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1 General description

The shallow water system describes the evolution of the water height h and the mean horizontal speed
u when the spatial domain is much larger in the horizontal direction than in the vertical one, which is the
case in oceans and rivers. In 1D for simplicity, the system writes{

∂th(t, x) + ∂x(hu)(t, x) = 0 t ∈ R+, x ∈ R
∂t(hu)(t, x) + ∂x

(
hu2 +

g

2
h2
)

(t, x) = gh∂xb(x)
(1)

where g is the gravitationnal constant and b accounts for the (slowly varying) bottom topography.
System (1) focuses on the macroscopic quantities h and u. Its kinetic formulation describes the same

phenomenon at the mesoscopic scale. The evolution of f(t, x, ξ) the proportion of �particles� moving at
speed ξ at time t and point x is given by

∂tf(t, x, ξ) + ξ∂xf(t, x, ξ) = Q(f, t, x, ξ), t ∈ R+, x ∈ R, ξ ∈ R (2)

where Q is a collision operator.
The kinetic description (2) is of larger dimension, but is linear, while the macroscopic description (1)

does not depend on ξ, but is nonlinear. The two are linked by the relations, see [1] :

ρ(t, x) =

∫
f(t, x, ξ) dξ and (ρu)(t, x) =

∫
ξf(t, x, ξ) dξ (3)

and reciprocally, for some Maxwellian function χ,

f(t, x, ξ) =
h(t, x)√
gh

χ

(
ξ − u(t, x)√

gh

)
(4)

In other words, depending on the interest, the study can be about the Boltzmann equation instead of the
Euler system for instance.

Kinetic schemes rely on the same approach : instead of solving (1) directly, an additionnal variable is
introduced and a linear scheme for (2) is proposed. Since they follow �physical� paths, those schemes naturally
conserve crucial properties of the model (conservation, dissipation . . .), at the price of dealing with numerical
integrations (3) to recover the macroscopic quantities.

In this PhD we �rst propose to keep a trace of the Froude number in (2), see Section 2. Second, we
will study a di�usive-dispersive conservation law. This is a �rst step for understanding dispersive model
as Green-Naghdi, see Section 3. All along the PhD, the understanding of the continuous PDEs, which is
interesting by itself, will also be the base for new kinetic schemes.

2 Low Froude number in the kinetic formulation

In many oceanic phenomena modelled by the shallow water equation, there is presence of multiscale
behaviours. More precisely, it can be observed that

√
gh the speed of the gravitational waves on the ocean



surface is much higher than the one of the water u. In other words, the Froude number Fr = u√
gh

may be

very small and we are interesting in the following system (where α is a dimensionless parameter)
∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

h2

2Fr2

)
= − α

Fr
2 ∂zb

(5)

Classical explicit schemes are constrained by a CFL condition of the type ∆t ≤ ∆x
|u|(1+1/Fr) and thus use

ridiculously small time steps when Fr is small ; the reasonable restriction is ∆t ≤ ∆x
|u| .

The existing solutions [2] consist in impliciting a "smart" part of the equation (5), so that the CFL
condition relaxes to ∆x ≤ ∆t

|u| while avoiding the resolution of large nonlinear systems. To our knowledge,

they are all based on the macroscopic equation (1).
We would like to investigate the kinetic approach, which hasn't be studied yet. With a carefull analysis

based on dimensionless parameters, we should be able to propose a correct expansion of (4) in terms of the
Froude number Fr. Then, taking advantage of the linearity of (2), a linear implicit-explicit scheme should
be quite obvious to write. Eventually, at the continuous level, we will explore the links between the Froude
number and the relaxation time ε, in the case of the BGK collision operator.

3 Kinetic formulation for nonclassical shocks

In the simplest setting [3], nonclassical shocks are discontinous solutions of the scalar law

∂tu+ ∂xu
3 = 0

that are limits, when ε tends to 0, of the following di�usive dispersive

∂tuε + ∂xu
3 = ε∂xxuε + αε2∂xxxuε. (6)

The classical case corresponds to α = 0 and yields the well known Krushkov theory, where discontinuous
solutions verify the entropy inequality ∂tη(u) + ∂xg(u) ≤ 0 for any convex function η (and its associated
entropy �ux g). When α 6= 0, one can obtain only one entropy inequality, and a so-called kinetic condition
is necessary to select shocks and de�ne a unique weak solution. We plan to propose a nonclassical kinetic
formulation that selects the limit of (6), in the spirit of [5]. At the kinetic level, the fact that only one entropy
inequality holds prevent us from applying existing methods, and the key point will be the interpretation of
the kinetic relation. The numerical approximation of such problems is still largely open [4], since it is very
di�cult to maintain, at the discrete level, the correct balance between di�usive and dispersive e�ects. A
reliable kinetic interpretation would be a �rst step towards a new class of schemes.
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