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We will give a complete solution to the reconstruction of a vector
field from its divergence and curl, i.e., the system

div ~W = g0,

curl ~W = ~g , (1)

for appropriate assumptions on the scalar field g0 and the vector
field ~g and their domain of definition in three-space.

CINVESTAV INRIA Sophia Antipolis 3/37



Div-Curl system
Hilbert transform

Monogenic functions
Some integral operators
Solution to the Div-Curl systems
Vekua, conductivity and Maxwell’s equations in R3

Let H the non-commutative algebra of quaternions over the real
field R. Let x = x0 +

∑3
i=1 eixi ∈ H, where xi ∈ R.

The subspace VecH := spanR {e1, e2, e3} of H is identified with the
Euclidean space R3 as follows

x1e1 + x2e2 + x3e3 ↔ (x1, x2, x3) ∈ R3.

Let Ω ⊂ R3 be an open subset with smooth boundary. Define the
Cauchy-Riemann type differential operator as

D = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
.

It acts over differentiable functions w : Ω→ H of the form
w(x) = w0(x) +

∑3
i=1 eiwi (x), where wi : Ω→ R, i = 0, 1, 2, 3.
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The following result tell us that is impossible to define an H−
holomorphic functions via the existence of the limit of the
difference quotient, like in the complex case:

Theorem

Let w ∈ C 1(Ω) be a function defined in a domain Ω ⊂ H. If for all
points in Ω the limit

ĺım
h→0

h−1[w(x + h)− w(x)],

exists, then in Ω the function w has the form

w(x) = a + xb a, b ∈ H.
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Definition

A C 1 function w : Ω→ H is called left-monogenic (resp.
right-monogenic) in Ω if

Dw = 0 en Ω (wD = 0 in Ω).

We will say simply ”monogenic”to refer to left-monogenic
functions. Even more, since Dw = −div −→w + curl −→w +∇w0, then

Dw = 0⇐⇒
{

div−→w = 0,
curl−→w = −∇w0.

CINVESTAV INRIA Sophia Antipolis 6/37



Div-Curl system
Hilbert transform

Monogenic functions
Some integral operators
Solution to the Div-Curl systems
Vekua, conductivity and Maxwell’s equations in R3

Examples:

E (x) :=
1

4π

x̄

|x |3
, x 6= 0,

is an example of a left- and right-monogenic function, called
Cauchy kernel.

w(x) = −x3 + x1e2 − x3e3,

is left-monogenic but no right-monogenic, since Dw = 0 y
wD = −2e3.
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Let us denote
−→
M(Ω) = Sol (Ω,R3) ∩ Irr (Ω,R3), where

Sol (Ω,R3) = {~w : div ~w = 0 in Ω} ⊆ C 1(Ω,R3),

Irr (Ω,R3) = {~w : curl ~w = 0 in Ω} ⊆ C 1(Ω,R3),

the Solenoidal e Irrotational vector fields, respectively. The

elements ~w ∈
−→
M(Ω) are locally the gradient of real valued

harmonic functions. We write
Har (Ω,A) = {w : Ω→ A, ∆w = 0}, where A = R, R3 or H, for
the corresponding sets of harmonic functions defined in A. Since
∆ = −D2, then left and right monogenic functions are harmonic.
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The monogenic completion operator

~SΩ : Har (Ω,R)→ Har (Ω,R3)

is given by

~SΩ[w0](x) = Vec

(∫ 1

0
−tDw0(tx)x dt

)
=

∫ 1

0
−tDw0(tx)× x dt, x ∈ Ω.

for harmonic functions w0 defined in star-shaped open sets Ω with
respect to the origin.
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Let Ω ⊂ R3 be an open set with smooth boundary and
w ∈ C 0(Ω,H). The operator TΩ defined by

TΩ[w ](x) := −
∫

Ω

y − x

4π|y − x |3
w(y)dy , x ∈ Ω,

is called the Teodorescu transform, which acts like a right inverse
of D. More even, if w ∈ L1(Ω,H), then

DTΩ[w ] = w ,

weakly. Let w ∈ C 1(Ω,H). The Cauchy-Bitsadze operator is
defined as

F∂Ω[w ](x) :=

∫
∂Ω

E (y − x)dy∗w(y), x ∈ R3 \ ∂Ω,

And DF∂Ω[w ] = 0.
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The operator TΩ can be descompossed in the following way

T0,Ω[~w ](x) =

∫
Ω
E (y − x) · ~w(y)dy ,

−→
T1,Ω[w0](x) = −

∫
Ω
w0(y)E (y − x)dy ,

−→
T2,Ω[~w ](x) = −

∫
Ω
E (y − x)× ~w(y)dy ,

where · denotes the scalar (or inner) product of vectors and ×
denotes the cross product. That is,

TΩ[w0 + ~w ] = T0,Ω[~w ] +
−→
T1,Ω[w0] +

−→
T2,Ω[~w ].
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The following fact is essential in the construction of the right
inverse of curl:

T0,Ω[~w ] ∈ Har (Ω,R)⇔ ~w ∈ Sol (Ω,R3).

Theorem

Let Ω ⊆ R3 be a star-shaped open set. The operator

−→
T2,Ω − ~SΩT0,Ω (2)

is a right inverse for the curl on the class of functions Sol (Ω,R3).

Where ~SΩ is the monogenic completion operator. Furthermore,

(
−→
T2,Ω − ~SΩT0,Ω) : Sol (Ω,R3)→ Sol (Ω,R3).
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Then we can solve the homogeneous div-curl system under the
assumptions ~g ∈ Sol (Ω,R3):

div ~W = 0,

curl ~W = ~g , (3)

And the solution is given by

~W =
−→
T2,Ω[~g ]− ~SΩT0,Ω[~g ] +∇h,

where h ∈ Har (Ω,R) is arbitrary.
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Applying a correction, and with g0 ∈ C 0(Ω,R), and
~g ∈ Sol (Ω,R3). Then a general solution to the inhomogeneous
Div-Curl system

div ~W = g0,

curl ~W = ~g , (4)

is given by

~W = −
−→
T1,Ω[g0] +

−→
T2,Ω[~g ]− ~SΩT0,Ω[~g ] +∇h, (5)

where h ∈ Har (Ω,R) is arbitrary.

More even, ~W is a weak solution of the div-curl system (4) when
g0 ∈ L2(Ω,R), ~g ∈ L2(Ω,R3) and div ~g = 0 weakly.
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Let W : Ω→ H, f : Ω→ R a non-vanishing function. Define the
main Vekua equation by

DW =
Df

f
W .

The operator D − Df
f CH corresponding to this equation appears in

different factorizations, for example when u is scalar

5 · σ5 u = σ1/2

(
∆− ∆σ1/2

σ1/2

)
σ1/2u

= −σ1/2(D + M
Df
f )

(
D − Df

f
CH

)
σ1/2u,

where σ = f 2, CH is the quaternion conjugate operator and M
Df
f is

the right multiplication operator.
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We said that W = W0 +
−→
W = W0 +

∑3
i=1 eiWi satisfies the main

Vekua equation if and only if the scalar part W0 and the vector

part
−→
W satisfy

div (f
−→
W ) = 0,

curl (f
−→
W ) = −f 2∇

(
W0

f

)
.

In other words,

D(f
−→
W ) = −f 2∇

(
W0

f

)
.

And we have a div-curl system, we will give an explicit solution to
solve them.
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Let W such that DW = Df
f W . Then

5 · f 2 5 W0

f
= 0.

W0 is a solution of the stationary Schrödinger equation

−∆W0 + r0W0 = 0, with r0 =
∆f

f
.

rot
(
f −2rot (f ~W )

)
= 0.

u = W0
f + f

−→
W is a solution of the R-linear Beltrami equation

Du =
1− f 2

1 + f 2
Du.

In the book Applied pseudoanalytic function theory from the author Vladislav V.
Kravchenko, 2009, is given a proof of the above results.CINVESTAV INRIA Sophia Antipolis 17/37
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In the complex case, Ω ⊂ C, W = W0 + iW1 : Ω→ C f : Ω→ R,
the main Vekua equation is given by

∂W =
∂f

f
W ,

where ∂ = 1
2 (∂x + i∂y ).

And the imaginary part W1 also satisfies a conductivity and a
Schrödinger equation:

5 · f −2 5 (fW1) = 0,

−∆W1 + r1W1 = 0,

where r1 = ∆
(

1
f

)
f . And the corresponding conjugate Beltrami

equation is

∂W =
1− f 2

1 + f 2
∂W .
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If the scalar part W0 : Ω→ R is known, how to costruct
f 2−hyperconjugate pairs?

Theorem

Let f 2 be a conductivity of class C 2 in an open star-shaped set
Ω ⊆ R3. Suppose that W0 ∈ C 2(Ω,R) satisfies the conductivity
equation ∇ · f 2∇(W0/f ) = 0 in Ω. Then exists a function ~W such
that W0 + ~W such that

DW =
Df

f
W .

The function f ~W is unique up to the gradient of a real harmonic
function.

The assumptions of the above Theorem can be relaxed to say that
f ,W0 ∈ H1(Ω,R) and satisfy the conductivity equation weakly.
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The following system of equations corresponds to the static
Maxwell system, in a medium when just the permeability f 2 is
variable:

div (f 2 ~H) = 0,

div ~E = 0,

curl ~H = ~g ,

curl ~E = f 2 ~H. (6)

Here ~E and ~H represent electric and magnetic fields, respectively.
We will apply our results to this system and to the double curl
equation

curl (f −2 curl ~E ) = ~g , (7)

which is immediate from the last two equations of (6).
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Theorem

Let the domain Ω ⊆ R3 be a star-shaped open set, and assume
that f 2 is a continuous proper conductivity in Ω. Let
~g ∈ L2(Ω,R3) satisfy div ~g = 0. Then there exists a generalized
solution (~E , ~H) to the system (6) and its general form is given by

~E =
−→
T2,Ω[f 2(~B +∇h])− ~SΩ[T0,Ω[f 2(~B +∇h]] +∇h1,

~H = ~B +∇h, (8)

where h1 is an arbitrary real valued harmonic function, h satisfy
the inhomogeneous conductivity equation div (f 2∇h) = −∇f 2 · ~B
and ~B =

−→
T2,Ω[~g ]− ~SΩ[T0,Ω[~g ]].
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In impedance tomography one aims to determine the internal
structure of a body from electrical measurements on its surface.
Such methods have a variety of different applications for instance
in engineering and medical diagnostics.
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Sobolev spaces
In particular, we are interested in the Sobolev spaces H1(Ω) and
H1/2(∂Ω), where

H1(Ω) =
{
u ∈ L2(Ω) : 5u ∈ L2(Ω)

}
,

‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 .

While H1/2(∂Ω) are the ”boundary value”functions in H1(Ω):

H1/2(∂Ω) =
{
u ∈ L2(∂Ω) | ∃u ∈ H1(Ω) con u|∂Ω = u

}
,

‖u‖H1/2 = inf {‖u‖H1 | u|∂Ω = u} .
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In 1980 A. Calderón showed that the impedance tomography
problem admits a clear ans precise mathematical formulation:

Let Ω ⊂ Rn be a bounded domain with connected complement and
σ : Ω→ (0,∞) is measurable, with σ and 1/σ bounded. Given the
boundary values φ ∈ H1/2(∂Ω) exists a unique solution u ∈ H1(Ω)
to

5 · σ5 u = 0 in Ω,

u|∂Ω = φ.

This so-called conductivity equation describes the behavior of the
electric potential in a conductive body.
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Theorem

(Plemelj-Sokhotski formula)
Let f be Hölder continuous on a sufficiently smooth surface ∂Ω.
Then at any regular point t ∈ ∂Ω we have

n.t.- ĺım
x→t

F∂Ω[w ](x) =
1

2
[±w(t) + S∂Ω[w ](t)],

where x ∈ Ω±, with Ω+ = Ω and Ω− = R3 \ Ω. The notation
n.t.-ĺımx→t means that the limit should be taken non-tangential.

Holomorphic functions in the Plane and n-dimensional Space from the authors Klaus
Gürlebeck, Klaus Habetha and Wolfgang Sprößig, 2008.
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Define the following principal value integral obtained from the
Cauchy-Bitsadze integral

S∂Ω[w ](x) := 2PV

∫
∂Ω

E (y − x)dy∗w(y), x ∈ ∂Ω,

From now on, Ω = B3 =
{
x ∈ R3 : |x | < 1

}
and

∂Ω = S2 =
{
x ∈ R3 : |x | = 1

}
. Since the unitary normal vector to

∂Ω is η(y) = y , then the Cauchy kernel multiplied by the normal
vector is reduced to

y − x

4π|y − x |3
y =

1

4π

(
1

2|y − x |
+

x × y

|y − x |3

)
.
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The following operators appear in the decomposition of the
singular integral S∂Ω

M[w ](x) :=
1

4π

∫
∂Ω

w(y)

|y − x |
dsy ,

M1[w ](x) := PV
1

2π

∫
∂Ω

x2y3 − x3y2

|y − x |3
w(y)dsy ,

M2[w ](x) := PV
1

2π

∫
∂Ω

x3y1 − x1y3

|y − x |3
w(y)dsy ,

M3[w ](x) := PV
1

2π

∫
∂Ω

x1y2 − x2y1

|y − x |3
w(y)dsy .

S∂Ω = M +
3∑

i=1

eiM
i .
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According to the article [3], we define the Hilbert transform H of u
as

H : L2(∂Ω,R)→ L2(∂Ω,R3)

H(u) : =

(
3∑

i=1

eiM
i

)
(I + M)−1u.

The authors of the article noticed that if we define the following
strategic R-valued function

h := 2(I + M)−1u = 2 (I + Sc (S∂Ω))−1 u.

[3] Hilbert Transforms on the Sphere with the Clifford Algebra Setting, 2009, from the
authors Tao Qian and Yan Yang.

CINVESTAV INRIA Sophia Antipolis 28/37



Div-Curl system
Hilbert transform

Hilbert transform associated to the equation DW = 0
Hilbert transform associated to the equation DW = Df

f
W

Thus

H(u) :=
1

2
Vec (S∂Ωh).

And the monogenic extension in Ω is given by the Cauchy operator
F∂Ω(h). On the other hand, if we take the non-tangential limit then

n.t. ĺım
x→t

F∂Ω(h)(x) =
1

2
(h(t) + S∂Ωh(t))

=
1

2
h(t) +

1

2
Sc(S∂Ωh(t)) +

1

2
Vec(S∂Ωh(t))

=
1

2
(I + M)h(t) +H(u)(t)

= (u +H(u)) (t).
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Now, we are interested in to define the Hilbert transform
associated to the main Vekua equation DW = Df

f W :
From now on the conductivity σ = f 2 ∈ H1(Ω,R). Suppose that
ϕ ∈ H1/2(∂Ω,R) is known, and σ, 1

σ : Ω→ (0,∞) are measurables
and bounded. Then there exists an unique extension W0 ∈ H1(Ω)
such that

∇ · f 2∇
(
W0

f

)
= 0 in Ω,

W0

∣∣∣
∂Ω

= ϕ in ∂Ω.
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Using the decomposition of the Teodorescu operator
TΩ : L2(Ω)→ H1(Ω), we have that

TΩ

[
−f 2∇(W0/f )

]
= T0,Ω

[
−f 2∇(W0/f )

]
+
−→
T2,Ω

[
−f 2∇(W0/f )

]
.

And the corresponding boundary value function of the scalar and
the vectorial part of TΩ are denoted as

u0(t) = ĺım
x→t

T0,Ω

[
−f 2∇(W0/f )

]
,

−→u (t) = ĺım
x→t

−→
T2,Ω

[
−f 2∇(W0/f )

]
for t ∈ ∂Ω.
Notice that g ∈ H1/2(∂Ω), since the trace operator
γ : H1(Ω)→ H1/2(∂Ω).
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Definition

Finally, define the Hilbert transform Hf associated to the main
Vekua equation as

Hf : H1/2(∂Ω,R)→ L2(∂Ω,R3)

ϕ→ −→u −H(u0),

where u0 and ~u are built as above using the extension for ϕ as
solution of the conductivity equation.

Analogously, like in the monogenic case

hf : = 2(I + M)−1u0.

Then

Hf (ϕ) = −→u − 1

2
Vec(S∂Ωhf ).
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In particular, when f ≡ 1 we have that Hf = H.

The Hilbert transform associated to the main Vekua equation
Hf : H1/2(∂Ω,R)→ L2(∂Ω,R3) is a bounded operator.

More even Hf (u) ∈ Sol (∂Ω,R3), for all u ∈ H1/2(∂Ω,R).
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Theorem

Let Ω = B3. Let f ∈ H1(Ω,R) a proper conductivity. Suppose that
ϕ ∈ H1/2(∂Ω,R). Then there exists an extension
W = W0 +

∑3
i=1 eiWi in Ω such that

DW =
Df

f
W in Ω,

W0

∣∣∣
∂Ω

= ϕ.
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Sketch of the proof:

The extension of the vector part
−→
W is obtained directly from the

Hilbert transform Hf and the integral operators TΩ and F∂Ω:

f
−→
W : = TΩ[−f 2∇(W0/f )] + F∂Ω[Hf (ϕ)].

=T0,Ω

[
−f 2∇(W0/f )

]
+
−→
T2,Ω

[
−f 2∇(W0/f )

]
+ F∂Ω[−→u −H(u0)].

Thus

W := W0 +
−→
W satisfy the main Vekua equation.

f
−→
W is purely vectorial.
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Although the above extension is not unique, it is the only one that
satisfies

n.t.− ĺım
x→t

f
−→
W (x) = Hf (ϕ), , x ∈ ∂Ω.
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MERCI!
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