Wave-structure interaction for long wave models in the presence of a freely moving body on the bottom

Krisztián BENYÓ

Laboratoire d'Hydraulique Saint-Venant

October 15, 2018

Contents

¹ [Setting of the problem](#page-4-0)

- [The physical domain of the problem](#page-4-0)
- [The governing equations](#page-6-0)
- **A** [Nondimensionalisation](#page-10-0)

² [The Boussinesq regime](#page-11-0)

- [The Boussinesq system and the approximate solid equations](#page-11-0)
- **[Theoretical results](#page-13-0)**

³ [Numerical simulations](#page-15-0)

- **a** [The numerical scheme](#page-15-0)
- **•** [The numerical experiments](#page-17-0)

 2990

Mathematical motivation : a better understanding of the water waves problem

 299

[Introduction](#page-2-0)

Motivation

Mathematical motivation : a better understanding of the water waves problem Real life applications : Coastal engineering and wave energy converters

(a) Wave Roller (b) Wave Carpet

メロトメ団 トメミトメミ

 QQ

The physical domain for the wave-structure interaction problem

つへへ

- · In the case of a predefined evolution of the bottom topography :
	- − T. Alazard, N. Burq, and C. Zuily, On the Cauchy Problem for the water waves with surface tension (2011).
	- − F. Hiroyasu, andT. Iguchi, A shallow water approximation for water waves over a moving bottom (2015),
	- − B. Melinand, A mathematical study of meteo and landslide tsunamis (2015);
- · Fluid submerged solid interaction :
	- − G-H. Cottet, and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces (2006),
	- − P. Guyenne, and D. P. Nicholls, A high-order spectral method for nonlinear water waves over a moving bottom (2007),
	- − S. Abadie et al., A fictious domain approach based on a viscosity penalty method to simulate wave/structure interactions (2017).

 Ω

Fluid dynamics

The water waves problem : Based on the Laplace equation

$$
\begin{cases} \Delta \Phi = 0 \quad \text{ in } \Omega_t \\ \Phi|_{z=\zeta} = \psi, \ \sqrt{1+|\partial_x b|^2} \partial_{\bf n} \Phi_{\rm bott} = \partial_t b. \end{cases}
$$

An evolution equation for *ζ*, the surface elevation. An evolution equation for ψ , the velocity potential on the free surface.

 2990

The governing equations

Fluid dynamics

$$
\begin{cases} \partial_t \zeta + \partial_x (h \overline{V}) = \partial_t b, \\ \partial_t \psi + g \zeta + \frac{1}{2} |\partial_x \psi|^2 - \frac{(-\partial_x (h \overline{V}) + \partial_t b + \partial_x \zeta \cdot \partial_x \psi)^2}{2(1 + |\partial_x \zeta|^2)} = 0, \end{cases}
$$

where

$$
\overline{V} = \frac{1}{h} \int_{-H_0+b}^{\zeta} \partial_x \Phi(\cdot, z) dz.
$$

 2990

The governing equations

Fluid dynamics

$$
\begin{cases} \partial_t \zeta + \partial_x (h \overline{V}) = \partial_t b, \\ \partial_t \psi + g \zeta + \frac{1}{2} |\partial_x \psi|^2 - \frac{(-\partial_x (h \overline{V}) + \partial_t b + \partial_x \zeta \cdot \partial_x \psi)^2}{2(1 + |\partial_x \zeta|^2)} = 0, \end{cases}
$$

where

$$
\overline{V} = \frac{1}{h} \int_{-H_0+b}^{\zeta} \partial_x \Phi(\cdot, z) dz.
$$

Solid mechanics

By Newton's second law :

$$
F_{\rm total} = F_{\rm gravity} + F_{\rm solid-bottom\ interaction} + F_{\rm solid-fluid\ interaction}.
$$

 Ω

The governing equations

Fluid dynamics

$$
\begin{cases} \partial_t \zeta + \partial_x (h \overline{V}) = \partial_t b, \\ \partial_t \psi + g \zeta + \frac{1}{2} |\partial_x \psi|^2 - \frac{(-\partial_x (h \overline{V}) + \partial_t b + \partial_x \zeta \cdot \partial_x \psi)^2}{2(1 + |\partial_x \zeta|^2)} = 0, \end{cases}
$$

where

$$
\overline{V} = \frac{1}{h} \int_{-H_0+b}^{\zeta} \partial_x \Phi(\cdot, z) dz.
$$

Solid mechanics

The equation of motion for the solid

$$
M\ddot{X}_S(t) = -c_{\text{fric}}\left(Mg + \int_{I(t)} P_{\text{bott}}\,dx\right) \mathbf{e}_{\text{tan}} + \int_{I(t)} P_{\text{bott}} \partial_x b\,dx.
$$

 OQ

Characteristic scales of the problem

- · L, the characteristic horizontal scale of the wave motion,
- \cdot H₀, the base water depth,
- \cdot a_{surf} , the order of the free surface amplitude,
- \cdot a_{bott} , the characteristic height of the solid.

 299

With an order $\mathcal{O}(\mu^2)$ approximation, we are going to work in the so called weakly nonlinear Boussinesq regime

$$
0 \leq \mu \leq \mu_{\text{max}} \ll 1, \quad \varepsilon = \mathcal{O}(\mu), \beta = \mathcal{O}(\mu). \tag{BOUS}
$$

The coupled Boussinesq system with an object moving at the bottom writes as

$$
\begin{cases} \partial_t \zeta + \partial_x (h \overline{V}) = \frac{\beta}{\varepsilon} \partial_t b, \\ \partial_t \psi + \zeta + \frac{\varepsilon}{2} |\partial_x \psi|^2 - \varepsilon \mu \frac{(-\partial_x (h \overline{V}) + \frac{\beta}{\varepsilon} \partial_t b + \partial_x (\varepsilon \zeta) \cdot \partial_x \psi)^2}{2(1 + \varepsilon^2 \mu |\partial_x \zeta|^2)} = 0, \\ \tilde{X}_S(t) = -\frac{c_{\text{fric}}}{\sqrt{\mu}} \left(1 + \frac{1}{\beta \tilde{M}} \int_{I(t)} P_{\text{bott}} \, dx \right) \mathbf{e}_{\text{tan}} + \frac{1}{\tilde{M}} \int_{\mathbb{R}} P_{\text{bott}} \partial_x b \, dx. \end{cases}
$$

 299

メロメ メタメ メミメ メミメ

With an order $\mathcal{O}(\mu^2)$ approximation, we are going to work in the so called weakly nonlinear Boussinesq regime

$$
0 \leq \mu \leq \mu_{\text{max}} \ll 1, \quad \varepsilon = \mathcal{O}(\mu), \beta = \mathcal{O}(\mu). \tag{BOUS}
$$

The coupled Boussinesq system with an object moving at the bottom writes as

$$
\begin{cases}\n\frac{\partial_t \zeta + \partial_x (h \overline{V})}{\partial t} = \frac{\beta}{\varepsilon} \partial_t b, \\
\left(1 - \frac{\mu}{3} \partial_{xx}\right) \partial_t \overline{V} + \partial_x \zeta + \varepsilon \overline{V} \cdot (\partial_x \overline{V}) = -\frac{\mu}{2} \partial_x \partial_{tt} b, \\
\ddot{X}_S(t) = -\frac{c_{fric}}{\sqrt{\mu}} \left(\frac{1}{\beta} c_{solid} + \frac{\varepsilon}{\beta \overline{M}} \int_{I(t)} \zeta dx \right) e_{\tan} + \frac{\varepsilon}{\overline{M}} \int_{\mathbb{R}} \zeta(t, x) \partial_x b dx,\n\end{cases}
$$

 299

イロト イ部 トメ 差 トメ 差 トー 差

 L^2 estimates

$$
E_B(t) = \frac{1}{2} \int_{\mathbb{R}} \zeta^2 dx + \frac{1}{2} \int_{\mathbb{R}} h \overline{V}^2 dx + \frac{1}{2} \int_{\mathbb{R}} \frac{\mu}{3} h (\partial_x \overline{V})^2 dx + \frac{\tilde{M}}{2 \varepsilon} \left| \dot{X}_S(t) \right|^2,
$$

Proposition

Let $\mu\ll 1$ sufficiently small and let us take s $_0>1$. Any $\mathcal{U}\in\mathcal{C}^1([0,\,T]\times\mathbb{R})\cap\mathcal{C}^1([0,\,T];H^{s_0}(\mathbb{R})),$ $X_S\,\in\, \mathcal{C}^2([0,\,T])$ solutions to the coupled system, with initial data $\mathcal{U}(0,\cdot)\,=\,\mathcal{U}_{in}\,\in\,L^2(\mathbb{R})$ and $(X_5(0), X_5(0)) = (0, v_{S_0}) \in \mathbb{R} \times \mathbb{R}$, verify

$$
\sup_{t\in[0,T]}\left\{e^{-\sqrt{\varepsilon}c_0t}E_B(t)\right\}\leqslant 2E_B(0)+\mu\textit{Tc}_0\|b\|_{H^3},
$$

where

$$
c_0 = c(||\mathcal{U}||_{T, W^{1,\infty}}, ||\mathcal{U}||_{T, H^{s_0}}, ||b||_{W^{4,\infty}}).
$$

 η an

イロト イ部 トイをトイをトーを

Long time existence for the Boussinesq system

Theorem

Let μ sufficiently small and $\varepsilon = \mathcal{O}(\mu)$. Let us suppose that the initial values ζ_{in} and b satisfy the minimal water depth condition.

If ζ_{in} and \overline{V}_{in} belong to $H^{s+1}(\R)$ with $s\in\R$, $s>3/2$, and that $X_{S_0},v_{S_0}\in\R$, then there exists a maximal time T *>* 0 independent of *ε* such that there exists a solution

$$
(\zeta, \overline{V}) \in C\left(\left[0, \frac{T}{\sqrt{\varepsilon}}\right] : H^{s+1}(\mathbb{R})\right) \cap C^1\left(\left[0, \frac{T}{\sqrt{\varepsilon}}\right] : H^s(\mathbb{R})\right),\,
$$

$$
X_S \in C^2\left(\left[0, \frac{T}{\sqrt{\varepsilon}}\right]\right)
$$

of the coupled system

$$
\begin{cases}\nD_{\mu}\partial_t \mathcal{U} + A(\mathcal{U}, X_S)\partial_x \mathcal{U} + B(\mathcal{U}, X_S) = 0, \\
\ddot{X}_S(t) = \mathcal{F}[\mathcal{U}]\left(t, X_S(t), \dot{X}_S(t)\right).\n\end{cases}
$$

with initial data (ζ_{in}, V_{in}) and (X_{S_0}, V_{S_0}) .

KED KARD KED KED E YORA

The numerical scheme

The discretization in space : Adapting a staggered grid finite difference scheme, based on the work of P. Lin and Ch. Man (Appl. Math. Mod. 2007).

- · finite difference scheme,
- · surface elevation and bottom is defined on grid points, averaged velocity is defined on mid-points,
- · order 4 central difference scheme,
- · third order Simpson method for calculating the integrals.

 \equiv Ω

The numerical scheme

The discretization in space : Adapting a staggered grid finite difference scheme, based on the work of P. Lin and Ch. Man (Appl. Math. Mod. 2007).

- · finite difference scheme,
- · surface elevation and bottom is defined on grid points, averaged velocity is defined on mid-points,
- · order 4 central difference scheme,
- · third order Simpson method for calculating the integrals.

The discretization in time :

- \cdot Adams 4th order predictor-corrector algorithm for the fluid dynamics
- · An explicit scheme for the solid equation : an adapted second order central scheme
- · preserves the dissipative property due to the friction,

 \equiv Ω

Amplitude variation for a passing wave

(a) Change in wave amplitude, $\mu = 0.25$, $\beta = 0.3$ (b) Change in wave amplitude, $\mu = 0.25$, $\beta = 0.5$

メロトメ 伊 トメ ミトメ ミト

 299

Amplitude variation for a passing wave

(a) Change in wave amplitude, $\mu = 0.25$, $\beta = 0.3$ (b) Change in wave amplitude, $\mu = 0.25$, $\beta = 0.5$

Noticeable attenuation for the moving solid. Observe the wave-breaking for the relatively large solid.

メロトメ 御 トメ 君 トメ 君 ト

 2990

The solid motion under the influence of the waves

FIGURE – Solid position for varying coefficient of friction ($\mu = \varepsilon = 0.25$, $\beta = 0.3$)

Observable : hydrodynamic damping, frictional damping.

 299

メロメメ 御 メメ きょくきょ

The solid motion under the influence of the waves

(a) Solid position, single wave, with and without hydrodynamic effects

Highlight : hydrodynamic damping effect

(b) Solid velocity, single wave, with and without hydrodynamic effects

イロト イ押ト イヨト イヨ

 2990

The solid motion under the influence of the waves

(a) Solid position, single wave $\mu = 0.25$, $\beta = 0.3$, $c_{fric} = 0.001$

(b) Solid position, wavetrain $\mu = 0.25$, $\beta = 0.3$, $c_{fric} = 0.001$

メロトメ 御 トメ 君 トメ 君 ト

∍

 QQ

Influence over a long time scale

wave trains

イロトメタトメミトメミト ミニの女の

What we did :

- · characterise mathematically the physical setting of an object on the bottom of an "oceanographic fluid domain",
- · establish the coupled system,
- \cdot analyse the order 2 asymptotic system in μ (weakly nonlinear Boussinesq setting),
- · create an accurate finite difference scheme for the coupled model,
- · highlight the effects of a free solid motion on wave transformation as well as the effects of friction on the system.

 200

What we did :

- · characterise mathematically the physical setting of an object on the bottom of an "oceanographic fluid domain",
- · establish the coupled system,
- \cdot analyse the order 2 asymptotic system in μ (weakly nonlinear Boussinesq setting),
- · create an accurate finite difference scheme for the coupled model,
- · highlight the effects of a free solid motion on wave transformation as well as the effects of friction on the system.

What we still have to do :

- · treat the case of a non-horizontal bottom,
- · generalize the notion of friction to a more realistic physical interpretation,

· ...

 200

Thank you for your attention !

 299