AYANet: A Gabor Wavelet-based and CNN-based Double Encoder for Building Change Detection in Remote Sensing

Priscilla Indira Osa^(1,2), Josiane Zerubia⁽²⁾, Zoltan Kato^(3,4)

(1) University of Genoa, Italy (2) Inria, Université Côte d'Azur, France (3) University of Szeged, Hungary (4) J. Selye University, Slovakia

Introduction

Building Change Detection (BCD)?

Importance

Urban expansion
Deforestation
Natural disaster

. . .

Challenges

NOT ONLY Differentiate changed and unchanged pixels of buildings

BUT ALSO

Ignore changes in other objects e.g., roads, vegetation, etc.

Ignore unimportant changes mainly from sensing conditions

Related Works

Non-deep methods

Support Vector Machine Random Forest Etc.

Deep methods

Strategy-wise

- 3D-CNN to consider time axis : AFCF3D-Net[1]
- Various attention mechanisms : *DMI-Net*[2], *DUNE-CD*[3], *FHD*[4], *TINYCD*[5]
- Considering geometric of the object : *GVA-CD[6]* Etc.

Architecture-wise

- Pure CNN : *STANet*[7]
- Pure Transformer : *ChangeFormer*[8]
- Hybrid CNN + Transformer : *BIT*[9]

The idea Gabor Filter

Building's characteristics in remote sensing imagery

• Repetitive texture

Proposal

AYANet

- 1. Gabor encoder: explicitly extract texture features
- 2. CNN encoder: extract high-level features
- 3. Feature Conjunction Module to combine features from both encoders

Gabor Filter

$$G(u,v) = \frac{\|\boldsymbol{k}_{u,v}\|^2}{\sigma^2} e^{-(\frac{\|\boldsymbol{k}_{u,v}\|^2 \|\boldsymbol{z}\|^2}{2\sigma^2})} \left[e^{i\boldsymbol{k}_{u,v}\boldsymbol{z}} - e^{\frac{-\sigma^2}{2}} \right]$$

$$\boldsymbol{z} = (x,y), \boldsymbol{k}_{u,v} = \left(\frac{k_v \cos k_u}{k_v \sin k_u} \right) k_v = \frac{\pi/2}{\sqrt{2}^{v-1}}, k_u = u \frac{\pi}{U}, \sigma = 2\pi$$
frequency orientation

Gabor Orientation Filters[10]

Integrated to CNN

Gabor filters modulated in learnable CNN filters

Change the standard convolution

to have less parameter

Depthwise Convolution[11]

 $= \sum_{i,j,m} K_{i,j,m,n} F_{k+i-1,l+j-1,m}$ $Conv_{k,l,n}$

$$\begin{array}{ll} Conv_{k,l,n} &= \sum_{i,j,m} \mathbf{K}_{i,j,m,n} \mathbf{F}_{k+i-1,l+j-1,m} \\ & \downarrow \\ DConv_{k,l,m} &= \sum_{i,j} \mathbf{K}_{i,j,m} \mathbf{F}_{k+i-1,l+j-1,m} \end{array}$$

The building block of the

Gabor encoder +----

Overall Architecture

4 orientations (horizontal, vertical, diagonal)

2 scales which correspond to 2 frequencies

Stacked GDConv at different stage = applying Gabor filters at the resized image

Overall Architecture

Experimental Validation

LEVIR-CD

Model	Precision	Recall	F1-score	IoU
AFCF3D-Net	91.35%	90.17%	90.76%	83.08%
BIT	89.24%	89.37%	89.31%	80.68%
ChangeFormer	92.05%	88.80%	90.40%	82.48%
DMI-Net	92.52%	89.95%	90.71%	82.99%
DUNE-CD	92.27%	88.83%	90.52%	82.68%
FHD	92.61%	89.61%	91.09%	83.63%
GVA-CD	92.63%	87.88%	90.31%	82.51%
MSFCTNet	92.06%	90.00%	91.02%	83.52%
STANet-PAM	83.81%	91.00%	87.26%	77.40%
TINYCD	92.68%	89.47%	91.05%	83.57%
AYANet	92.60%	90.25%	91.41%	84.17%

WHU-CD

Model	Precision	Recall	F1-score	IoU
BIT	87.65%	90.91%	89.25%	80.59%
ChangeFormer	94.15%	85.52%	89.63%	81.20%
STANet-PAM	70.65%	93.54%	80.50%	67.37%
AYANet	95.56%	92.89%	94.21%	89.05%

S2Looking

Model	Precision	Recall	F1-score	IoU
BIT	73.99%	52.73%	61.58%	44.49%
ChangeFormer	68.04%	57.03%	62.05%	44.98%
STANet-PAM	36.30%	61.84%	45.74%	29.65%
AYANet	69.37%	58.70%	63.59%	46.62%

Experimental Validation

Experimental Validation

Ablation Study

Encoder	Precision	Recall	F1-score	IoU
Gabor	90.51%	87.38%	88.92%	80.05%
EfficientNet	92.15%	90.35%	91.24%	83.90%
AYANet	92.60%	90.25%	91.41%	84.17%

Conclusion

- 1. Challenge in BCD includes differentiating between changes in buildings and changes in other objects
- 2. Utilizing the buildings' distinctive features in RS imagery (repetitive texture) → Gabor filters
- 3. AYANet: a BCD model with double encoders
 - **a.** Gabor encoder: Gabor filters modulated in CNN to extract buildings' features
 - **b.** CNN-based encoder: extracting other high-level features
- **4.** AYANet showed promising results when compared with SOTA on 3 benchmark BCD datasets

References

- [1] Ye, Y., Wang, M., Zhou, L., Lei, G., Fan, J., Qin, Y.: Adjacent-level feature cross-fusion with 3-D CNN for remote sensing image change detection. IEEE Transactions on Geoscience and Remote Sensing 61, 1–14 (2023). https://doi.org/10.1109/TGRS.2023.3305499
- [2] Feng, Y., Jiang, J., Xu, H., Zheng, J.: Change detection on remote sensing images using dual-branch multilevel intertemporal network. IEEE Transactions on Geoscience and Remote Sensing 61, 1–15 (2023). https://doi.org/10.1109/TGRS.2023.3241257
- [3] Adil, E., Yang, X., Huang, P., Liu, X., Tan, W., Yang, J.: Cascaded U-Net with training wheel attention module for change detection in satellite images. Remote Sensing 14(24) (2022). https://doi.org/10.3390/rs14246361, https://www.mdpi.com/2072-4292/14/24/6361
- [4] Pei, G., Zhang, L.: Feature hierarchical differentiation for remote sensing image change detection. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2022.3193502
- [5] Codegoni, A., Lombardi, G., Ferrari, A.: TINYCD: a (not so) deep learning model for change detection. Neural Computing and Applications 35, 8471–8486 (2023). https://doi.org/10.1007/s00521-022-08122-3, https://doi.org/10.1007/s00521-022-08122-3, https://doi.org/10.1007/s00521-022-08122-3, https://doi.org/10.1007/s00521-022-08122-3
- [6] Huo, S., Zhou, Y., Zhang, L., Feng, Y., Xiang, W., Kung, S.Y.: Geometric variation adaptive network for remote sensing image change detection. IEEE Transactions on Geoscience and Remote Sensing 62, 1–14 (2024). https://doi.org/10.1109/TGRS.2024.3363431
- [7] Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing 12, 1662 (2020). https://doi.org/https://doi.org/10.3390/rs12101662
- [8] Bandara, W.G.C., Patel, V.M.: A Transformer-based Siamese network for change detection. In: IEEE International Geoscience and Remote Sensing Symposium IGARSS. pp. 207–210 (2022). https://doi.org/10.1109/IGARSS46834.2022.9883686
- [9] Du, P., Liu, S., Gamba, P., Tan, K., Xia, J.: Fusion of difference images for change detection over urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(4), 1076–1086 (2012). https://doi.org/10.1109/JSTARS.2012.2200879
- [10] Luan, S., Chen, C., Zhang, B., Han, J., Liu, J.: Gabor convolutional networks. IEEE Transactions on Image Processing 27(9), 4357–4366 (2018). https://doi.org/10.1109/TIP.2018.2835143
- [11] Chollet, F.: Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1800–1807 (2016), https://api.semanticscholar.org/CorpusID:2375110
- [12] Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
 Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114.
 PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/tan19a.html

Thank you

Paper available at

Codes available at https://github.com/Ayana-Inria/AYANet

