

Density-based clustering:

(Hyper-)Graphs & Percolation

Louis Hauseux, Konstantin Avrachenkov & Josiane Zerubia INRIA d'Université Côte d'Azur

OVERVIEW

- I Introduction: Clustering
- II The model: Statistician point of view
- III Classical algorithms: Single-Linkage
- **IV** The heart phenomenon: Percolation
- **V** Benefits of Hypergraphs
- **VI** Experiments Olive oil dataset

I – Introduction

Clustering

I – Introduction

Clustering

Hierarchical Density-Based SCAN Algorithm *

McInnes and Healy "Accelerated hierarchical density based clustering" (2017)

II - The model

Our approach: Statistician point of view

What is the **underlying structure** (= the **clusters**)?

→ The **density** *f* of point-generation

Suppose that all points are ploted IID w.r.t. to f

II – The model

Our approach: Statistician point of view

What is the underlying structure (= the clusters)?

→ The **density** *f* of point-generation

Goal: identify the « **High-Density Clusters** »*

II - The model

High density clusters

High-Density Clusters $H_f(
ho)$ of level ho : the connected components of:

II - The model

High density clusters

High-Density Clusters $H_f(\rho)$ of level ρ : the connected components of:

$$H_f(\rho) = \{x \in \mathbb{R}^d \mid f(x) \ge \rho\} \subseteq \mathbb{R}^d$$

II - The model... and the problem

First solution: Computing an estimator \widehat{f} of f

$$H_f(\rho) \approx H_{\widehat{f}}(\rho)$$

<u>Problem</u>: discretizing space is exp. in dim(\mathbb{R}^d)

II - The model... and the problem

Problem: Computing \widehat{f} is costly in \mathbb{R}^d with large d

Typically: Geometric Graphs

Construct Graphs on the data

→ Statistical Analysis on Networks

III - Classical algorithms

Old but efficient:

- Single-Linkage
 - = Geometric Graphs

Recent and state-of-the-art:

- (H)DBSCAN
- Persistable*

^{*} A. Rolle and L. Scoccola: "Stable and consistent density-based clustering" (2023)

III – Single-Linkage ~Geometric Graphs

Geometric graph with radius $r \approx 0.14$

We almost recover the **High-Density Cluster**

and B

III – Single-Linkage ~Geometric Graphs

Phase transition *

IV – Why does it work?

Geometric Graphs ~ Empirical high-densitiy clusters of 1-Nearest Neighbor density estimator:

$$\hat{f}_{1-NN}(y) = \frac{1}{R_y^d}$$
 where $R_y = \min_{x \in \mathcal{X}_n} ||x - y||$

High-density clusters Connected components of G

IV – Why does it work in \mathbb{R} ?

 \rightarrow Single-Linkage is **consistent** in \mathbb{R} !!!

The « cut » between the two clusters, containing **A** or **B**

 \rightarrow But Single-Linkage is <u>not</u> consistent in \mathbb{R}^d for $d \geq 2$...

→ Single-Linkage is <u>not</u> consistent in \mathbb{R}^d for $d \ge 2$... !!! Discrete Site-Percolation on \mathbb{Z}^2

Percolation occurs on A and B

Percolation occurs everywhere...

→ The two clusters merge before having recovered A and B entirely...

IV - The Percolation *

Model: the $x_1, ..., x_n$ IID plotted uniformally on $[0; 1]^2$.

→ Poisson Point Process $\lambda \leftarrow 1$

Geometric Graphs / greatest component $r < r_c$ $r = r_c$ $r > r_c$

Percolation = giant component

→ Very fast phenomenon

Two sub-cases : there exists a critical value $r_c \approx 1.2$:

- If $r < r_c$, no great component (of size $\Theta(\log(n))$)
- If $r > r_c$, one giant component (of size $\Theta(n)$)

- \rightarrow Single-Linkage works in \mathbb{R}^1 ... because there is **no** percolation
- \rightarrow S.-L. **does not work** perfectly in \mathbb{R}^d ... because **there is** percolation

Defeat on this battle... but war is not lost!

IV - Percolation: a conclusion

- ightharpoonup Single-Linkage works in \mathbb{R}^1 ... because there is **no** percolation
- ightharpoonup S.-L. **does not work** perfectly in \mathbb{R}^d ... because **there is** percolation

Compare performance of clustering algo.

Studying the percolation phenomenon:

- → A fraction of high-density clusters is recoverable...
- → Which fraction? Define the Percolation rate *, **

LH + KA + JZ, "Graph Based Approach for Galaxy Filament Extraction". Complex Networks (2023)

\mathbf{V} – Hypergraphs... for K-high-density clusters

HDC of **1-NN** Graph Connected Components

We would like *K-NN* to gain in robustness

\mathbf{V} – Hypergraphs... for K-high-density clusters

→ Weakness of RSL (or DBSCAN)

The **3-high-density clusters** of level r **Dendrogram** of **3**-NN density estimator

V - K-high-density clusters ~ Hypergraphs

HDC of **1-NN** Graph Connected Components

HDC of *K-NN* **Hypergraph** Connect. Comp. *

Y – Hypergraphs, Polyhedra

VI - Experiments - Olive Italian Oil Dataset *

* M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia:

"Classification of olive oils from their fatty acid composition" (1983)

S. Scaldelai, L. Matioli and M. Kleina: (2022)

"Multiclusterkde: A new algorithm for clustering based on multivariate kernel density estimation"

A. Rolle and L. Scoccola: "Stable and consistent density-based clustering" (2023)

A. Notte and L. Scoccota. Stable and consisten						
Macro-area	Region					
	1 – North Apulia					
South	2 – Calabria					
	3 – South Apulia					
	4 – Sicilia					
Sardinia	5 – Inland Sardinia					
	6 – Coast Sardinia					
Centro-settentrionale	7 – East Liguria					
	8 – West Liguria					
	9 – Umbria					

572 samples of oil composition (vectors in \mathbb{R}^8)

Fatty acids: Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Linolenic, Arachidic, Eicosenoic

Can we recover the geographic clusters given only the fatty acids?

**

VI – Experiments – Olive Italian Oil Dataset

VII - Experiments - Olive Italian Oil Dataset

VII - Experiments - Olive Italian Oil Dataset

Confusion Matrix: Persistable vs Polyhedra

Pers./Ours	1	2	3	4	5	6	7	8	9	Miss.
N. Apulia	12/14	0/0	0/0	-	0/0	0/0	0/0	0/0	0/0	13/11
Calabria	0/0	7/28	1/1	-	0/0	0/0	0/0	0/0	0/0	48/27
S. Apulia	0/0	0/0	100/167	-	0/0	0/0	0/0	0/0	0/0	106/ 39
Sicilia	3 /5	0 /1	0 /2	-	0/0	0/0	0/0	0/0	0/0	33 /28
Inl. Sard.	0/0	0/0	0/0	-	51/52	0/0	0/0	0/0	0/0	14/13
Coast S.	0/0	0/0	0/0	-	0 /2	19/27	0/0	0/0	0/0	14/4
E. Ligur.	0/0	0/0	0/0	-	0/0	0/0	14/20	1/3	0/0	35/ 27
W. Ligur.	0/0	0/0	0/0	-	0/0	0/0	0/0	29/41	0/0	21/9
Umbria	0/0	0/0	0/0	-	0/0	0/0	0 /6	0/0	42 /25	9 /20

Bibliography

- John A. Hartigan. Clustering Algorithms (1975). John Wiley & Sons.
- M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia: « Classification of olive oils from their fatty acid composition » (1983). *IUFoST Symposium*.
- M. Penrose. Random Geometric Graphs (2003). Oxford Studies in Probability.
- R. Stoica, Vicent J. Martinez, Jorge Mateu & Enn Saar. « Detection of cosmic filaments using the Candy model » (2005). Astronomy & Astrophysics.
- K. Chaudhuri and S. Dasgupta. « Rates of convergence for the cluster tree » (2010). NIPS.
- L. McInnes and J. Healy: « Accelerated hierarchical density based clustering » (2017). ICDMW.
- J.-D. Boissonnat, F. Chazal and M. Yvinec. *Geometric and Topological Inference* (2018). *Cambridge University Press*.
- S. Scaldelai, L. Matioli and M. Kleina: « Multiclusterkde: A new algorithm for clustering based on multivariate kernel density estimation » (2022). *J. Appl. Stat.*
- L. Hauseux & K. Avrachenkov & J. Zerubia. « Graph Based Approach for Galaxy Filament Extraction » (2023). *Intern. Conf. Of Complex Networks, Menton and HAL*.
- A. Rolle and L. Scoccola: « Stable and consistent density-based clustering » (2023). *Arxiv*.

