Innía

Fully convolutional and feedforward networks for the semantic segmentation of remotely sensed images

Università di **Genova**

UNIVERSITÉ CÔTE D'AZUR

Martina Pastorino • Gabriele Moser • Sebastiano B. Serpico • Josiane Zerubia

Outline

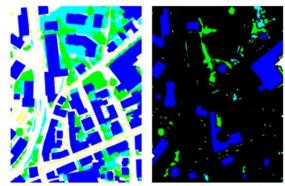
01. Introduction
02. Proposed framework
03. Experimental results
04. Conclusions and perspectives

Introduction

The addressed problem

The development of a supervised method for the semantic segmentation – or dense image classification – of remote sensing images at very high resolution (VHR) is a challenging problem

- Models based on deep learning (e.g., fully convolutional networks, FCNs) are capable to reach accurate classification results
 - however, these models need large datasets which require high efforts in annotation and most often are not available
 - their performances worsen in case of scarce ground truth (GT)



Original GT

GT used to train the model

The addressed problem

FCNs extract information at different spatial resolutions

- the use of the spatial details at the finest resolutions and the robustness to noise plus outliers at the coarsest has proven to improve the classification results
- stochastic models such as probabilistic graphical models (PGMs) are flexible and powerful approaches which can extract information from multiscale data for labeling purposes
- several approaches that combine DL and PGMs have been studied in order to improve the accuracy of the classification results by capturing the interactions between pixels

Proposed solution

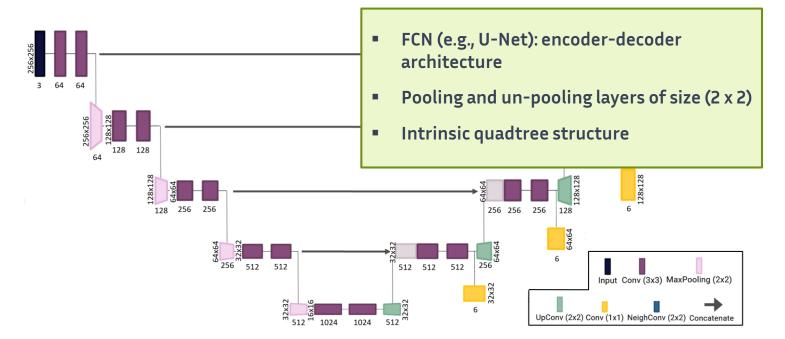
The method in [1] was extended with the addition of fully connected neural networks (NNs) at different convolutional blocks of the FCN

- Architecture capable of integrating multiscale data without the need of ensemble learning techniques, thus making the approach end-to-end.
- Spatial-contextual information is favored in this framework, through
 - a supplementary convolutional layer modeling the interactions between neighboring pixels at the same resolution.
 - an additional loss term which allows to integrate spatial information between neighboring pixels.

[1] M. Pastorino, G. Moser, S. B. Serpico, and J. Zerubia, "Semantic segmentation of remote sensing images through fully convolutional neural networks and hierarchical probabilistic graphical models," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 60, pp. 1–16, 2022.

Proposed framework

Overall architecture



Overall architecture

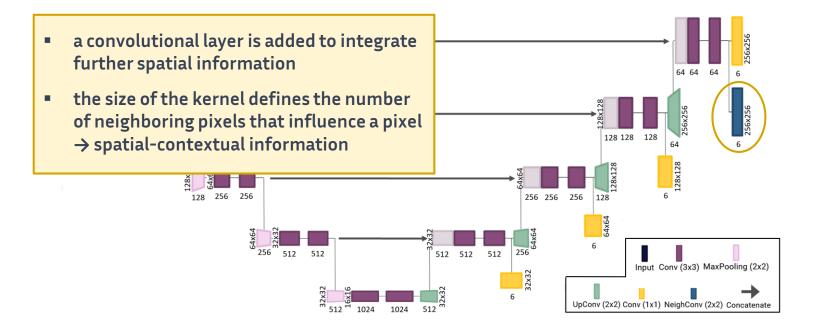
- Integration of fully connected NNs in the decoder to retrieve multiscale information
- built through convolutional layers with kernels of size (1 x 1) to work with 2D data and compute pixelwise posterior probabilities

128 128 128

64 64

56x256

Overall architecture



Loss function

weighting factor for imbalanced training data

$$\mathcal{L}_{u} = -\frac{1}{L} \sum_{l=1}^{L} \sum_{k=0}^{M-1} \frac{\widehat{P}_{max}}{\widehat{P}_{k}} \sum_{i \in S^{l}} t_{ik} \log(p_{ik}), p_{ik} = \frac{\exp(z_{ik})}{\sum_{n=0}^{M-1} \exp(z_{in})}$$

$$\mathcal{L}_{p} = -\sum_{a=1}^{W_{L}} \sum_{b=1}^{H_{L}} \sum_{k=0}^{M-1} t_{ik} \log \left(\sum_{j=0}^{D-1} \sum_{q=0}^{D-1} h_{j,q} \cdot p_{(a-j,b-q),k} \right)$$

M number of classes

L number of resolutions

H_L, *W_L* height, width of the pixel grid

 p_{ik} estimated output probability that pixel *i* belongs to class *k*

 (z_{i1}, \dots, z_{ij}) prediction vector

 \widehat{P}_k prior probability of the k –th class

 $h_{i,q}$ weight of the kernel of size D imes D

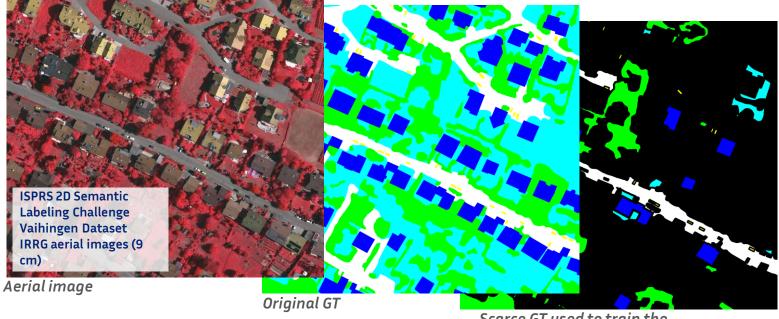
 $\mathcal{L} = \mathcal{L}_u + \mathcal{L}_p$

Experimental results

Experimental results

Dataset

Buildings	Roads	Vegetation					
Trees	Cars	Clutter					
Unlabeled							

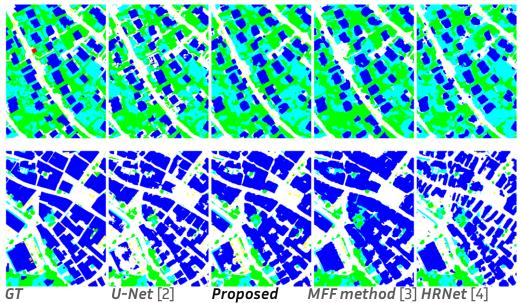


https://www2.isprs.org/commissions/comm2/wg4/benchmark/

Scarce GT used to train the model

Experimental results

Results



[2] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in *Med. Image Comput. Comput. Ass. Interv.*, ser. LNCS, vol. 9351. Springer, pp. 234–241, 2015.

[3] S. Liu, C. He, H. Bai, Y. Zhang, and J. Cheng, "Light-weight attention semantic segmentation network for high-resolution remote sensing images," in 2020 IGARSS, pp. 2595–2598, 2020.
 [4] K. Sun, B. Xiao, D. Liu, and J. Wang, "Deep high-resolution representation learning for human pose estimation," in 2019 CVPR, pp. 5686–5696, 2019.

Results (full images)

	Architecture	buildings	impervious surf.	low vegetation	trees	cars	OA	recall	prec	F1
Full GT	U-Net [2]	0.86	0.91	0.79	0.90	0.86	0.89	0.87	0.85	0.86
	MFF method [3]	0.96	0.93	0.71	0.89	0.61	0.89	0.82	0.88	0.85
	HRNet [4]	0.89	0.89	0.50	0.89	0.81	0.79	0.80	0.81	0.81
	Proposed method	0.96	0.91	0.80	0.91	0.81	0.91	0.88	0.87	0.88
Scarce GT	U-Net [2]	0.87	0.93	0.64	0.87	0.76	0.82	0.81	0.84	0.83
	MFF method [3]	0.94	0.82	0.65	0.85	0.60	0.81	0.78	0.83	0.80
	HRNet [4]	0.84	0.75	0.82	0.69	0.49	0.77	0.72	0.79	0.75
	Proposed method	0.94	0.78	0.80	0.87	0.90	0.86	0.86	0.85	0.86

[2] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in *Med. Image Comput. Comput. Ass. Interv.*, ser. LNCS, vol. 9351. Springer, pp. 234–241, 2015.

[3] S. Liu, C. He, H. Bai, Y. Zhang, and J. Cheng, "Light-weight attention semantic segmentation network for high-resolution remote sensing images," in 2020 IGARSS, pp. 2595–2598, 2020.
 [4] K. Sun, B. Xiao, D. Liu, and J. Wang, "Deep high-resolution representation learning for human pose estimation," in 2019 CVPR, pp. 5686–5696, 2019.

Results (cropped images)

	Architecture	buildings	impervious surf.	low vegetation	trees	cars	OA	recall	prec	F1
Full GT	FCN + PGM [1]	0.84	0.81	0.68	0.92	0.86	0.81	0.82	0.72	0.77
	U-Net [2]	0.92	0.83	0.71	0.92	0.74	0.85	0.83	0.84	0.83
	MFF method [3]	0.91	0.97	0.61	0.88	0.64	0.85	0.80	0.82	0.81
	HRNet [4]	0.89	0.81	0.42	0.92	0.63	0.77	0.73	0.76	0.74
	Proposed method	0.92	0.85	0.73	0.93	0.73	0.86	0.83	0.85	0.84
Scarce GT	FCN + PGM [1]	0.94	0.68	0.49	0.86	0.74	0.76	0.74	0.75	0.75
	U-Net [2]	0.96	0.65	0.47	0.89	0.48	0.76	0.69	0.81	0.75
	MFF method [3]	0.91	0.75	0.44	0.87	0.51	0.76	0.70	0.74	0.72
	HRNet [4]	0.84	0.77	0.68	0.80	0.29	0.77	0.68	0.74	0.71
	Proposed method	0.90	0.79	0.70	0.89	0.68	0.82	0.79	0.81	0.80

Conclusions and perspectives

Conclusions and perspectives

- Novel semantic segmentation method based on FCN, fully connected NNs, and a spatial loss function.
- Addresses a major challenge of deep learning for semantic segmentation of VHR RS images in case of scarce GT
- The advantages of the proposed techniques are progressively more relevant as the training set is farther from the ideal densely-labeled case and closer to real-world annotations

Future work

- extension of this methodology to the multisensor case, with optical and radar images acquired by different missions and therefore with different spatial resolutions, frequencies, and bands.
- study of the effect on classification of the incorporation of different amounts of long-range spatial information (adaptive kernel)
- integration of the proposed method with transfer learning to work with datasets related to other real world applications, such as natural disaster management

Thank you very much for your attention!

