @ Posterior marginal
P Xs | Xs—, Xs= ). p(xs) o_-p s | Yd(s)

@) ] Transition Probabilities over
scale and time
o

These probabilities are calculated through a MPM algorithm which runs in two passes on a quad-tree, referred to as
“bottom-up” and “top-down” passes.

I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, "A New Cascade Model for the Hierarchical Joint Classification of Multitemporal and Multiresolution 19
Remote Sensing Data", IEEE Transactions on Geoscience and Remote Sensing (TGRS) (under revision)



'Multi-temporal Hierarchical Markov Model

Time t=0: single-time MPM ]

—

time

* Classification is performed at time =0 using a single-date MPM

* A case-specific initialization strategy is applied that makes use of a spatial MRF model

20



'Multi-temporal Hierarchical Markov Model

Time t=1: first top-down pass ]

p(x(r))

\ 4

p )

\ 4

p(:)

*C. Bouman and M. Shapiro, “A multiscale image model for Bayesian image segmentation,” IEEE Trans. Image
Processing, vol. 3, pp.162—-177, Feb. 1994.

—

Top-down

—

>
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p(xs) = sz— [p (xs | Xg-)- D (xs_)]

Transition Probabilities over scale*
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'Multi-temporal Hierarchical Markov Model ]

T|me t=1: bottom up pass

P2 (x(r)) Pz(xr | yd(s)) = Pz(xr | y )
a
\ 4
pa (x™) P2 (x 1550
b2 (xs ) Xg— Xs= | y(l))
a
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Posterior marginal [4]
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Likelihood term estimated using Gaussian mixture (SEM to estimate the
parameters)

PDF
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'Multi-temporal Hierarchical Markov Model ]

Time t=1: second top-down pass l

—

N

pZ(x(r)) Pz(xr | yd(s)) = Pz(xr | v )

%y=argmaxy, [p (% |y )]

a
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\ 4

M

= argmaxy, [p (xs(l) | v )]

A

D2 (x(O))

(0157
(0)

P2
\st X ) Xem |

\ 4

20

= argmax, [p (XS(O) |y )]

+* Need to maximize the posterior
probability at each scale.

+»Several techniques are used in the
literature (Metropolis dynamics,
ICM, Graph-cut...)

+* Tool: modified Metropolis

dynamics.

Kato, Z. Zerubia, J. and Berthod, M., “Satellite image classification
using a modified Metropolis dynamics,” IEEE International
Conference on Acoustics, Speech, and Signal Processing. ICASSP.,
1992 (Volume:3).

( ) 23
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Experimental results

Data sets ]

Port au Princ Port au Prine h Port au Prince

Pléiades ©CNES (2011), distribution Pléiades ©CNES (2012), distribution Pléiades ©CNES (2013), distribution
Airbus DS Airbus DS Airbus DS

A '&_ S A UTE /" bm;-
Port au Prince Port au Prince

©GeoExe (2009), ©GeoEye (2010), “



Experimental results

(e) Multi-temporal single scale

(f) The proposed method (g) KNN-MRF method (h) Kmeans

Port-au-Prince, Haiti
urban water vegetation bare soil containers | overall computation
= 0 | | time
Proposed method 81.62 % 100 % 90.69 % 92.82% 62.82% | 85,59 % 480 seconds
Single scale method using 7745 % 88.62 % 72.59 % 86.02 % 57.02% | 76.34 % 160 seconds
MPM criterion
Single scale method using 56.14 % 100% 81,90 % 87.02% 7321% | 79.65 % 220 seconds
MAP criterion
Multitemporal single- 80.63 % 100 % 86.33 % 87.61% 69.61 % 84,83 % =1 hour
scale method
K-NN + MRF 96.84% 92.42% 47.15 % 71.83 % 16.75 % | 64.99% 90 seconds
K-means 12.37% 98.63% 39.18% 91.66 % 2042% | 5825% 20s

Table 1. Results obtained using the Pléiades dataset class accuracies (producer’s accuracies), overall accuracy, and
computation time.

Experiments were conduced using one (1600x1000) image at level 0, one (800x500) image at level 1 and four 25
(400x250) images at level 2 on an Intel i7 quad-core ( 2.4 GHz) 8-GB-RAM 64-bit Linux system.



Experimental results

(b) Ground Truth (c) Single scale method (MPM criterion)

(e) Multi-temporal single scale (f) The proposed method (g) KNN-MRF method (h) Kmeans
Port-au-Prince, Haiti
urban water vegetation bare soil containers | overall computation
m | [} ] time
Proposed method 87.59% 100 % 98.12% 72.82 % 8227% | 88,16 % 345 seconds
Single scale method using 7745% 100 % 8834 % 66.22 % 67.87% | 79.97 % 90 seconds
MPM criterion
Single scale method using 64.52 % 100% 92.15% 83.62% 4947% | 7835 % 140 seconds
MAP criterion
Multitemporal single- 80.63 % 100 % 89.79 % 70.54 % 7429% | 83,05 % =1 hour
scale method
K-NN + MRF 100% 100% 0% 0% 1228% | 4245 % 40 seconds
K-means 88.97% 100% 88.14% 45.6 % 36.96% | 71.93 % 15 seconds

Table 2. Results obtained using the GeoEye dataset: class accuracies (producer’s accuracies), overall accuracy, and
computation time.

Experiments were conduced using one (1600x800) image at level 0, one (800x400) image at level 1 and one (400x250)
image at level 2 on an Intel i7 quad-core ( 2.4 GHz) 8-GB-RAM 64-bit Linux system. 26



Experimental results

v’ Blocky artifacts

(@) (®)

blocky artefacts using the method with a single quad-tree (MPM criterion) (a)
reduction of these blocky artefacts using the proposed method (b).
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Proposed method 2: Multi-sensor Hierarchical Markov Model
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| Multi-sensor Hierarchical Markov Model ]

®The measurement in SAR and optical bands are very different from each other

?

How to address the problem of SAR + optical PDF modeling -

€D First, estimate the marginal class-conditional statistics of each SAR/optical channel
separately via distinct finite mixtures.

@ then, model the joint PDF through multivariate statistics.

USIng GaUSSIan |||iXture
f \u"

i
v & T R
Tempavel

W T8

Optical data

multivariate statistics ________ Joint
PDF

Using generalized Gamma distribution

. F

AR data 29



' Multi-sensor Hierarchical Markov Models

The First proposed method: highlight the synergy between two
| SAR sensors

Images
from SAR
sensor

Images
from SAR

<—— VHR Optical image ——

So|eds Jaul} O]

To coarser scales

A 4

Proposed Multi-sensor Quad-tree (case 1). -



[Experimental results on multi-sensor data (case 1). ]

Figure 1

Figure 2

(a)

(b)

(a) Pleiades,
(b) CSK
(c) RS2

two datasets acquired over Port-au-Prince (Haiti) using:

* a panchromatic Pléiades acquisition at 0.5m resolution
(Pléiades, © CNES distribution Airbus DS, 2011), shown
in Figures 1(a) and 2(a).

* a CSK image (© ASI, 2011), X band, HH polarization,
Spotlight mode (1m pixel spacing), geocoded, single-
look, shown in Figures 1(b) and 2(b).

* a RS2 image (© CSA, 2011), C band, HH polarization,
Ultra-Fine mode (1.56 m pixel spacing), geocoded,
single-look, shown in Figures 1(c) and 2(c).

31



[Experimental results on multi-sensor data (case 1). ]

B R L .
; by %
o, v £
oL e R S T

Water Urban Vegetation Bare Soil containers | Overall
accuracy
(a) Only Pléiades 100% |[61.66% 81.69 % 82.82 % 56.72% 76.57%
(b) Pléiades + CSK 100% |44.32% 83.54% 74.75% 49.12% 70.34%
(c) Pléiades + RS2 92.56% | 44.85% 79.85% 78.62% 42.15% 67.60
(d) Pléiades +CSK+RS2 | 90.79% |91,45 % 82,59 % 81.02 % 54.85% 80,14 % 32




' Multi-sensor Hierarchical Markov Models

The second proposed method: SAR/optical fusion (cascade method)

Pyramid of optical Images

5 o Transition probahbilities between sensors N 5"
-

Trans;'n.m o
er

S9|edJs Jaul} 0]

To coarser scales

Y

Proposed Multi-sensor Quad-tree (case 2). _



[Experimental results on multi-sensor data (case 2). ]

(a) One channel from the optical image (© GeoEye),
(b) SAR image (© ASI),

(c) hierarchical MRF-based classification obtained from the optical image,
(d) hierarchical MRF-based classification obtained for the SAR image,

(

e) hierarchical MRF-based classification obtained by the proposed cascade method.
34
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'Contextual multi-scale classification on quad-tree ]

rMarkov Mesh Random Field (MMRF) ]

W/ =
- %
B

3

s(m, 1) s(m, n)

The past of the site s(i,j) pa(s; ;)

36



'Contextual multi-scale classification on quad-tree ]

rMarkov Mesh Random Field (MMRF) ]

Causal neighborhood d(s; ;)

prEee
.
-
e
.

EEEEEEE
-
-
. =

Second order MMRF Third order MMRF

P (xsi»i xpa(Si,i)) =P (xsi,j xa(si,j)) (1)

(1) is abbreviated to: P(xs |xpa(s)) — p(xslxa(s))

37




:Hierarchical Markov Model on quad-tree

' Combined Structure (MMRF and quad-tree) ]

M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah, and A. S. Willsky, “Modeling and estimation of multiresolution stochastic processes,”|EEE Trans. Inform. T|

pp. 766784, Mar. 1992.




[ Multi-temporal MPM inference

]

Again , when the causality property holds, non-iterative classification algorithms can be applied

X, =argmaxP(xg |y)
XcEW

p (xs y Xg— ,xa(s)| Yd(s))

p(xs|y) = z

X s X9(s)

:

Calculate recursively the posterior marginal
D (xs » Xs= 5 Xa(s)| yd(s)) are made available.

x; P (xs » Xs= xa(s)l

A

O © o
p (xs | X ) p (xs‘) p (xs | X3 ) P (xS') ( )
p (xs) o §€9(s) p (xs) P x| Ydes)

1_[ JENID

€0(s

1Y)

yd(s)).

p (X5 |y) while the probabilities

@ Prior

O Posterior marginal

O Transition Probabilities over scale

O Contextual Probabilities
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Experimental results

(d)

classification maps of optical(Pléades) image (a) using the original method
proposed in |Laferté et al,, 2000] (b), the proposed method (¢) and method

in [Voisin et al., 2014] (d).

(d)

water | urban | vegetation | confainers | soil | over all | computation time
Proposed method 100 92 89 81 04 01 147 seconds
method in |Laferte et al., 2000 | 100 62 76 72 91 80 120 seconds
method in [Voisin et al., 2014| 100 74 83 86 92 87 151 seconds
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Conclusions ]

4 )

> Methodology:

A family of novel techniques, framed in the methodogical area of hierarchical Markov
random field models, has been developed and endowed with efficient decision (MPM)
and parameter estimation algorithms.

> Application:

» The developed methods have been experimentally validated with complex optical
multispectral, X-band SAR, and C-band SAR imagery taken from the Haiti sites.
» The challenging problem of the classification of remote sensing images associated
jointly with multiple resolutions, sensors, frequencies, and times has been addressed.
> Results:
Experimental results and comparison with the state of the art suggests the effectiveness
of the proposed approaches in fusing multiple information sources for classification

purposes

- v/




Perspectives ]

-

>
>

Look for an automatic selection of the wavelet operator.

Propose a new hierarchical model in order to use a different number of

classes at each level of the pyramid.

Incorporate semantic information on class meaning at different spatial
resolutions.
Circumvent the drawback of MMRF (corner dependency) by using more

sophisticated techniques (QMRF, SMMRF).

Further optimize applicability to large data sets through parallel processing.

~

43



[Publications ]

e Peer-reviewed papers for international conferences:

-

-

£

I. Hedhli, G. Moser, J. Zerubia and S. B. Serpico, "Contextual multi-scale image classification on quad-tree", IEE
International Conference on Image Processing (ICIP), 2016, (submitted).

I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, "New hierarchical joint classification method of SAR-optical
multiresolution remote sensing data", IEEE/EURASIP European Signal Processing Conference (EUSIPCO), Nice, France,
Aug 2015.

I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, New cascade model for hierarchical joint classification of multisensor
and multiresolution remote sensing data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul
2015, Milan, Italy. 2015.

I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, "Fusion of multitemporal and multiresolution remote sensing data
and application to natural disasters", in IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Québec, Canada, July 2014.

I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, "New cascade model for hierarchical joint classification of
multitemporal, multiresolution and multisensor remote sensing data", in IEEE International Conference on Image
Processing (ICIP), Paris, France, October 2014. Y,

Peer-reviewed journals:

\
I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, "A New Cascade Model for the Hierarchical Joint Classification of
Multitemporal and Multiresolution Remote Sensing Data", IEEE Transactions on Geoscience and Remote Sensing
(TGRS) (under revision)

I. Hedhli, G. Moser, J. Zerubia, Nouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou
multi-capteur d’image satellitaires haute résolution La Revue Frangaise de Photogrammétrie et de Télédétection
(under revision)



https://team.inria.fr/ayin/publications-hal/

rAcknowIedgments ]

/

We would like to thank :

*»* The CIMA foundation (Italy) for funding the PhD scholarship.

**The French Space Agency (CNES, France) and INRIA for the financial
support of travels to France and Canada.

**The French Space Agency (CNES, France) for providing the Pléiades images

¢ The Italian Space Agency (ASI, Italy) for providing the COSMO-SkyMed
images

**The Canadian Space Agency (CSA, Canada) for providing the RADARSAT-2
images

*»* GeoEye Inc. and Google crisis response for providing the GeoEye images.

45



http://www.cimafoundation.org/?&LANG=EN
https://cnes.fr/fr
http://www.inria.fr/en/
https://cnes.fr/fr
http://www.asi.it/en
http://www.asc-csa.gc.ca/eng/
https://www.digitalglobe.com/
https://www.google.org/crisisresponse/about/

