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SurvelllanCe — now more than ever
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Optical airborne and space-
borne systems

* UAVs (unmanned aerial vehicles)
* Sub-meter ground sampling resolution imagery
* Unstable platform

* Low-orbit satellites
* Sub-meter ground sampling resolution imagery
 Stable platform
 High-definition video of up to 90 seconds at 30 frames / second
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e Geostationary satellites
* 1km ground sampling resolution imagery
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* Low temporal frequency ...




Challenges

* Small object size
* Large number of objects
* Shadows

* Independent camera / object motion

* Time requirements
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Multiple Object Tracking (MOT)

* Goal: Extract object trajectories throughout a video

e Two sub-problems
 Where are the possible targets? - Detection of targets
 Which detection corresponds to each target? - Solve the
data association problem

Two data-handling approaches
* Sequential —iteratively analyze frames in temporal order
* Batch processing — analyze the entire video at once
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* Two main problem solving approaches
* Tracking by detection
* Track before detect
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Data-association based methods
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[Perera2006] [Yu2008] [Saleemi2013]
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RFS-based methods
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[Mahler2003] [V02005] [Vo2013]
[V02006] [Vo2014]
[Pace2011] [Papi2015]
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Thesis at a glance

* Marked point process models for object detection and
tracking

* Linear programming for automatic or semi-automatic
parameter learning
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* Model simulation using improved versions of RIMCMC
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Overview

* Models
* Model formulation
* Quality model vs. Statistical model
* Parameter learning
* Linear programming
* Parameter learning as a linear program
* Simulation
* RIMCMC with Kalman inspired moves
* Parallel implementation of RIMCMC
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Results
* Conclusions and perspectives
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Marked point process of ellipses

* Center of the ellipse is a point in the point process
* Marks:

* Geometric marks: semi-major axis, semi-minor axis, orientation
* Additional mark: label

W=KxM
K = [O7Ih'm,a,m] [O Iwmaa‘] {17 S 7T}
M = lam,am] X [bm,bu] X (=5, 5] x [0, L]

U = (mU?Q’U/ataaabawaz) 1 . (\é
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Marked Point Process for Multiple
Object Tracking

» Multiple object tracking problem
o Searching for the most likely configuration X that fits the given
image sequence Y

» Solution
o Xis a realization of the Gibbs process given by:

fo(X = X\Y) — —Up(X.,Y)

c(AY) P (1)

o The most likely configuration is given by:
X €argmax fp(X = X|Y) = arg min|Uy(X.Y)]. (2)
arg Mmax fo( Y) f“é}:}%lé%[ o )]

o The process energy is composed of two energy terms:

Up(X,Y) =Ug™ (X.Y) + U (X). (3)

S5

External energy Internal energy
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Internal energy

Dynamic Model Label Consistency Mutual Exclusion

. " . Q«l:;r‘

high energy

H

low energy
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Constant velocity model Long smooth trajectories  No overlapping objects

—
=
w

—

(vé ?;ltt (X) = Ydyn l?l;:i (X ) T+ Vlabel (Tlgibtel (X) + Y C--"Tf;?érm p (X)




External energy

Quality model

* Object evidence through
frame differencing

e Contrast distance measure
between interior and exterior
of ellipse

clI(X |Y) 76{,8(1{,|Y) T
dp(u,F*(u))
Yent ZuEX (Q( . do(Y) ))

Statistical model

* Sliding window
* Two hypotheses:

* Hy: The window covers only
the background without any
target being present

* Hy: The window is placed in
the center of a target

* Neyman-Pearson decision rule

U (X]Y)= VstatUsioy (X[Y)
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Total energy

Quality model

External energy
T = | Yeur E(ulY / dp(u,FP(u))
Ug(X,Y) = |Yev (u|Y) + Yent Zuex Q do(Y) i

. int . int ,_ int
f"f'ﬁ!”Udyn(X) F ’}'I-"II"JUI:‘:.IJH(X) T P)OU(_)'J-‘PPJ(I.[J(X)

Internal energy

Statistical model
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External energy
Up(X,Y) = [YstatUSL(X|Y) |+
ﬁh’[;,mU”“l (X) = 7!(‘:!)61[};(:?(:;[(X) + Yo i (X)
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Overview

 Models

* Model formulation
* Quality model vs. Statistical model

* Parameter learning

* Linear programming

* Parameter learning as a linear program
* Simulation

* RIMCMC with Kalman inspired moves
* Parallel implementation of RIMCMC
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Results
* Conclusions and perspectives
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Linear programming

* A linear program has the following form

(1) Maximize: a’l C

(2) Subject to: ATC<b, C>0

Where:
« al'—vector of coefficients
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« C- parameter vector
« ATC < b - constraints
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Objective function

* Quality model energy formulation

Up(X,Y) =Yeo EW|Y)+Yent D nex (Q(dB(C’E;g)(U)))) 4+

Yayn Uit (X) + Yiabet Upntiey (X) + Yo UL 10 (X)
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Yew
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* Objective function a=| 1 C=| Tdyn
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Gathering constraints

* Only the ratio 7(X') /7 (X) is needs to be computed
* We can create inequalities of the form

(X" /7(X) > 1 (1)

* If we have ground truth information %
* E

T (X*) . 2) :

m(Xi) :

* Or more specifically the constraints can be written as

F(C[X*) — F(CIX,) > 0 8

—
=
O

—




How many constraints?

Average normalized error

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04

0.02

—— Simulated density function with 5 parameters
- ®--Simulated density function with 4 parameters

Number of constraints (thousands)
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Overview

 Models

* Model formulation
* Quality model vs. Statistical model

* Parameter learning
* Linear programming
* Parameter learning as a linear program
e Simulation
 RIMCMC with Kalman inspired moves
e Parallel implementation of RIMCMC
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Results
* Conclusions and perspectives
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Related samplers

RIMCMC MBD and MBC P-RIMCMC

[Green1995] [Descombes2009]
[Gamal2011]




Classic RIMCMC

* Why?
* Highly non-convex energy ——>  MCMC
* Unknown number of objects —>  RJ (reversible jump)

* Core idea
* Create a Markov chain
* lteratively perturb the current state of the chain

e Until convergence is reached
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Standard perturbation kernels

* Birth and Death
* Birth:
Add a new object to the configuration
* Death:

Remove one object from the configuration

 Local transformations
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RJMCMC sampler




Adding Kalman-inspired births

Perturbation

Propose to add

' accepted Initialize
a new object u S o -
(RIMCMC) alman Filter
\ 4
Predict new object .
N :
In next frame v i
Perturbation <
rejected A -
< Propose to add object v %
(RIMCMC) 5
Perturbation
accepted
Y \ 4 [ 26 J
End Update

iteration Kalman Filter




Did time efficiency increase?

RIMCMC with Kalman like moves
converges much faster compared to the
standard RIMCMC

Experimental results
Satellite data
(4 objects / frame)
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Kalman-inspired births reduce computation times!




Parallel implementation of
R] M C M C [Verdie2012]

* Data-driven space

partitioning
* Locally conditional :
independent %
perturbations E
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Image with boats © Airbus D&S
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Parallel implementation of
RIMCMC

* Data-driven space
partitioning
* Locally conditional

independent
perturbations
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robability that objects exist in each
part of the image
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Parallel implementation of
RIMCMC

* Data-driven space
partitioning
* Locally conditional

independent
perturbations
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Parallel perturbations o,

* A color is randomly
chosen

* Perturbations are
performed in all
cells of the chosen
color in parallel
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Our improvement to the
parallel sampler

Problem Solution
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Large boat is split between Take the configurations in
two neighboring cells the neighboring cells into
consideration




Did time efficiency increase?

0]

U — RJMCMC
p— RJMCMC+KaIman

— Parallel RIMCMC
AL without Kalman
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Time (seconds)

Parallel implementation significantly
reduces computation times!
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Overview

 Models

* Model formulation
* Quality model vs. Statistical model

* Parameter learning

* Linear programming

* Parameter learning as a linear program
* Simulation

* RIMCMC with Kalman inspired moves
* Parallel implementation of RIMCMC
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Data sets

e 2 different data sets:

* UAV (unmanned aerial vehicle) data (Public
available data set)

 Satellite data (Airbus Defense and Space)
Low temporal frequency (~1-2Hz)
High temporal frequency (30Hz)
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UAV data -low temporal frequency

COLUMBUS LARGE IMAGE FORMAT
(CLIF) 2006 data set

Provided by:
The Sensor Data Management System,
U.S. AirForce

https://www.sdms.afrl.af.mil




UAV data - low temporal frequency

Proposed

Original image [Prokaj2011]
Method Tracks Detections
Number Paired Missed Spurious Number Paired Missed Spurious
GT 322 12304
[Prokaj2011] 674 207 115 467 17823 5139 7165 12634
MHT 3456 | 254 68 | 3202 35330 1189 11115 60069
Prop. 238 179 143 | 59 | 6466 4480 7824 1986
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Satellite data - low temporal frequency

Tracking results © INRIA / AYIN
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Average computation time: 12 sec / frame on a cluster with 512 cores
Image size: 1600 x 900 pixels




Satellite data - high temporal frequency

f Tracking
results

£ © INRIA
¥ / AYIN

Average computation time: 8 sec / frame on a cluster with 512 cores
Image size: 1600 x 900 pixels
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Satellite data - high temporal frequency

Tracking results © INRIA / AYIN

Average computation time: 10-11 sec / frame on a cluster with 512 cores
Image size: 1600 x 900 pixels
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Overview

 Models

* Model formulation
* Quality model vs. Statistical model

* Parameter learning

* Linear programming

* Parameter learning as a linear program
* Simulation

* RIMCMC with Kalman inspired moves
* Parallel implementation of RIMCMC
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Results
* Conclusions and perspectives
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Conclusions

* Two novel spatio-temporal marked point process models
for the detection and tracking of moving objects

* Automatic or semi-automatic parameter estimation using
linear programming

* Integrated RIMCMC sampler with Kalman-like moves

* Efficient parallel implementation of the RIMCMC sampler

* Good results on different types of data
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Critical analysis

Advantages Drawbacks

* Detection of weakly
contrasted objects

* Real-time processing

only in exceptional cases
* Consistent trajectories * Simple shape modeling

* Object interactions
modeling
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* Robustness to noise and
data quality

e Good results on different
data sets
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Perspectives

* Design a hierarchical model that integrates both low-level
constraints between individual objects and high-level
constraints between trajectories

* Multi-marked process to distinguish between various object
classes

* Model traffic density instead of individual trajectories

e Optimization process should be further improved to make
such models competitive
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