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Monogenic functions
Div-Curl system Some integral operators

Solution to the Div-Curl systems
Vekua, conductivity and Maxwell's equations in R”

We will give a complete solution to the reconstruction of a vector
field from its divergence and curl, i.e., the system

div W = 80,
crl W = g, (1)

for appropriate assumptions on the scalar field gg and the vector
field & and their domain of definition in three-space.
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Vekua, conductivity and Maxwell's equations in R3

Let H the non-commutative algebra of quaternions over the real
field R. Let x = xp + Z?:l eix; € H, where x; € R.

The subspace VecH := spany {e1, e, e3} of H is identified with the
Euclidean space R3 as follows

xi€1 + x2€ + xze3 < (x1, X2, x3) € R3.

Let Q C R3 be an open subset with smooth boundary. Define the
Cauchy-Riemann type differential operator as
pead 0 D
- 1({9X1 628X2 3(9X3'
It acts over differentiable functions w : € — H of the form
w(x) = wo(x) + Z?:l eiwi(x), where w; : Q - R, i =0,1,2,3.
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The following result tell us that is impossible to define an H—
holomorphic functions via the existence of the limit of the
difference quotient, like in the complex case:

Theorem

Let w € CY(Q) be a function defined in a domain Q C H. If for all
points in S the limit

lim h=Y[w(x + h) — w(x)],
h—0
exists, then in Q the function w has the form

w(x)=a+xb a,beH.
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Definition
A C! function w : Q — H is called left-monogenic (resp.
right-monogenic) in Q if

Dw=0 en Q (wD=0 in Q).

We will say simply " monogenic”to refer to left-monogenic

functions. Even more, since Dw = —div w + curl w + Vwy, then
divw =0
Dw =0 <— ’
{ cul w = —Vwg.
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Examples:
o
X

e X7

is an example of a left- and right-monogenic function, called
Cauchy kernel.

E(x) = 4i

w(x) = —x3 + x1&2 — xze€3,

is left-monogenic but no right-monogenic, since Dw =0y
wD = —2e3.
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Let us denote 97?((2) = Sol (2, R3) N Irr (2, R3), where

Sol (,R3) = {w: diviw =0 in Q} C C}(Q,R?),
lrr (Q,R3) = {W: curlw =0in Q} C CY{Q,R?),

the Solenoidal e Irrotational vector fields, respectively. The

B 4 .
elements w € () are locally the gradient of real valued
harmonic functions. We write
Har (Q,A) = {w: Q = A, Aw = 0}, where A =R, R3 or H, for
the corresponding sets of harmonic functions defined in A. Since

A = —D?, then left and right monogenic functions are harmonic.
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The monogenic completion operator
Sq: Har (Q,R) — Har (Q,R®)
is given by
~ 1
Sa[wo](x) = Vec (/ —tDwp(tx)x dt>
0
1
= / —tDwp(tx) x xdt, x € Q.
0

for harmonic functions wy defined in star-shaped open sets Q with
respect to the origin.
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Let Q C R3 be an open set with smooth boundary and
w € C%(Q, H). The operator Tq defined by

y—X
Ta[w](x) = —/QMW()/)O')/; x €4,

is called the Teodorescu transform, which acts like a right inverse
of D. More even, if w € L}(Q, H), then

DTqlw] = w,

weakly. Let w € C1(Q,H). The Cauchy-Bitsadze operator is
defined as

Foalw](x) := /aQ E(y — x)dy*w(y), x € R3\9Q,

And DFsq[w] = 0.
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The operator T can be descompossed in the following way
Toal#l(x) = | Ely =) (y)dy,
Traluol() == | woly)EQy —x)dy,
Taal#l(x) = — [ E(y =) x i(y)dy,

where - denotes the scalar (or inner) product of vectors and x
denotes the cross product. That is,

Talwo + W] = Toa[W] + Tralwe] + Taal#].
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The following fact is essential in the construction of the right
inverse of curl:

To.o[W] € Har (,R) < w € Sol (Q,R3).

Theorem

Let Q C R3 be a star-shaped open set. The operator

722,9 — SaToo (2)

is a right inverse for the curl on the class of functions Sol (Q, R3).

v

Where §Q is the monogenic completion operator. Furthermore,
(?2,9 —SaToq): Sol (2,R3) — Sol (2, R3).
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Then we can solve the homogeneous div-curl system under the
assumptions g € Sol (Q, R3):

div W =0,
curl W = g,

And the solution is given by
W = Taalg] - SaToalg] + Vh.

where h € Har (Q,R) is arbitrary.
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3

Applying a correction, and with g € C°(Q,R), and
g € Sol (,R3). Then a general solution to the inhomogeneous
Div-Curl system

div W = &0,
curl W = g, (4)
is given by
W = ~Tialgo] + To0lg] - SaToalgl + VA, (5)

where h € Har (Q,R) is arbitrary.

More even, W is a weak solution of the div-curl system (4) when
g € L2(Q,R), g € L2(2,R3) and divg = 0 weakly.

CINVESTAV INRIA Sophia Antipolis 14/37



Monogenic functions
Div-Curl system Some integral operators
Solution to the Div-Curl systems

Vekua, conductivity and Maxwell's equations in R3

Let W:Q — H, f:Q — R a non-vanishing function. Define the
main Vekua equation by

DW = —W.
f

The operator D — %CH corresponding to this equation appears in
different factorizations, for example when u is scalar

Ao_l/2
V'UVU:01/2 A—W 0'1/2U

— _o'2(D+ MF) (D _ L?fCH> o2y,

. . . Df
where o = 2, Cy is the quaternion conjugate operator and M 7 is
the right multiplication operator.
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H
We said that W = Wy + W = Wy + Z?:l e; W, satisfies the main
Vekua equation if and only if the scalar part Wy and the vector
part W satisfy
H
div(fW) =0,

curl (fW/) = —f°V (vao) )

In other words,

f

And we have a div-curl system, we will give an explicit solution to
solve them.

D(fW) = — 2V <W°> .
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Let W such that DW = BEW. Then

°
W
@ Wy is a solution of the stationary Schrodinger equation
Af
—AWO -+ rOWO = O, with n = T

rot (f‘2rot (f|/|7)> =0.
Wo | i) . . . :
e u= -+ fWis a solution of the R-linear Beltrami equation

e

Du = WDU

In the book Applied pseudoanalytic function theory from the author Vladislav V.
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In the complex case, QC C, W=Wo+iW,: Q—-Cf:Q—R,
the main Vekua equation is given by

W = gw,

where § = 1(0x + idy).
And the imaginary part W; also satisfies a conductivity and a
Schrédinger equation:

V- f2 \V4 (le) =0,
AW, + nWp =0,
where r; = A (}) f. And the corresponding conjugate Beltrami

equation is

1—Ff2___
1+ﬂ8W'

oW =
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If the scalar part Wy: € — R is known, how to costruct
f2—hyperconjugate pairs?

Theorem

Let 2 be a conductivity of class C? in an open star-shaped set
Q C R3. Suppose that Wy € C?(2, R) satisfies the conductivity
equation V - f2V( Wo/f) = 0 in Q. Then exists a function W such
that Wy + W such that

Df

DW= —W.

f'
The function fW is unique up to the gradient of a real harmonic
function.

The assumptions of the above Theorem can be relaxed to say that
f, Wo € HY(,R) and satisfy the conductivity equation weakly.

CINVESTAV INRIA Sophia Antipolis 19/37



Monogenic functions
Div-Curl system Some integral operators

Solution to the Div-Curl systems
Vekua, conductivity and Maxwell's equations in R3

The following system of equations corresponds to the static
Maxwell system, in a medium when just the permeability 2 is

variable:
div(f2H) = 0,
div E = 0,
curl H = g,
curl E = f2H. (6)

v

Here E and H represent electric and magnetic fields, respectively.
We will apply our results to this system and to the double curl
equation

curl (F 2 curl E) = g, (7)

which is immediate from the last two equations of (6).
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Theorem

Let the domain Q C R3 be a star-shaped open set, and assume
that f2 is a continuous proper conductivity in Q. Let

g € L?(Q,R3) satisfy divg = 0. Then there exists a generalized
solution (E , 1-7) to the system (6) and its general form is given by

E = Tholf2(B + V) — SalToalf2(B + VA] + Vhi,
H= B+ Vh, (8)

where hy is an arbitrary real valued harmonic function, h satisfy
the inhomogeneous conductivity equation div(f>Vh) = —Vf?. B

and B = T50[g] — SalToalg]].
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In impedance tomography one aims to determine the internal
structure of a body from electrical measurements on its surface.
Such methods have a variety of different applications for instance
in engineering and medical diagnostics.
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Sobolev spaces

In particular, we are interested in the Sobolev spaces H'(f2) and
HY/2(0Q), where

HY Q) = {u e [*(Q) : vu e LA(Q)},
lullfn = [lullZ2 + IV ull.

While H/2(9Q) are the "boundary value” functions in H'(Q):

HY2(0Q) = {u € [%(8Q) | 35 € HY(Q) con Tlgg = u},
[ull o2 = inf{[[T]| g2 | Tloq = u}.
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In 1980 A. Calderén showed that the impedance tomography
problem admits a clear ans precise mathematical formulation:

Let Q C R" be a bounded domain with connected complement and
o :Q — (0,00) is measurable, with o and 1/0 bounded. Given the
boundary values ¢ € H/2(9Q) exists a unique solution u € H'(Q)
to

V:-oyu=0inQ,

ulag = ¢.

This so-called conductivity equation describes the behavior of the
electric potential in a conductive body.
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Theorem

(Plemelj-Sokhotski formula)
Let f be Holder continuous on a sufficiently smooth surface 0SQ.
Then at any regular point t € 02 we have

n.t.- lim Faa[w](x) = %[iw(t) + Saalw](t)],

where x € QF, with Qt = Q and Q= = R3\ Q. The notation
n.t.-limx_+ means that the limit should be taken non-tangential.

Holomorphic functions in the Plane and n-dimensional Space from the authors Klaus
Giirlebeck, Klaus Habetha and Wolfgang SproBig, 2008.
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Hilbert transform Hilbert transform associated to the equation DW

Define the following principal value integral obtained from the
Cauchy-Bitsadze integral

Saa[w](x) := 2PV /89 E(y — x)dy*w(y), x € 0Q,

From now on, @ = B* = {x € R®: [x| < 1} and

99 = 52 = {x € R3: |x| = 1}. Since the unitary normal vector to
0Q is n(y) = y, then the Cauchy kernel multiplied by the normal
vector is reduced to

y—x 1 1 n X Xy
drly =P " an \2ly x| Ty —xP)
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The following operators appear in the decomposition of the
singular integral Syq

Miw](x) = 1/ wly) g,

41 Joaq ly — x|
1 X2y3 — X3Y2
M w](x) := PV ————w(y)ds,,
[ ]( ) 271_ 50 ‘y—XP ( ) Y
1 _
M2wl(x) =PV — | B0 (y)ds,

21 Joq ly —x[3

1 X1y2 — X2y1
M3wx:——PV/ ————w(y)ds,.
1) 2m Joq ly —xP? )y

3
Soq = M + Z e;l\/li.
i=1
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According to the article [3], we define the Hilbert transform H of u
as

H: 209, R) — L2(0Q,R3)

3
H(u) : = Z eM™ | (I + M) u.
i=1

The authors of the article noticed that if we define the following
strategic R-valued function

h:=2(14+ M) tu=2(/ +Sc(Spq)) " u.

[3] Hilbert Transforms on the Sphere with the Clifford Algebra Setting, 2009, from the
authors Tao Qian and Yan Yang.
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Thus )
H(u) = EVec (Saqh).

And the monogenic extension in Q is given by the Cauchy operator
Faq(h). On the other hand, if we take the non-tangential limit then

(h(t) + Saqh(t))

;SC(S@Q h(t)) + VEC(Sth(t))

(I + M)h(t) + H(u)(t)
= (u+ H(uv)) (t).

n.t. )|<IL>nt Faq(h)(x) =

h(t) +

I\)\i—‘l\)\l—‘l\)\l—‘
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Hilbert transform Hilbert transform associated to the equation DW

Now, we are interested in to define the Hilbert transform
associated to the main Vekua equation DW = DTfW:

From now on the conductivity o = f2 € H*(Q, R). Suppose that
@ € HY2(0Q,R) is known, and o, 1.0 — (0,00) are measurables

and bounded. Then there exists an unique extension Wy € H}(Q)

such that
W
V-f2V<fO> =0in Q,

W‘ — 4 in 0.
OBQ wn
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Hilbert transform Hilbert transform associated to the equation DW = DT'{W

Using the decomposition of the Teodorescu operator
Ta: L2(Q) — HY(Q), we have that

To [-FPV(Wo/f)] = Toq [-F2V(Wo/f)] + Toq [-F*V(Wo/f)].

And the corresponding boundary value function of the scalar and
the vectorial part of T are denoted as

o(t) = lim, Toq [~F2(Wo/)]
(1) = lim Taq [~ F2V(Wo/ )

for t € ON.
Notice that g € HY/2(Q), since the trace operator
v: HY(Q) — HY2(09Q).
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Definition

Finally, define the Hilbert transform Hy associated to the main
Vekua equation as

He: HY2(0Q,R) — L2(8Q, R3)
© — b — H(uwp),

where ug and & are built as above using the extension for ¢ as
solution of the conductivity equation.

Analogously, like in the monogenic case
he = 2(1 + M) tup.
Then
1
He(p) = v — ~Vec(Saq hr).
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@ In particular, when f =1 we have that Hs = H.

@ The Hilbert transform associated to the main Vekua equation
He: HY2(0Q,R) — L2(0Q,R3) is a bounded operator.

@ More even H¢(u) € Sol (9Q,R3), for all u € HY/?(0Q,R).
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Hilbert transform Hilbert transform associated to the equation DW = (b7

Theorem

Let Q = B3. Let f € HY(Q,R) a proper conductivity. Suppose that

© € HY2(0Q,R). Then there exists an extension
W= W, -+ Z?:l e;W: in Q such that

f

Df — .
DW = - W inQ,
W = .
s ¥
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Sketch of the proof:

The extension of the vector part W is obtained directly from the
Hilbert transform ¢ and the integral operators T and Fyq:
_>
fW : = To[-f2V(Wo/f)] + FaalHs(¢)]-
=Toq [~ V(Wo/f)] + Toq [-F2V(Wo/f)]
+ Foal W — H(uo)]-
Thus
o W :=Wy+ V_>V satisfy the main Vekua equation.

= . .
o fW is purely vectorial.
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Hilbert transform Hilbert transform associated to the equation DW = DT'{W

Although the above extension is not unique, it is the only one that
satisfies

n.t. — lim fW(x) =Hs(p), ,x € 00.

X—t

CINVESTAV INRIA Sophia Antipolis 36/37



Hilbert transform a ated to the equation DW
Hilbert transform Hilbert transform associated to the equation DW =

MERCI!
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