

Stochastic geometry

for

automatic object detection and tracking

in

remotely sensed image sequences

Paula CRĂCIUN

https://team.inria.fr/ayin/paula-craciun/

This work has been done in collaboration with dr. Josiane ZERUBIA from INRIA and dr. Mathias Ortner from Airbus Defense and Space, France

Surveillance - now more than ever

Human benefits

© Commonwealth of Australia 2014

Wildlife benefits

© World Wide Fund for Nature

Optical airborne and spaceborne systems

- UAVs (unmanned aerial vehicles)
 - Sub-meter ground sampling resolution imagery
 - Unstable platform
- Low-orbit satellites
 - Sub-meter ground sampling resolution imagery
 - Stable platform
 - High-definition video of up to 90 seconds at 30 frames / second
- Geostationary satellites
 - 1km ground sampling resolution imagery
 - Low temporal frequency ...

Challenges

- Small object size
- Large number of objects
- Shadows
- Independent camera / object motion
- Time requirements

Multiple Object Tracking (MOT)

- Goal: Extract object trajectories throughout a video
- Two sub-problems
 - Where are the possible targets? Detection of targets
 - Which detection corresponds to each target? Solve the data association problem
- Two data-handling approaches
 - **Sequential** iteratively analyze frames in temporal order
 - Batch processing analyze the entire video at once
- Two main problem solving approaches
 - Tracking by detection
 - Track before detect

Data-association based methods

[Perera2006]

[Yu2008]

[Saleemi2013]

RFS-based methods

[Mahler2003]

[Vo2005] [Vo2006] [Pace2011]

[Vo2013] [Vo2014] [Papi2015]

Patterns and stochastic geometry

- Object tracking as a spatio-temporal marked point process
- How to model and simulate such a spatio-temporal point process?

Thesis at a glance

Marked point process models for object detection and tracking

Linear programming for automatic or semi-automatic parameter learning

Model simulation using improved versions of RJMCMC

Overview

- Models
 - Model formulation
 - Quality model vs. Statistical model
- Parameter learning
 - Linear programming
 - Parameter learning as a linear program
- Simulation
 - RJMCMC with Kalman inspired moves
 - Parallel implementation of RJMCMC
- Results
- Conclusions and perspectives

Marked point process of ellipses

- Center of the ellipse is a point in the point process
- Marks:
 - Geometric marks: semi-major axis, semi-minor axis, orientation
 - Additional mark: label

$$W = K \times M$$

$$K = [0, I_{h_{max}}] \times [0, I_{w_{max}}] \times \{1, \dots, T\}$$

$$M = [a_m, a_M] \times [b_m, b_M] \times (-\frac{\pi}{2}, \frac{\pi}{2}] \times [0, L]$$

$$u = (x_u, y_u, t, a, b, \omega, l)$$

Marked Point Process for Multiple Object Tracking

- Multiple object tracking problem
 - $^{\circ}\,$ Searching for the most likely configuration $\,X\,$ that fits the given image sequence Y
- Solution
 - X is a realization of the Gibbs process given by:

$$f_{\theta}(X = \mathbf{X}|\mathbf{Y}) = \frac{1}{c(\theta|\mathbf{Y})} \exp^{-U_{\theta}(\mathbf{X},\mathbf{Y})}$$
 (1)

The most likely configuration is given by:

$$X \in arg \max_{\mathbf{X} \in \Omega} f_{\theta}(X = \mathbf{X} | \mathbf{Y}) = arg \min_{\mathbf{X} \in \Omega} [U_{\theta}(\mathbf{X}, \mathbf{Y})].$$
 (2)

The process energy is composed of two energy terms:

$$U_{\theta}(\mathbf{X}, \mathbf{Y}) = U_{\theta_{ext}}^{ext}(\mathbf{X}, \mathbf{Y}) + U_{\theta_{int}}^{int}(\mathbf{X}). \tag{3}$$

External energy

Internal energy

Internal energy

Constant velocity model Long smooth trajectories No overlapping objects

$$U_{\theta_{int}}^{int}(\mathbf{X}) = \gamma_{dyn} U_{dyn}^{int}(\mathbf{X}) + \gamma_{label} U_{label}^{int}(\mathbf{X}) + \gamma_{o} U_{overlap}^{int}(\mathbf{X})$$

External energy

Quality model

- Object evidence through frame differencing
- Contrast distance measure between interior and exterior of ellipse

$$U_{\theta_{ext}}^{ext}(\mathbf{X} | \mathbf{Y}) = \gamma_{ev} \mathcal{E}(u | \mathbf{Y}) + \gamma_{ext} \sum_{u \in \mathbf{X}} \left(\mathcal{Q} \left(\frac{d_B(u, \mathcal{F}^{\rho}(u))}{d_0(\mathbf{Y})} \right) \right)$$

Statistical model

- Sliding window
- Two hypotheses:
 - H₀: The window covers only the background without any target being present
 - H₁: The window is placed in the center of a target
- Neyman-Pearson decision rule

$$U_{\theta_{ext}}^{ext}(\mathbf{X}|\mathbf{Y}) = \gamma_{stat}U_{stat}^{ext}(\mathbf{X}|\mathbf{Y})$$

Total energy

Quality model

External energy

$$U_{\theta}(\mathbf{X}, \mathbf{Y}) = \frac{\gamma_{ev} \mathcal{E}(u|\mathbf{Y}) + \gamma_{cnt} \sum_{u \in \mathbf{X}} \left(\mathcal{Q}\left(\frac{d_B(u, \mathcal{F}^{\rho}(u))}{d_0(\mathbf{Y})}\right) \right)}{\gamma_{dyn} U_{dyn}^{int}(\mathbf{X}) + \gamma_{label} U_{label}^{int}(\mathbf{X}) + \gamma_o U_{overlap}^{int}(\mathbf{X})} +$$

Internal energy

Statistical model

External energy

$$U_{\theta}(\mathbf{X}, \mathbf{Y}) = \frac{\gamma_{stat} U_{stat}^{ext}(\mathbf{X}|\mathbf{Y})}{\gamma_{dyn} U_{dyn}^{int}(\mathbf{X}) + \gamma_{label} U_{label}^{int}(\mathbf{X}) + \gamma_{o} U_{overlap}^{int}(\mathbf{X})}$$

Internal energy

Overview

- Models
 - Model formulation
 - Quality model vs. Statistical model
- Parameter learning
 - Linear programming
 - Parameter learning as a linear program
- Simulation
 - RJMCMC with Kalman inspired moves
 - Parallel implementation of RJMCMC
- Results
- Conclusions and perspectives

Linear programming

A linear program has the following form

(1) Maximize: $\mathbf{a}^T \mathbf{C}$

(2) Subject to: $A^T \mathbf{C} \leq \mathbf{b}$, $\mathbf{C} \geq 0$

Where:

- \mathbf{a}^T vector of coefficients
- **C** parameter vector
- $A^T \mathbf{C} \leq \mathbf{b}$ constraints

Objective function

Quality model energy formulation

$$U_{\theta}(\mathbf{X}, \mathbf{Y}) = \gamma_{ev} \, \mathcal{E}(u|\mathbf{Y}) + \gamma_{cnt} \sum_{u \in \mathbf{X}} \left(\mathcal{Q}\left(\frac{d_B(u, \mathcal{F}^{\rho}(u))}{d_0(\mathbf{Y})}\right) \right) +$$
$$\gamma_{dyn} U_{dyn}^{int}(\mathbf{X}) + \gamma_{label} U_{label}^{int}(\mathbf{X}) + \gamma_o U_{overlap}^{int}(\mathbf{X})$$

Objective function

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} \gamma_{ev} \\ \gamma_{cnt} \\ \gamma_{dyn} \\ \gamma_{label} \\ \gamma_o \end{bmatrix}$$

Gathering constraints

- Only the ratio $\pi(\mathbf{X}')/\pi(\mathbf{X})$ is needs to be computed
- We can create inequalities of the form

$$\pi(\mathbf{X}')/\pi(\mathbf{X}) \ge 1 \tag{1}$$

If we have ground truth information

$$\frac{\pi(\mathbf{X}^*)}{\pi(\mathbf{X}_i)} \ge 1 \tag{2}$$

Or more specifically the constraints can be written as

$$f(\mathbf{C}|\mathbf{X}^*) - f(\mathbf{C}|\mathbf{X}_i) \ge 0 \tag{3}$$

How many constraints?

Overview

- Models
 - Model formulation
 - Quality model vs. Statistical model
- Parameter learning
 - Linear programming
 - Parameter learning as a linear program
- Simulation
 - RJMCMC with Kalman inspired moves
 - Parallel implementation of RJMCMC
- Results
- Conclusions and perspectives

Related samplers

[Green1995]

[Descombes 2009] [Gamal 2011]

[Verdie2012]

Classic RJMCMC

- Why?

 - Unknown number of objects
 —> RJ (reversible jump)
- Core idea
 - Create a Markov chain
 - Iteratively perturb the current state of the chain
 - Until convergence is reached

Standard perturbation kernels

- Birth and Death
 - Birth:
 - Add a new object to the configuration
 - Death:
 - Remove one object from the configuration
- Local transformations

Rotation

Translation

Scale

RJMCMC sampler

Adding Kalman-inspired births

Did time efficiency increase?

RJMCMC with Kalman like moves

converges much faster compared to the standard RJMCMC

Experimental results
Satellite data
(4 objects / frame)

Kalman-inspired births reduce computation times!

Parallel implementation of RJMCMC [Verdie2012]

- Data-driven space partitioning
- Locally conditional independent perturbations

Image with boats © Airbus D&S

Parallel implementation of RJMCMC

- Data-driven space partitioning
- Locally conditional independent perturbations

Probability that objects exist in each part of the image

Parallel implementation of RJMCMC

- Data-driven space partitioning
- Locally conditional independent perturbations

Color coding of quad-tree leafs

Parallel perturbations [Verdie2012]

- A color is randomly chosen
- Perturbations are performed in all cells of the chosen color in parallel

Color blue is randomly chosen

Paula Craciun – INRIA, France

Our improvement to the parallel sampler

Problem

Solution

Large boat is split between two neighboring cells

Take the configurations in the neighboring cells into consideration

32

Did time efficiency increase?

Parallel implementation significantly reduces computation times!

Overview

- Models
 - Model formulation
 - Quality model vs. Statistical model
- Parameter learning
 - Linear programming
 - Parameter learning as a linear program
- Simulation
 - RJMCMC with Kalman inspired moves
 - Parallel implementation of RJMCMC
- Results
- Conclusions and perspectives

Data sets

- 2 different data sets:
 - UAV (unmanned aerial vehicle) data (Public available data set)
 - Satellite data (Airbus Defense and Space)
 - Low temporal frequency (~1-2Hz)
 - High temporal frequency (30Hz)

UAV data – low temporal frequency

COLUMBUS LARGE IMAGE FORMAT

(CLIF) 2006 data set

Provided by:

The Sensor Data Management System, U.S. AirForce

https://www.sdms.afrl.af.mil

UAV data – low temporal frequency

Original image

[Prokaj2011]

Proposed

Method _	Tracks				Detections			
	Number	Paired	Missed	Spurious	Number	Paired	Missed	Spurious
GT	322				12304			
[Prokaj2011]	674	207	115	467	17823	5139	7165	12684
MHT	3456	254	68	3202	85380	1189	11115	60069
Prop.	238	179	143	59	6466	4480	7824	1986

Satellite data – low temporal frequency

Tracking results © INRIA / AYIN

Average computation time: 12 sec / frame on a cluster with 512 cores

Image size: 1600 x 900 pixels

Satellite data – high temporal frequency

Tracking results

© INRIA / AYIN

Average computation time: 8 sec / frame on a cluster with 512 cores

Image size: 1600 x 900 pixels

Satellite data – high temporal frequency

Tracking results © INRIA / AYIN

Average computation time: 10-11 sec / frame on a cluster with 512 cores Image size: 1600 x 900 pixels

Overview

- Models
 - Model formulation
 - Quality model vs. Statistical model
- Parameter learning
 - Linear programming
 - Parameter learning as a linear program
- Simulation
 - RJMCMC with Kalman inspired moves
 - Parallel implementation of RJMCMC
- Results
- Conclusions and perspectives

Conclusions

- Two novel spatio-temporal marked point process models for the detection and tracking of moving objects
- Automatic or semi-automatic parameter estimation using linear programming
- Integrated RJMCMC sampler with Kalman-like moves
- Efficient parallel implementation of the RJMCMC sampler
- Good results on different types of data

Critical analysis

Advantages

- Detection of weakly contrasted objects
- Consistent trajectories
- Object interactions modeling
- Robustness to noise and data quality
- Good results on different data sets

Drawbacks

- Real-time processing only in exceptional cases
- Simple shape modeling

Perspectives

- Design a hierarchical model that integrates both low-level constraints between individual objects and high-level constraints between trajectories
- Multi-marked process to distinguish between various object classes
- Model traffic density instead of individual trajectories
- Optimization process should be further improved to make such models competitive

References

- [Descombes2009] X. Descombes, R. Minlos, and E. Zhizhina. Object extraction using a stochastic birth-and-death dynamics in continuum. JMIV, 33:347359, 2009.
- [Gamal2011] A. Gamal Eldin, X. Descombes, G. Charpiat, and J. Zerubia. A fast multiple birthand cut algorithm using belief propagation. Proc. of ICIP, pages 28132816, 2011.
- [Green1995] P. Green. Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711732, 1995.
- [Mahler2003] R. Mahler. Multitarget Bayes Itering via rst-order multi target moments. IEEE Trans. on Aerospace and Electronic Systems, 39(4):11521178, 2003.
- [Pace2011] M. Pace. Stochastic models and methods for multi-object tracking. PhD thesis, Université Sciences et Technologies, Bordeaux, 2011.
- [Papi2015] F. Papi, B.T. Vo, M. Bocquel, and B.N. Vo. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Trans. Signal Processing, 63(20): 54875497, 2015.
- [Perera2006] A.G.A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu. Multi-object tracking through simultaneous long occlusions and split-merge conditions. Proc. of CVPR, 2006.
- [Saleemi2013] I. Saleemi and M. Shah. Multiframe many-many point correspondence for vehicle tracking in high density wide area aerial videos. IJCV, 104(2):198219, 2013.
- [Verdie2013] Y. Verdie. Modelisation de scènes urbaines à partir de données aeriennes. PhD thesis, Université de Nice Sophia Antipolis, 2013.
- [Vo2014] B.-N. Vo, B.-T. Vo, and D. Phung. Labeled random finite sets and the Bayes multitarget, tracking filter. IEEE Trans. Signal Processing, 62(24):65546567, 2014.
- [Vo2013] B.-T. Vo and B.-N. Vo. Labeled random nite sets and multi-object conjugate priors. IEEE Trans. Signal Processing, 61(13):34603475, 2013.
- [Yu2009] Q. Yu and G. Medioni. Multiple-target tracking by spatio-temporal Monte Carlo Markov chain data association. IEEE Trans. PAMI, 31(12):21962210, 2009.