

Point process and CNN for small object detection in satellite images

Jules Mabon, Inria, Université Côte d'Azur In collaboration with Mathias Ortner (Airbus DS) and Josiane Zerubia (Inria)

2022

Introduction

1. Introduction

- 2. Point processes for object detection
- 3. Energy Model
- 4. Configuration inference
- 5. Results
- 6. Conclusion et Perspectives

Introduction

Introduction

Goals

 Detection and vectorization of objects in satellite images

Challenges

- small sized objects at 50 cm/pixel
- Visually diverse environment and objects
- Variable density
- Priors on interactions

Image from the DOTA¹dataset

¹Xia et al., "DOTA: A Large-Scale Dataset for Object Detection in Aerial Images," 2018.

Innia

02

Point processes for object detection

1. Introduction

2. Point processes for object detection Definitions and notations MPP for objects detection

3. Energy Model

4. Configuration inference

5. Results

6. Conclusion et Perspectives

4 - J. Mabon - 2022

Point process: definition

Marked point process

- configuration of points $Y = \{y_0, \ldots, y_n\}$
- y ∈ S × M, S ⊂ ℝ² the image space, M the mark space

•
$$Y \in \Omega$$
, $\Omega = \bigcup_{n=0}^{\infty} (S \times M)^n$

• Y : realization of a random variable in Ω

Parametrization

Oriented rectangle

M = R⁺ × [0, 1] × [0, π]
 y = (y_i, y_j, y_s, y_r, y_α)

Point process density

Y is the realization of a random variable of density h

Point process density (Gibbs)

$$h(Y) \propto \exp(-U(Y))$$
 (1)

Simplified energy model

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}_y)$$
(2)

X: image, \mathcal{N}_y : neighborhood of y in Y

Data and prior terms

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}_y)$$

Data and prior terms

$$U(Y,X) = \sum_{y \in Y} U_{data}(y,X) + U_{prior}(y,\mathcal{N}y)$$

Data term

Ayana Inría

Contrast measures as data term

Precision-recall for the T-test measure² (red) and for a measure based on image gradient³ (orange).

²Lacoste *et al.*, "Point processes for unsupervised line network extraction in remote sensing," 2005. ³Kulikova *et al.*, "Extraction of Arbitrarily-Shaped Objects Using Stochastic Multiple Birth-and-Death Dynamics and Active Contours," 2010.

9 - J. Mabon - 2022

03

Energy Model

1. Introduction

2. Point processes for object detection

- 3. Energy Model Learned data term Prior energy terms Energies combination
- 4. Configuration inference
- 5. Results

10 - J. Mabon - 2022

6. Conclusion et Perspectives

11 - J. Mabon - 2022

11 - J. Mabon - 2022

Position energy term

Position energy term

$$U_{pos}(y,X) = -2\sigma \left(a.\operatorname{div}(\widehat{V}_X) + b \right) [y_i, y_j] + 1$$
(3)

- Inference of a vector map \widehat{V}_X to better separate instances
- ▶ $A[y_i, y_j]$: interpolated value of map A at position $[y_i, y_j]$
- ▶ $a, b \in \mathbb{R}$, energy model parameters (learned)
- ▶ \widehat{V}_X pre-computed : $U_{pos}(y, X)$ defined $\forall y \in S \times M$

Learning the position energy

Cost function

$$L_{pos}(\widehat{V}_X, Y_{GT}) = \mathsf{MSE}(\widehat{V}_X, V_{Y_{GT}}) + \mathsf{BCE}(G_{Y_{GT}}, \sigma(a.\mathsf{div}(\widehat{V}_X) + b))$$
(4)

- ▶ MSE : Mean Squared Error, BCE : Binary Cross Entropy
- ► $V_{Y_{GT}}$: Vector field built from the ground truth Y_{GT}
- $G_{Y_{GT}}$: center binary map + Gaussian filter (objects as "blobs")
- Data augmentation: patch sampling, rotation, hue/contrast/luminosity variations etc.

Position energy term: example

Image X

Marks energy term: energy tensor

Extracting energies $U_m(y, X)$ from an energy tensor inferred with a Unet⁴

Image X(H, W)

⁴Ronneberger *et al.*, "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015.

Innin_

Marks energy term: energy tensor

Extracting energies $U_m(y, X)$ from an energy tensor inferred with a Unet⁴

⁴Ronneberger *et al.*, "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015.

Marks energy term: energy tensor

Extracting energies $U_m(y, X)$ from an energy tensor inferred with a Unet⁴

⁴Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015.

Marks energy term: energy tensor

Extracting energies $U_m(y, X)$ from an energy tensor inferred with a Unet⁴

⁴Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015.

Marks energy term: energy tensor

Extracting energies $U_m(y, X)$ from an energy tensor inferred with a Unet⁴

⁴Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015.

Marks energy term

Energy on marks

For each mark m

$$U_m(y,X) = -\widehat{A}_X[y_i, y_j \text{index}(y_m)]$$
(5)

- ▶ A[i, j, k] : interpolated value of tensor A at coordinates [i, j, k]
- index(y_m) : index corresponding to the discretization of values from m in N_c intervals from m_{min} to m_{max}
- \widehat{A}_X pre-computed : $U_m(y,X)$ defined $\forall y \in S \times M$

• index
$$(y_m) = \left\lfloor N_c \frac{y_m - m_{min}}{m_{max} - m_{min}} \right\rfloor$$

Ayana Inría

Learning the mark energy term

Cost function

$$L_m(\widehat{A}_X, Y_{GT}) = \frac{1}{|P|} \sum_{p \in P} \mathsf{CE}(\widehat{A}_X[p], A_{Y_{GT}}[p])$$
(6)

- CE : Cross Entropy, P : set of all pixels from X, A[p] : value of tensor A at position p
- $A_{Y_{GT}}$ tensor built from the ground truth Y_{GT}
- Data augmentation
- Y augmented during training : we offset marks randomly with a normal law

Priors on configurations

Non-superposition prior

$$U_o(y, \mathcal{N}_y) = \max_{\tilde{y} \in \mathcal{N}_y} \left\{ \frac{\operatorname{area}(\tilde{y} \cap y)}{\min\{\operatorname{area}(\tilde{y}), \operatorname{area}(y)\}} \right\}$$
(7)

Alignment prior

$$U_{a}(y, \mathcal{N}_{y}) = \min_{\tilde{y} \in \mathcal{N}_{y}} \left\{ -|\cos(|y_{\alpha} - \tilde{y}_{\alpha}|)| \right\}$$
(8)

Size prior

$$U_s(y) = \max\{s_{min} - \operatorname{area}(y), \operatorname{area}(y) - s_{max}, 0\}$$
(9)

hyperparameters $s_{min}, s_{max} \in \mathbb{R}^+$, minimal and maximal sizes 18 - J. Mabon - 2022

Energies combination

Multiple energy terms

Energy	Notation
position	$U_{pos}(y,X)$
marks $m \in \{s, r, \alpha\}$	$U_m(y,X)$
size	$U_s(y)$
superposition	$U_s(y, \mathcal{N}_y)$
alignment	$U_a(y, \mathcal{N}_y)$

Total energy

$$U_{tot} = \sum_{y \in Y} f(U_1, \ldots, U_k)$$

With $f : \mathbb{R}^k \to \mathbb{R}$ How to combine energy terms ?

Linear combination

Total energy

$$U_{tot}(Y,X,\theta) = \sum_{y \in Y} U_1(y,X) + \theta_2 U_2(y,\mathcal{N}_y,X) + \dots + \theta_k U_k(y,\mathcal{N}_y,X) \quad (10)$$

Linear combination

Total energy

$$U_{tot}(Y,X,\theta) = \sum_{y \in Y} U_1(y,X) + \theta_2 U_2(y,\mathcal{N}_y,X) + \dots + \theta_k U_k(y,\mathcal{N}_y,X) \quad (10)$$

- ▶ Weights $\theta \in \mathbb{R}^{k-1}$
- \blacktriangleright $\hat{\theta}$ set by trial and error
- Calibration needed :

for l = 1, ..., k, must find $d_l \in \mathbb{R}$ so that $U'_l(y, X) = U(y, X) - d_l < 0$ for valid y and > 0 for non-valid y

04

Configuration inference

1. Introduction

2. Point processes for object detection

3. Energy Model

4. Configuration inference Point process simulation

5. Results

6. Conclusion et Perspectives

Point process simulation

Objective

- Knowing $h(Y|X) \propto \exp(-U(Y,X))$
- We look for $\widehat{Y} = \operatorname{argmin}_{Y \in \Omega} U_{tot}(Y, X, \widehat{\theta})$

Reversible Jump Markov Chain Monte Carlo⁵

- Simulate $Y_t \sim h/T_t$, with simulated annealing $(T_{t+1} = 0.999T_t)$
- \triangleright Y_t converges towards \widehat{Y}

⁵Green, "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination," 1995.

05

Results

1. Introduction

2. Point processes for object detection

- 3. Energy Model
- 4. Configuration inference

5. Results

6. Conclusion et Perspectives

Results on remote sensing datasets

- Images subsampled to 50 cm/pixel
- Compare our MPP+CNN method against BBA-Vec.⁶
- Various datasets :
 - **DOTA**⁷ (labeled with oriented rectangles, training dataset)
 - COWC⁸ (labeled with centers)
 - Airbus aerial images (unlabeled)

⁶Yi *et al.*, "Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors," 2021. ⁷Xia *et al.*, "DOTA: A Large-Scale Dataset for Object Detection in Aerial Images," 2018. ⁸Mundhenk *et al.*, "A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning," 2016.

Avana Ingia -

Ayana Inría

DOTA50 sample

Ayana Inría

DOTA : Metrics

Method	Training	F1@0.25	Pr@0.25	Rc@0.25	F1@0.5	Pr@0.5	Rc@0.5
	data						
BBA-Vec. ⁹	100%	0.68	0.63	0.74	0.48	0.43	0.53
BBA-Vec.	50%	0.58	0.55	0.62	0.23	0.22	0.25
BBA-Vec.	25%	0.52	0.51	0.54	0.13	0.12	0.15
MPP+CNN	100%	0.66	0.56	0.79	0.42	0.32	0.64
MPP+CNN	50%	0.57	0.46	0.75	0.31	0.22	0.52
MPP+CNN	25%	0.55	0.48	0.64	0.34	0.26	0.49

Ayana Inría

⁹Yi et al., "Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors," 2021.

Effects of fewer training data

Ayana Ínría

Airbus data, difficult example BBA-Vec.

MPP+CNN (ours)

Ayana Ínría

28 - J. Mabon - 2022

06

Conclusion et Perspectives

1. Introduction

2. Point processes for object detection

- 3. Energy Model
- 4. Configuration inference
- 5. Results
- 6. Conclusion et Perspectives

Conclusion & perspectives

Contributions

- Likelihood terms learned with CNNs, replacing contrast measures.
- Results equivalent to SOTA (metrics wise) while having more spatial coherence/regularization thanks to added priors.

Perspectives

- While energies weights are set manually here, one can learn these parameters ¹⁰
- Working on applying this model to time series where the priors on dynamics are stronger

¹⁰Mabon *et al.*, "CNN-based energy learning for MPP object detection in satellite images," 2022.

Innin -

Conclusion et Perspectives

Bibliography I

- G.-S. Xia *et al.*, "DOTA: A large-scale dataset for object detection in aerial images," in *Proc. CVPR*, 2018.
- [2] C. Lacoste, X. Descombes, and J. Zerubia, "Point processes for unsupervised line network extraction in remote sensing," *IEEE TPAMI*, vol. 27, no. 10, pp. 1568–1579, 2005.
- [3] M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia, "Extraction of arbitrarily-shaped objects using stochastic multiple birth-and-death dynamics and active contours," in *Proc. Computational Imaging VIII*, SPIE, 2010.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in *Proc. MICCAI*, 2015.
- [5] P. J. Green, "Reversible jump Markov chain Monte Carlo computation and bayesian model determination," *Biometrika*, vol. 82, no. 4, pp. 711–732, 1995.

Conclusion et Perspectives

Bibliography II

- [6] J. Yi, P. Wu, B. Liu, Q. Huang, H. Qu, and D. Metaxas, "Oriented object detection in aerial images with box boundary-aware vectors," in *Proc. IEEE Winter Conf. on Applications of Computer Vision*, 2021.
- [7] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye, "A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning," in *Proc. ECCV*, 2016.
- [8] J. Mabon, M. Ortner, and J. Zerubia, "Cnn-based energy learning for mpp object detection in satellite images," in *IEEE International workshop on machine learning for signal processing*, 2022.

Ínría_

Thank you ! Any questions ?