

Ínnía (2)

A Causal Hierarchical Markov Framework for the Classification of Multiresolution and Multisensor Remote Sensing Images

Alessandro Montaldo¹ • Luca Fronda¹ • Ihsen Hedhli³ Gabriele Moser¹ • Sebastiano B. Serpico¹ • Josiane Zerubia²

The Addressed Problem

Joint availability of images at different (and high) resolutions thanks to current missions

- Optical: Pléiades, PRISMA, Sentinel-2, WorldView-3, SPOT-6/7, etc.
- SAR: COSMO-SkyMed Second Generation, Sentinel-1, TerraSAR-X, RADARSAT Constellation, etc.

The challenge of joint multisensor and multiresolution fusion

• To develop classification methods that benefit from all available data

Proposed approach: hierarchical latent Markov random fields (MRF)

- General framework for causal hierarchical spatial-contextual Markov modeling
- Proof of causality and inference formulation
- Specific algorithm incorporating spatial Markov chains

Ínría_

The Proposed Framework

The Rationale

Hierarchical MRF on quadtrees

Causal

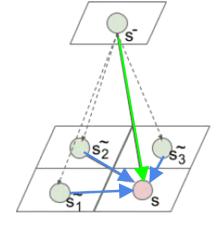
Efficient non-iterative inference Does not model spatial information within each scale

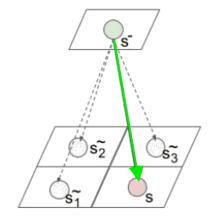
Planar MRF

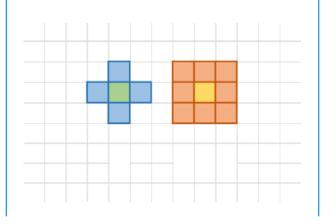
Models spatial information Generally non-causal Usually iterative inference

Proposed framework

Markovianity on scale and within each layer Multiresolution fusion through tree topology Multisensor fusion at each scale through ensemble learning







Model Assumptions

Quadtree topology

Total order relation 🗆 on each layer of the quadtree

Neighborhood relation 🗆 consistent with 🗆 on each layer

Markovianity of labels across scales and in each layer (with respect to \Box)

$$P(\mathcal{X}^{\ell}|\mathcal{X}^{\ell-1}, \mathcal{X}^{\ell-2}, \dots, \mathcal{X}^{0}) = P(\mathcal{X}^{\ell}|\mathcal{X}^{\ell-1}) \propto \prod_{s \in S^{\ell}} P(x_{s}|x_{r}, r \blacktriangleleft s) P(x_{s}|x_{s-})$$

$$P(\mathcal{X}^{0}) = \prod_{s \in S^{0}} P(x_{s}|x_{r}, r \blacktriangleleft s)$$
Conditional independence of feature vectors given labels
$$P(\mathcal{Y}|\mathcal{X}) = \prod_{s \in S} P(y_{s}|x_{s}) = \prod_{\ell=0}^{L} \prod_{s \in S^{\ell}} P(y_{s}|x_{s})$$

Methodological Properties

Model causality

Theorem. The joint distribution of all labels and feature vectors in the quad-tree is entirely defined by the parent-child transition probabilities, the past neighbor transition probabilities, and the pixelwise data conditional likelihoods.

Marginal posterior mode (MPM)

Theorem. Under mild assumptions:

$$P(x_s) = \sum_{x_{s^-}} P(x_s | x_{s^-}) P(x_{s^-}),$$

$$P(x_s | \mathcal{C}_s, \mathcal{D}_s) \propto P(x_s | \mathcal{D}_s) P(x_s | x_{s^-}) P(x_{s^-}) P(x_s)^{-|\mathcal{C}_s|}$$

$$\cdot \prod_{r \blacktriangleleft s} P(x_s | x_r) P(x_r),$$

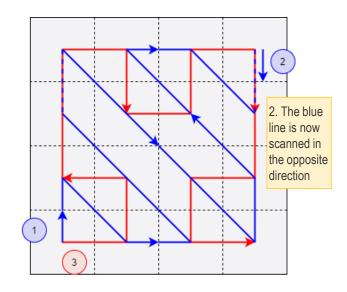
$$P(x_s | \mathcal{Y}) = \sum_{\mathcal{C}_s} P(x_s | \mathcal{C}_s, \mathcal{D}_s) P(x_{s^-} | \mathcal{Y}) \prod_{r \blacktriangleleft s} P(x_r | \mathcal{Y})$$

$$P(x_s | \mathcal{D}_s) \propto P(x_s | y_s) \prod_{t \in s^+} \sum_{x_t} \frac{P(x_t | \mathcal{D}_s) P(x_t | x_s)}{P(x_t)}$$

Ínría_

The Proposed Algorithm

Spatial Markov Chain



5 5. The blue line is now scanned in the opposite direction
4
6

Four zig-zag scans and two Hilbert curve scans

Symmetric visit on each pixel, no directional artifacts

$$P(x_s) = \sum_{x_{s^-}} P(x_s | x_{s^-}) P(x_{s^-}),$$

$$P(x_s | \mathcal{C}_s, \mathcal{D}_s) \propto P(x_s | \mathcal{D}_s) P(x_s | x_{s^-}) P(x_{s^-}) P(x_s)^{-|\mathcal{C}_s|}$$

$$\cdot \prod_{r \blacktriangleleft s} P(x_s | x_r) P(x_r),$$

$$P(x_s | \mathcal{Y}) = \sum_{\mathcal{C}_s} P(x_s | \mathcal{C}_s, \mathcal{D}_s) P(x_{s^-} | \mathcal{Y}) \prod_{r \blacktriangleleft s} P(x_r | \mathcal{Y})$$

$$P(x_s | \mathcal{D}_s) \propto P(x_s | y_s) \prod_{t \in s^+} \sum_{x_t} \frac{P(x_t | \mathcal{D}_s) P(x_t | x_s)}{P(x_t)}$$

Role of Decision Tree Ensembles

Feature vectors from input multisensor images at the same spatial resolution are integrated in the model through the pixelwise posteriors.

Modeled through ensemble learning • Gradient Boosted Regression Trees (GBRT)

Random ensemble of decision trees

Trained using a boosting approach

$$P(x_s) = \sum_{x_{s^-}} P(x_s | x_{s^-}) P(x_{s^-}),$$

$$P(x_s | \mathcal{C}_s, \mathcal{D}_s) \propto P(x_s | \mathcal{D}_s) P(x_s | x_{s^-}) P(x_{s^-}) P(x_s)^{-|\mathcal{C}_s|}$$

$$\cdot \prod_{r \blacktriangleleft s} P(x_s | x_r) P(x_r),$$

$$P(x_s | \mathcal{Y}) = \sum_{\mathcal{C}_s} P(x_s | \mathcal{C}_s, \mathcal{D}_s) P(x_{s^-} | \mathcal{Y}) \prod_{r \blacktriangleleft s} P(x_r | \mathcal{Y})$$

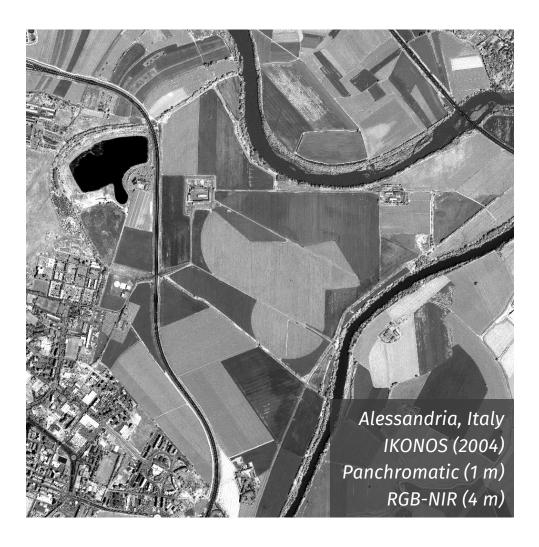
$$P(x_s | \mathcal{D}_s) \propto P(x_s | y_s) \prod_{t \in s^+} \sum_{x_t} \frac{P(x_t | \mathcal{D}_s) P(x_t | x_s)}{P(x_t)}$$

Ínría

Experimental Results

Data Sets for Experiments





Classification Accuracies

resolution 1 m	urban	agri	rangeland	fore	est v	water	wet soil	bare soil	OA	Alessandria
Single-res. MRF after resampling	98.58	99.12	92.23	36.9	98	100	98.30	96.82	96.03	
Method in (Moser et al., 2016)	99.70	99.21	97.34	64.9	92	100	100	99.66	98.60	
Method in (Montaldo et al., 2019b)	100	99.07	99.65	10	0 9	99.65	100	100	99.12	C' 'I
Proposed method	99.54	98.26	99.91	86.4	40 9	99.80	100	100	98.58	Similar acci
resolution 2 m	urban	agri	rangeland	fore	est v	water	wet soil	bare soil	OA	developed
Method in (Montaldo et al., 2019b)	99.54	98.06	99.91	78.7	74 9	99.53	100	100	98.01	
Proposed method	99.49	98.08	99.91	79.5	52 9	99.84	100	100	98.03	previous m
resolution 4 m	urban	agri	rangeland	fore	est v	water	wet soil	bare soil	OA	another spe
Method in (Montaldo et al., 2019b)	99.09	96.81	99.82	64.8	36 9	98.72	100	100	96.36	•
Proposed method	99.09	96.81	99.82	64.8	36 9	98.72	100	100	96.36	proposed f
						•		1 1		uses Marko
resolution 1.25 m		ontainers	vegetatio	on	asph	alt	buildings	sea	OA	
Single-res. MRF after resamplin	g	63.97	74.81		98.6	54	99.30	76.24	94.58	Vondifford
Adaptation of (Moser et al., 2016	5)	75.06	85.32		95.8	39	97.75	99.36	95.11	Very differe
Method in (Montaldo et al., 2019	b)	87.08	33.27		95.1	7	99.04	97.18	96.36	complexity:
Proposed method		86.97	34.57		97. 8	32	99.36	100	96.90	method vs
resolution 2.5 m	C	ontainers	vegetatio	on	asph	alt	buildings	sea	OA	_
Method in (Montaldo et al., 2019	b)	86.31	32.71		94.8		100.00	96.04	96.63	Markov me
Proposed method		86.92	33.08		97.2	29	100.00	100	97.00	is the numb
resolution 5 m	C	ontainers	vegetatio	on	asph	alt	buildings	sea	OA	
Method in (Montaldo et al., 2019	b)	87.98	25.39		96.5	55	100.00	88.88	96.01	
Proposed method		87.98	25.39		96.5		100.00	88.88	96.01	Haiti

Similar accuracies for the developed algorithm and for a previous method, which is another special case of the proposed framework and which uses Markov mesh

Very different computational complexity: $O(C^3)$ for proposed method vs $O(C^4)$, $O(C^5)$, etc., for Markov mesh approach (where *C* is the number of classes)

🚺 Ínría

Montaldo A., Fronda L., Hedhli I., Moser G., Zerubia J., Serpico S. B., 2019b. Joint classification of multiresolution and multisensor data using a multiscale Markov mesh model. IEEE IGARSS 2019

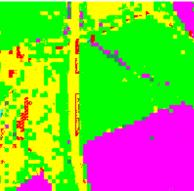
Classification Accuracies

resolution 1 m	urba	an agri	rangeland	fores	t water	wet soil	bare soil	OA	
Single-res. MRF after resampling	98.5		92.23	36.9		98.30	96.82	96.03	Alessandria
Method in (Moser et al., 2016)	99.7	70 99.21	97.34	64.92	2 100	100	99.66	98.60	
Method in (Montaldo et al., 2019b)	10	0 99.07	99.65	100	99.65	100	100	99.12	
Proposed method	99.5	54 98.26	99.91	86.4	0 99.80	100	100	98.58	
resolution 2 m	urba	an agri	rangeland	fores	t water	wet soil	bare soil	OA	
Method in (Montaldo et al., 2019b)	99.5	54 98.06	99.91	78.74	4 99.53	100	100	98.01	
Proposed method	99.4	49 98.08	99.91	79.52	2 99.84	100	100	98.03	
resolution 4 m	urba	an agri	rangeland	fores	st water	wet soil	bare soil	OA	
Method in (Montaldo et al., 2019b)	99.0	09 96.81	99.82	64.8	6 98.72	100	100	96.36	Lower overall and/or class-wise
Proposed method	99.0	09 96.81	99.82	64.8	6 98.72	100	100	96.36	
									accuracies from previous
resolution 1.25 m		containers	vegetati	on a	asphalt	buildings	sea	OA	approaches to multiresolution
Single-res. MRF after resamplin	ng	63.97	74.81		98.64	99.30	76.24	94.58	
Adaptation of (Moser et al., 201	6)	75.06	85.32		95.89	97.75	99.36	95.11	image classification
Method in (Montaldo et al., 2019) (d	87.08	33.27		95.17	99.04	97.18	96.36	
Proposed method		86.97	34.57		97.82	99.36	100	96.90	
resolution 2.5 m		containers	vegetati	on a	asphalt	buildings	sea	OA	
Method in (Montaldo et al., 2019	ethod in (Montaldo et al., 2019b) 86.31		32.71		94.87	100.00	96.04	96.63	
Proposed method		86.92	33.08		97.29	100.00	100	97.00	
resolution 5 m		containers	vegetati	on a	asphalt	buildings	sea	OA	
Method in (Montaldo et al., 2019	9b)	87.98	25.39		96.55	100.00	88.88	96.01	·
Proposed method	-	87.98	25.39		96.55	100.00	88.88	96.01	Haiti

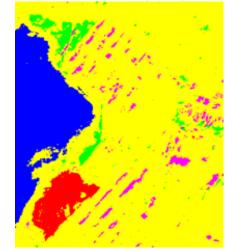
Moser G., De Giorgi A., Serpico S. B., 2016. Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts. IEEE TGRS., 54: 5054-5070

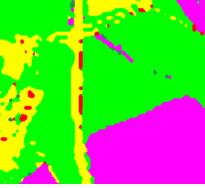
Classification Maps (details)

Image at the finest observed resolution

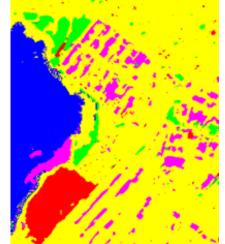


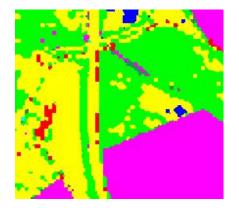
Single-resolution MRF after resampling



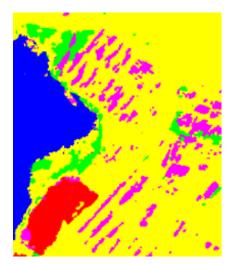


Adaptation of (Moser et al., 2016)





Proposed method



urban agricultural rangeland forest water wet soil bare soil

containers
vegetation
asphalt
buildings
sea

Conclusion

- General hierarchical causal Markov framework for joint multiresolution and multisensor classification
- Within this framework, a specific algorithm based on spatial Markov chains
- Experimental results suggest effectiveness in the application to multiresolution fusion with optical-SAR and panchromatic-multispectral imagery
- Advantages in terms of accuracy or computational complexity as compared to previous multiresolution classification methods
- Allows classifying at all scales in the quadtree
- Future extensions include integrating with CNNs or adaptive multiresolution topologies

