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The Addressed Problem

Joint availability of images at different (and high) resolutions thanks to current missions

 Optical: Pléiades, PRISMA, Sentinel-2, WorldView-3, SPOT-6/7, etc.
« SAR: COSMO-SkyMed Second Generation, Sentinel-1, TerraSAR-X, RADARSAT Constellation, etc.

The challenge of joint multisensor and multiresolution fusion
« To develop classification methods that benefit from all available data

Proposed approach: hierarchical latent Markov random fields (MRF)

« General framework for causal hierarchical spatial-contextual Markov modeling
« Proof of causality and inference formulation
 Specific algorithm incorporating spatial Markov chains
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The Proposed Framework



The Rationale

Hierarchical MRF on

quadtrees Planar MRF Proposed framework

Causal Models spatial information Markovianity on scale and within each layer
Efficient non-iterative inference | Generally non-causal Multiresolution fusion through tree topology
Does not model spatial Usually iterative inference Multisensor fusion at each scale through
information within each scale ensemble learning
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Model Assumptions

Quadtree topology
Total order relation [J on each layer of the quadtree
Neighborhood relation [J consistent with [ on each layer

Markovianity of labels across scales and in each layer (with respect to [)
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Methodological Properties

Model causality

Theorem. The joint distribution of all
labels and feature vectors in the
quad-tree is entirely defined by the
parent-child transition probabilities,
the past neighbor transition
probabilities, and the pixelwise data
conditional likelihoods.

Marginal posterior mode (MPM)

Theorem. Under mild assumptions:
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The Proposed Algorithm



Spatial Markov Chain

l@# Relations U and [] are defined by a 1D scan of each layer of
"""""" the quadtree » Markov chain
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Role of Decision Tree Ensembles

Feature vectors from input multisensor images at the same spatial resolution are
integrated in the model through the pixelwise posteriors.

Modeled through ensemble learning * Gradient Boosted Regression Trees (GBRT)
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Random ensemble of decision trees

Trained using a boosting approach
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Experimental Results



Data Sets for Experiments

Port-au-Prince, Haiti,
after the 2010 earthquake
RGB GeoEye-1(1.25 m)
RGB-NIR QuickBird (2.5 m)
SAR COSMO-SkyMed (5 m)

Alessandria, Italy
IKONOS (2004)
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Classification Accuracies

resolution 1 m urban | agri | rangeland | forest | water | wetsoil | baresoil | OA
Single-res. MRF after resampling | 98.58 | 99.12 92.23 36.98 100 98.30 96.82 96.03
Method in (Moser et al., 2016) 99.70 | 99.21 97.34 64.92 | 100 100 99.66 | 98.60
Method in (Montaldo et al., 2019b) 99.07 99.65 100 | 99.65 100 100 99.12
Proposed method 99.54 | 98.26 99.91 86.40 | 99.80 100 100 98.58
resolution 2 m urban | agri | rangeland | forest | water | wetsoil | baresoil | OA
Method in (Montaldo et al., 2019b) | 99.54 | 98.06 99.91 78.74 | 99.53 100 100 98.01
Proposed method 99.49 | 98.08 99.91 79.52 | 99.84 100 100 98.03
resolution 4 m urban | agri | rangeland | forest | water | wetsoil | bare soil | OA
Method in (Montaldo et al., 2019b) | 99.09 | 96.81 99.82 64.86 | 98.72 100 100 96.36
Proposed method 99.09 | 96.81 99.82 64.86 | 98.72 100 100 96.36
resolution 1.25 m containers | vegetation | asphalt | buildings sea OA
Single-res. MRF after resampling 63.97 74.81 98.64 99.30 76.24 | 94.58
Adaptation of (Moser et al., 2016) 75.06 85.32 95.89 97.75 09.36 | 95.11
Method in (Montaldo et al., 2019b) 87.08 33.27 95.17 99.04 97.18 | 96.36
Proposed method 86.97 34.57 97.82 99.36 100 | 96.90
resolution 2.5 m containers | vegetation | asphalt | buildings | sea OA
Method in (Montaldo et al., 2019b) 86.31 32.71 94.87 100.00 96.04 | 96.63
Proposed method 86.92 33.08 97.29 100.00 100 | 97.00
resolution 5 m containers | vegetation | asphalt | buildings | sea OA
Method in (Montaldo et al., 2019b) 87.98 25.39 96.55 100.00 88.88 | 96.01
Proposed method 87.98 25.39 96.55 100.00 | 88.88 | 96.01
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Similar accuracies for the
developed algorithm and for a
previous method, which is
another special case of the
proposed framework and which
uses Markov mesh

Very different computational
complexity: 0(C?) for proposed
method vs 0(C*), 0(C®), etc., for
Markov mesh approach (where C
is the number of classes)

Montaldo A., Fronda L., Hedhli I., Moser G., Zerubia J., Serpico S. B., 2019b. Joint classification of
multiresolution and multisensor data using a multiscale Markov mesh model. IEEE IGARSS 2019



Classification Accuracies

Lower overall and/or class-wise

accuracies from previous

approaches to multiresolution
image classification

resolution 1 m urban | agri | rangeland | forest | water | wetsoil | baresoil | OA
Single-res. MRF after resampling | 98.58 | 99.12 92.23 36.98 100 98.30 96.82 96.03
Method in (Moser et al., 2016) 99.70 | 99.21 97.34 64.92 | 100 100 99.66 | 98.60
Method in (Montaldo et al., 2019b) 99.07 99.65 100 | 99.65 100 100 99.12
Proposed method 99.54 | 98.26 99.91 86.40 | 99.80 100 100 98.58
resolution 2 m urban | agri | rangeland | forest | water | wetsoil | baresoil | OA
Method in (Montaldo et al., 2019b) | 99.54 | 98.06 99.91 78.74 | 99.53 100 100 98.01
Proposed method 99.49 | 98.08 99.91 79.52 | 99.84 100 100 98.03
resolution 4 m urban | agri | rangeland | forest | water | wetsoil | bare soil | OA
Method in (Montaldo et al., 2019b) | 99.09 | 96.81 99.82 64.86 | 98.72 100 100 96.36
Proposed method 99.09 | 96.81 99.82 64.86 | 98.72 100 100 96.36
resolution 1.25 m containers | vegetation | asphalt | buildings sea OA
Single-res. MRF after resampling 63.97 74.81 98.64 99.30 76.24 | 94.58
Adaptation of (Moser et al., 2016) 75.06 85.32 95.89 97.75 099.36 | 95.11
Method in (Montaldo et al., 2019b) 87.08 33.27 95.17 99.04 97.18 | 96.36
Proposed method 86.97 34.57 97.82 99.36 100 | 96.90
resolution 2.5 m containers | vegetation | asphalt | buildings | sea OA
Method in (Montaldo et al., 2019b) 86.31 32.71 94.87 100.00 96.04 | 96.63
Proposed method 86.92 33.08 97.29 100.00 100 | 97.00
resolution 5 m containers | vegetation | asphalt | buildings | sea OA
Method in (Montaldo et al., 2019b) 87.98 25.39 96.55 100.00 88.88 | 96.01
Proposed method 87.98 25.39 96.55 100.00 | 88.88 | 96.01

Moser G., De Giorgi A., Serpico S. B., 2016. Multiresolution supervised classification of panchromatic
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and multispectral images by Markov random fields and graph cuts. IEEE TGRS., 54: 5054-5070



Classification Maps (details)
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Conclusion

« General hierarchical causal Markov framework for joint multiresolution and
multisensor classification

« Within this framework, a specific algorithm based on spatial Markov chains

« Experimental results suggest effectiveness in the application to multiresolution
fusion with optical-SAR and panchromatic-multispectral imagery

« Advantages in terms of accuracy or computational complexity as compared to
previous multiresolution classification methods

« Allows classifying at all scales in the quadtree

« Future extensions include integrating with CNNs or adaptive multiresolution
topologies
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