

Adaptive Birth for the Generalized Labeled Multi-Bernoulli (GLMB) Filter in Satellite Videos

Camilo Aguilar*, Mathias Ortner**, Josiane Zerubia* *Inria, Universite Côte d'Azur, Sophia Antipolis, France **Airbus DS, Toulouse, France

Overview

Problem Statement
Popular Tracking Frameworks
GLMB Filter
Proposed Adaptive Birth
Results
Conclusion

01

Problem Statement

Problem Statement

Multi Object Tracking (MOT) in Remote Sensing

Sample Remote Sensing Video

Dayton, OH, USA

> MOT Objective:

 Extract target states from measurements

> Sample Applications:

- Urban development
- Traffic estimation
- Commerce management
- Law enforcement
- Border security

AIRBUS Ayana Énría

Challenges:

• Varying number of targets:

- > Targets may appear or disappear from:
 - Image borders
 - Parking lots and garages
 - Shadows and occlusions

) WPAFB 2009

Problem Statement

Challenges:

• Varying number of targets

• Changing object dynamics:

- > Objects may:
 - Move at very high speeds
 - Change directions rapidly
 - Stop at intersections

Problem Statement

Challenges:

- Varying number of targets
- Changing object dynamics
- Crowded scenes:
 - > Objects can be separated a few pixels from each other

02

Popular Tracking Frameworks

Popular Tracking Frameworks

Deep Learning: CenterTrack [Zhou, 2020]

- ✓ Joint detection-tracking
- Regresses velocity vector
- x Recover tracks with ad-hoc frameworks
- x Requires 2D + time labels

Center Track [Zhou, 2020]

Real time: SORT [Bewley, 2016] & DeepSORT [Wojke, 2017]

- ✓ Achieves competitive results with realtime performance
- x Relies on ad-hoc data association methods
- x DeepSORT relies on large object features

Sort [Bewly, 2016]

Random Finite Sets (RFSs): PHD filter [Vo, 2004] and GLMB filter [Vo, 2014]

- ✓ Bayesian multi-object formulation
- Robust to clutter and misdetections
- x Requires of approximations to remain computationally feasible

GLMB [Vo, 2014]

03

The GLMB Filter

The GLMB Filter

Random Finite Sets (RFS) Framework

Measurements and objects' states are modeled with RFSs [Mahler, 1994]:

Measurement Set Modeling

Single measurement: $z_i = [p_i]^T$ Frame multi-measurement set: $z_k = \{z_1^k, z_2^k, ..., z_{M_k}^k\}$ Sequence measurement set: $Z_k = \{z_1, z_2, ..., z_k\}$

Prediction (prior):

Target Set Modeling

Single object state: $\mathbf{x}_j = [p_j, v_j, w_j, h_j]^T$ Frame multi-object set: $\mathbf{x}_k = \{x_1^k, x_2^k, \dots, x_{N_k}^k\}$ Sequence state set: $X_k = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$

$$p(X_k|Z_{1:k-1}) = \int p(X_k|X_{k-1}) \ p(X_{k-1}|Z_{1:k-1}) \ \delta x_{k-1}$$

Update (posterior):

k: Time index p: position v: velocity a: acceleration N_k: number of objects M_k: number of measurements

$$p(X_k|Z_{1:k}) = \frac{p(Z_{1:k}|X_k)p(X_k|Z_{1:k-1})}{p(Z_k|Z_{1:k-1})}$$

The GLMB Filter

Labelled RFSs and the GLMB Filter

Labelled targets are modelled with Labelled multi-Bernoulli distributions

Target Set Modeling

Single object state: $\mathbf{x}_j = [p_j, v_j, w_j, h_j]^T$ Frame multi-object set: $\mathbf{x}_k = \{x_1^k, x_2^k, \dots, x_{N_k}^k\}$ Sequence state set: $X_k = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$

Prediction (prior):

$$p(X_k|Z_{1:k-1}) = \int p(X_k|X_{k-1}) \ p(X_{k-1}|Z_{1:k-1}) \ \delta x_{k-1}$$

Update (posterior):

k: Time index p: position v: velocity a: acceleration N_k: number of objects M_k: number of measurements

$$p(X_k|Z_{1:k}) = \frac{p(Z_{1:k}|X_k)p(X_k|Z_{1:k-1})}{p(Z_k|Z_{1:k-1})}$$

Proposed Adaptive Birth

Learning a Velocity History Map h_{v}^{k}

$$h_{\nu}^{k}(\widehat{p}_{i}) = \begin{cases} \frac{h_{\nu}^{k-1}(\widehat{p}_{i}) + \widehat{\nu}_{i}}{2} & \text{if } \|h_{\nu}^{k-1}(\widehat{p}_{i})\| \neq 0\\ \widehat{\nu}_{i} & \text{if } \|h_{\nu}^{k-1}(\widehat{p}_{i})\| = 0 \end{cases}$$

GLMB Filter with Adaptive Birth

Object Detection: Patch-based CNN

Object Tracking: GM-PHD Filter

Results

Sample Area 1

Jilin-1 Satellite Constellation. Resolution: 1.0 m, Frequency: 20 Hz

Ground Truth

Filter Output

Sample Area 1

Jilin-1 Satellite Constellation. Resolution: 1.0 m, Frequency: 20 Hz

Ground Truth

Filter Output

Sample Results

Sample Area 2

Jilin-1 Satellite Constellation. Resolution: 1.0 m, Frequency: 20 Hz

Ground Truth

Filter Output

Sample Results

Sample Area 2

Jilin-1 Satellite Constellation. Resolution: 1.0 m, Frequency: 20 Hz

Ground Truth

Filter Output

Sample Results

ClearMOT [Bernarin, 2008] Scores

MOTA: Multiple Object Tracking Accuracy

- > Ranges from $(-\infty, 100]$
- > Function of true positives, false positives, identity switches

MOTP: Multiple Object Tracking Precision

- ▶ Ranges from $[0.0, \infty)$
- Function of distance between detections-ground truth

Average Scores for Aols 2, 34, 42

FN: False negative FP: False positive GT: GT objects IDS: identity switch d_i^k : distance to GT N_{Frames} : number of frames M_k : number of detected objects

$$MOTA = 1 - \frac{\sum_{k=1}^{N_{Frames}} FN_k + FP_k + IDS_k}{\sum_k GT_k}$$

$$MOTP = \frac{\sum_{k=1}^{N_{Frames}} \sum_{i=1}^{N_k} d_i^k}{\sum_k M_k}$$

Method	ΜΟΤΑ	ΜΟΤΡ
Proposed	0.871	0.523
GLMB [Vo, 2017]	0.742	0.547
T-GMPHD [Aguilar, 2021]	0.464	0.554
SORT [Bewley, 2016]	0.478	0.824

05

Conclusion

Conclusion

We presented a track by detection approach to track tiny moving objects by using an attention driven CNN inference and the GM-PHD filter.

- The **patch selection mechanism** contributed to **reduce false positives** and to perform training and inference with a CNN.
- The GM-PHD filter performs a **direct multi-object approach** in comparison to common techniques of using several independent Kalman filters.
- We obtain **both better detection and tracking** scores than competing methods

References 1

[Mahler , 1994] R. Mahler. "Global integrated data fusion" , Proc. 7th Nat. Symp. on Sensor Fusion, Vol. 1, (Unclassified) Sandia National Laboratories, Albuquerque, EW Ann Arbor MI, pp. 187-199, 1994.

[Vo, 2006] B. -. Vo and W. -. Ma, "The Gaussian Mixture Probability Hypothesis Density Filter," in *IEEE Transactions on Signal Processing*, vol. 54, no. 11, pp. 4091-4104, Nov. 2006.

[Bernarin, 2008] Bernardin, Keni & Stiefelhagen, Rainer. (2008). Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP Journal on Image and Video Processing. 2008

[Nurhadiyatna , 2013] A. Nurhadiyatna, W. Jatmiko, B. Hardjono, A. Wibisono, I. Sina and P. Mursanto, "Background Subtraction Using Gaussian Mixture Model Enhanced by Hole Filling Algorithm (GMMHF)," 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013.

[Droogenbroeck, 2014] Droogenbroeck, Marc & Barnich, Olivier. (2014). ViBe: A Disruptive Method for Background Subtraction.

[Ronneberger, 2015] Ronneberger, Olaf & Fischer, Philipp & Brox, Thomas. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015

[Shaoqing, 2015] Ren, Shaoqing & He, Kaiming & Girshick, Ross & Sun, Jian. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[Vo, 2016] B. Vo, B. Vo and H. G. Hoang, "An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter," in IEEE Transactions on Signal Processing, vol. 65, no. 8, pp. 1975-1987, 15 April15, 2017, doi: 10.1109/TSP.2016.2641392.

References 2

[Feichtenhofer, 2017] C. Feichtenhofer, A. Pinz and A. Zisserman, "Detect to Track and Track to Detect," 2017 IEEE International Conference on Computer Vision (ICCV), 2017.

[Bouraffa, 2019] T. Bouraffa, L. Yan, Z. Feng, B. Xiao, Q. M. J. Wu and Y. Xia, "Context-Aware Correlation Filter Learning Toward Peak Strength for Visual Tracking," in *IEEE Transactions on Cybernetics. 2019*

[Wei, 2019] W. Ao, Y. Fu, X. Hou and F. Xu, "Needles in a Haystack: Tracking City-Scale Moving Vehicles From Continuously Moving Satellite," in *IEEE Transactions on Image Processing*, vol. 29, pp. 1944-1957, 2020]

[Beard & Vo, 2020] M. Beard, B. T. Vo and B. Vo, "A Solution for Large-Scale Multi-Object Tracking," in *IEEE Transactions on Signal Processing*, vol. 68, pp. 2754-2769, 2020, doi: 10.1109/TSP.2020.2986136.

Thank you! Merci ! Gracias!

