Insia

UNIVERSITÉ CÔTE D'AZUR

At the heart of density-based clustering: The percolation phenomenon.

<u>Applications</u>: Galaxy filament network extraction and Italian Olive-Oil

Louis Hauseux PhD student (K. Avrachenkov, éq. NEO – J. Zerubia, éq. AYANA), INRIA d'Université Côte d'Azur

I – Introduction – Galaxy Filaments The problem: Galaxy Filament Extraction

Simulated 3D image of the CosmicWeb. © MAX-PLACK INSTITUT FÜR ASTROPHYSIK

Galaxies are not distributed uniformly

- → 'Large Scale Structures'
- ➔ Filamentary extraction

« Candy Model »
(Stochastic Geometry)*

* R. Stoica et al. Detection of cosmic filaments using the Candy model (2005) (nría

I – Introduction

Our approach: Clustering view

Hierarchical Density-Based SCAN Algorithm *

* McInnes and Healy "Accelerated hierarchical density based clustering" (2017)

I - Introduction and illustration

- The illustrative Datasets: Galaxies and Italian Olive-Oil
- The mathematical model for density-based clustering: High-Density Clusters
- A classical algorithm: (Robust) Single-Linkage (and its mathematical limits)
- The benefits of hypergraphs. New model proposed.

The Cosmic Web

Olive-Oil Dataset

« Cluster » ou « Community » detection... What is this?

I – Introduction and illustration

- The illustrative Datasets: Galaxies and Olive-Oil
- The mathematical model for density-based clustering: **High-Density Clusters**
- A classical algorithm: (Robust) Single-Linkage (and its mathematical limits)
- The benefits of hypergraphs. New model proposed.

High-Density Clusters A and B

I - Introduction and illustration

- The illustrative Datasets: Galaxies and Olive-Oil
- The mathematical model for density-based clustering: High-Density Clusters
- A classical algorithm: (Robust) Single-Linkage (and its mathematical limits)
- The benefits of hypergraphs. New model proposed.

The **Dendrogram** produced by Single-Linkage

I - Introduction and illustration

- The illustrative Datasets: Galaxies and Italian Olive-Oil Clustering
- The mathematical model for density-based clustering: High-Density Clusters
- A classical algorithm: (Robust) Single-Linkage (and its mathematical limits)
- The benefits of hypergraphs. New model proposed.

The Hypergraphs and their Components

II - Results (illustrative & math)

- Asymptotic percolation rate on the discrete grid
- Correspondance between High-Density Clusters for K-NN and Čech complexes
- The persistant extraction of Galaxy Filaments
- The clustering of olive-oils matches with italian geography !

Variational extraction of Galaxy Filaments

I – The problem

Our approach: Clustering view

What is the the **underlying structure (=** the **clusters)**?

→ The **density** *f* of point-generation

Goal: identify the « High-Density Clusters »*

*

I – High-Density Clusters

High-Density Clusters $H_f(r)$ of level r: the connected components of:

I – High-Density Clusters

High-Density Clusters $H_{\hat{f}}(r)$ of level r for \hat{f} = density estimator of **10-Nearest Neighbors**

Ínnía -

I – Single-Linkage

<u>Practical situation</u> : the unit square $[0; 1]^2$ is split in 2:

- The left-rectangle with high density.
- The right-one with low density.

Single-Linkage algorithm: Start with the trivial classification: *n* points for *n* clusters.

Partition on the points

Initial **Clustering**: $C = \{C_1, \dots, C_n\}$ with $C_1 = \{x_1\}, \dots, C_n = \{x_n\}$ At each step, we merge <u>the two closest clusters</u>

I – Single-Linkage

A tree → the **Dendrogram**

G. Parisi. Statistical Field Theory (1988)

*

I – Single-Linkage ~Geometric Graphs

We almost recover the High-Density Cluster... Why ? 🤔

Single-Linkage

~ Geometric Graphs

~ Empirical High-Density Clusters 1-Nearest Neighbor:

$$\hat{f}_{1-\mathrm{NN}}(y) = \frac{1}{R_y^d}$$
 where $R_y = \min_{x \in \mathcal{X}_n} ||x - y||$

I – Geometric Graphs ~ High-Density Cluster Geometric Graphs ~ Empirical H.-D. Clusters 1-NN: $\hat{f}_{1-\mathrm{NN}}(y) = \frac{1}{R_u^d}$ where $R_y = \min_{x \in \mathcal{X}_n} ||x - y||$ Create a graph G on the cloud point χ such that: High-Density Clusters <---> Connected Components of G Subsets of \mathbb{R}^d Ok for d = 2 or 3 ... but computationally expensive for *d* large

I – Percolation *

- Model : the $x_1, ..., x_n$ IID plotted uniformally on $[0; 1]^2$.
- → Density λ of **Poisson Point Process**

Percolation = giant component → Very fast phenomenon

- 3 **Geometric Graphs** / greatest component $\lambda < \lambda_c$ $\lambda = \lambda_c$ $\lambda > \lambda_c$
- Two sub-cases : there exists a critical value $\lambda_c \in (0; \infty)$:
- If $\lambda < \lambda_c$, no great component (greatest of size $\Theta(\log(n))$)
- If $\lambda > \lambda_c$, one giant component (greatest of size $\Theta(n)$)

I − Consistency and Single-Linkage → Single-Linkage is not consistent in \mathbb{R}^d for $d \ge 2 \dots \parallel \parallel$ Discrete Site-Percolation on \mathbb{Z}^2

I − Consistency and Single-Linkage → Single-Linkage is not consistent in \mathbb{R}^d for $d \ge 2 \dots \parallel \parallel$

Discrete Site-Percolation on \mathbb{Z}^2

I − Consistency and Single-Linkage → Single-Linkage is <u>not</u> consistent in \mathbb{R}^d for $d \ge 2 \dots \parallel \parallel$ Discrete Site-Percolation on \mathbb{Z}^2

The two clusters merge before having recovered **A** and **B** ...

I − **Consistency and Single**-Linkage → Single-Linkage is <u>not</u> consistent in \mathbb{R}^d for $d \ge 2 \dots !!!$

→ Only « fractional consistency » is possible

→ Goal: obtain the largest possible « **fraction** »

23 - 15/01/2024

Inría

24 - 15/01/2024

Inría

I – Percolation rate

→ Look at K-NN instead of 1-NN

In the percolation on \mathbb{Z}^d , a site is open if it contains more than **K** points

More than K points opens the Site

I – Percolation rate

→ Look at *K*-NN instead of 1-NN

In the percolation on \mathbb{Z}^d , a site is open if it contains more than **K** points

* Unpublished work

→ Weakness of RSL (or DBSCAN)

* K. Chaudhuri and S. Dasgupta: "Rates of convergence for the cluster tree" (2010) 31 - 15/01/2024

→ Weakness of RSL (or DBSCAN)

The High-Density Clusters of level *r* for *3-NN*

→ Weakness of RSL (or DBSCAN)

The **Dendrogram** of the Robust Single-Linkage ...

→ Weakness of RSL (or DBSCAN)

Concrete case: Results of HDBSCAN algorithm. © Scikit-Learn's (Python library) Clustering page

I – High-Density Clusters ~ Hypergraphs

Subsets of \mathbb{R}^d Ok for d = 2 or 3 ... but computationally expensive for d large

High-Density Clusters of **1-NN** <---> Connected Components of a graph

High-Density Clusters of *K-NN* **~~~** Connect. Comp. of an **hypergraph**

I – Hypergraphs and Q-Connectivity *

Polyhedra on an hypergraph **

* R. Atkin "From cohomology in physics to q-connectivity in social science" (1972)
 36 - 15/01/2024
 ** Unpublished work

II – Results – Galaxy Filaments

Algorithm 1 Filament extraction of a connected component $G(V, E)$		
	Centres	\triangleright The centres of the pre-existing filament
Choose Centres	FilNodes	\triangleright Nodes of <i>Filament</i>
	$PercolThreshold \leftarrow 50$	\triangleright The percolation threshold
	while $ Centres < int(V /Pe$	$rcolThreshold$) do \triangleright We search for a new centre
	$D \leftarrow \{\}$	\triangleright The sums of the distances to minimise
	for $x \in V$ do	$\triangleright x$ is the hypothetical new centre
	$NodesFilament \leftarrow copy$	y(FilNodes)
	$Branch_x \leftarrow ShortPath(x, NodesFilament) $ \triangleright Hypothetical new branch $NodesFilament \leftarrow NodesFilament \cup Branch_x$	
	$D[x] \leftarrow 0$	
	for $y \in V$ do	
Filoments are	$D[x] \leftarrow D[x] + d(y,$	$NodesFilament)^2$
	end for	
MST on the 🧹	end for	
Contros	$x \leftarrow \operatorname{argmin}(D)$	\triangleright The new centre chosen
centres 🧹	$Centres \leftarrow Centres \cup \{x\}$	
minimizing	$FilNodes \leftarrow FilNodes \cup E$	$ranch_x$
·····	end while	
	$Filament \leftarrow MinimalSpanningTree(FilNodes)$	
Returns Filament		

* L. Hauseux et al.: "Graph Based Approach for Galaxy Filament Extraction " (2023)

II – Results – Galaxy Filaments

Ínría

II – Results – Olive Italian Oil Dataset *

* M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia: "Classification of olive oils from their fatty acid composition" (1983) ** S. Scaldelai, L. Matioli and M. Kleina: (2022) "Multiclusterkde: A new algorithm for clustering based on multivariate kernel density estimation" *** A. Rolle and L. Scoccola: "Stable and consistent density-based clustering" (2023) Macro-area Region 572 samples of oil composition 1 – North Apulia (vectors in \mathbb{R}^8) 2 – Calabria Fatty acids: Palmitic, Palmitoleic, South 3 – South Apulia Stearic, Oleic, Linoleic, Linolenic, 4 – Sicilia Arachidic, eicosenoic 5 – Inland Sardinia Sardinia 6 – Coast Sardinia Can we recover the 7 – East Liguria geographic clusters given Centro-settentrionale 8 – West Liguria only the fatty acids? 9 – Umbria

II – Results – Olive Oil Dataset *

Bibliography

- John A. Hartigan. Clustering Algorithms (1975). John Wiley & Sons.
- M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia: « Classification of olive oils from their fatty acid composition » (1983). *IUFoST Symposium*.
- M. Penrose. Random Geometric Graphs (2003). Oxford Studies in Probability.
- R. Stoica, Vicent J. Martinez, Jorge Mateu & Enn Saar. « Detection of cosmic filaments using the Candy model » (2005). Astronomy & Astrophysics.
- K. Chaudhuri and S. Dasgupta. « Rates of convergence for the cluster tree » (2010). *NIPS*.
- L. McInnes and J. Healy: « Accelerated hierarchical density based clustering » (2017). *ICDMW*.
- S. Scaldelai, L. Matioli and M. Kleina: « Multiclusterkde: A new algorithm for clustering based on multivariate kernel density estimation » (2022). J. Appl. Stat.
- L. Hauseux & K. Avrachenkov & J. Zerubia. « Graph Based Approach for Galaxy Filament Extraction » (2023). Intern. Conf. Of Complex Networks, Menton and HAL.
- A. Rolle and L. Scoccola: « Stable and consistent density-based clustering » (2023). *Arxiv*.

