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Shalow-water model with bottom topography: 1D

O (hu) +0y (> +p(h)) +ghab = 0@ P =87

Entropy Inequality?:
¢ (he) + Oy (u(he+p(h))) <0

. 2 h
with e =% + £ + gb .
Reformulated system :

dth +0y (hu) — 0
O¢ (hu)  +0x (hu® + p(h)) +ghdb = 0
O¢b = 0

Steady States
Ox(hu)=0 and Oy (hu+ p(h)) +ghdxb =0
lake at Rest : u=0 and h+ b= Cte

2. S. Fjordholm, S. Mishra, E. Tadmor, Well-balanced and energy stable
schemes for the shallow water equations with discontinuous topography ,
Journal of Computational Phvsics 230(14). 5587-5609. 2011



Shalow-water model with bottom topography and friction

8th +8X (hu) = 0
Ot (hu) 404 (hu2+p(h)) +ghoxb = Cruul

Augmented system3:

Oth +0y (hu) =0
O¢ (hu) +0x (hu® + p(h)) +ghdxb — Crulu|dx = 0
8tb = O
O X =0

3Laurent Gosse, A well-balanced scheme using non-conservative products
designed for hyperbolic systems of conservation laws with source terms, M3AS,
Vol. 11 (02), 339-365, 2001



General setting

Ow + 0x (f(w) ) + B (w) dxw =0

Model with bottom topography

h hu 0 0 O
w=| hu |, fw)=| h>’+p |, Bw)=| 0 0 gh
b 0 0 0 O

Model with bottom topography and friction

hu 00 0 0

| hu | hu?+p | 0 0 gh —crulul
w=| "y | fl)= 0 BW=149 0 % 0
0 00 0 0



General setting : Jw + Oy (f(w) ) + B (w) 0w =0

Finite volume approximation

2

Nl _ o L — 6. i 3 _
0x (wl wl) +5t ¢I+% ¢I—% +5t I:)ifl +Dl 0

where
1 13

$isr = 5 A fics

i 1 ot Xi

D! = — B (w) o,w

i3 5t Jo x,;i( ) Ox
1 1 ot X.21

Dz = = "2 B (w) dw



1 ot X,
Approximation of D] = ﬁ/ / B (w) Owwdtdx
0
4

Let us introduce a linear path in the phase space

sz(wl,wr,S)zwl—i—s(wr—wl) with s:XﬁX'

Xr — XJ

Etimation associated to this path gives :

|~ — 5t /5t [/ B (P (wj,w,,s ))ds}( —wy)dt

Therefore [ | ~B(ww,) (w, —w/)) where

1
B (w,w,) = B, (w,,w,):/o B(P (w),wr,s)) ds

*G. Dal Maso, P. LeFloch, F. Murat, Definition and weak stability of a
non-conservative product,J. Math. Pures et Appl., Vol. 74 No 6, 1995.



HLL conservative fluxes ¢/+Tr = ¢ (w),w,) = dn (0 =0)

Riemann Problem (RP)
{Btw+8x(f( w))+B(w)dw =0

w; ifx<0
w(t=0x) = {w: if x>0

RP for similarity variable o = %
O (f —ow) + B (w) dow +w =0
w(o=-0) = w
w(o=400) = w,

f(w)
Oni (o) = o
f(wr)

wy
wh (0) =1 ws
Wy

if o <s, <0
if sy <o <s,
ifo>s,>0

ifo<s; <0
if sy <o<s,
ifo>s,>0



HLL: Consistency with the integral formulation

Os (f—ow)+B(w)Oow +w =0

For any o, < o,

E’(ar) — 0w (o)) = F(o7) + o (o)) + /U'B(w) Dy + /a'w _ (ﬂ

/

Straightforward application gives
{ ¢*—0—f/+S/w/+D7—S/w* =0
f,—sw,—¢.+0+D, +s,w, = 0

Therefore, wy is implicitly defined as

Dy + D’ Sew, — Sjwy — (F, — f
w*:wio)—7/+ * with @0 = 2 T PR (F —f))
S, — S Sy — Sy

Indeed, D} and D7 are functions of w,.



HLL Continue

The flux can be formulated using one of these relations :
- b, = s £ — sf, + 5,5, (wr — w,) B Ser + S/Di
Sr— 8y Sr— 5]
> ¢ =f —sw; +sw, — D]
> ¢, =f, — S,w, + s,w, + DI

The first order scheme is
n+l _  n - i i+% _
ESx(wi w,)+5t(¢i+% ¢i7%)+5t (Dié—i-D,- ) —(ﬂ

Then we use

= f H‘% DH_% i+§
¢i+% - i +¢, - Y ’lﬁi = (S/)’-+% (U)i+% —w,')
and obtain
+1 qpi+% W
n . —_ :
w,. —w? n i ,,% 0

ot 0x




i+3
nl gm0 ¢f_,
HLL Resumed : |21 %1 4 ~0
ot dx

[ L% = (Sr);-1 (wi—% —w;)] and [’/’ = = (s1)iy1 ( i1 —M)]

For any i, w; 1 is the solution of
2

[w _ w(O) _E(wiflaw*)(w*—wl 1)+B(w*,wi)(w;—w*)]
’ (s)

=2 (Sf)ifé ~1




Application to SW

B (w),w,) (w, —w)) =

Finally the numerical scheme is reformulated as :

/—\_/

+
wlf_?+1 _ w? N "/’I : "/)’ + (Sr);_% G 1 - (S/)H—% Gi—&-%
ot X Ox

where 1 is the classical conservative fluctuation.

Approximation of B (w) dyw is drived by the Riemann solver.



HLL Lake at rest : u; = 0 and h; + b; = 7

In this context we have

h: 1
;i — . — (f. — f. 2
w(O) _ (Sr)i—%wl (S/)i—%wl—l (f, fl—].) _ _% (h’2 - hlgfl)
i % (Sr),',% — (S/),;% (S'),-,%*(Sl)i,%
b. 1

Note that, in general, ugojl # 0 and will induce artificial motion.
2

However, as

0
c (hi +hj—1) (bj — bi_1)
i-1 =8 _
: 2((s0)imy = (s0),-1 )
0
we obtain
h;_1
(0) :
w,_1=w: 1*G,,l: 0 and hlil +bl71:Z0
2 =3 2 b. 2 2



HLL Lake at rest : u; = 0 and h; + b; = 7

. 1 —
1 I+3

n ot (S/),‘JrE

ot (Sf)i—%

The desciption of the stared region by a constant state is not
satisfactory. Indeed, w,f’H # w! in general We have

(S/)i+% (hi+l -

2

and

- (Sr)ifé (hifl

2

(Sl’)i+% (Sl)i+%
hi) = (

- Sr)i+% - (SI)H_%

(hiy1 —



HLL Lake at rest : u; = 0 and h; + b; = 7

ntl o _ - ﬁ (Sr)i+% (Sl)i+%
! ' 0x (Sr)i+% - (Sl)i-i-%
st (8r)i1(s1);1
_'_7
0x (Sr);1 = (81);-3
The missing contributions for well balanced are proportional to a
w, —wj
Sr—81

(Wit1 —wj)

(Wi —wj-1)

local gradients



Well-balanced scheme by hydrostatic reconstruction®

wmtl _yn 4’:(‘1)% B ¢E(i)% Si_+ S;Jr
St ox e 70

where the state i— and i+ are obtained by hydrostatic
reconstruction:

hit 0
wit = ( hizu; ) ) ¢,(.i)7 =40 (wi+7w(f+1)7), S| = < gh';h’ (hr —hy) >

1
1
*3 2 0

where
hiy = h; + % (9xh) hi — (b1 — b

. dx ~ hit (b —
hiw =hi— 5 (0xh) = hi+ (bj—b; s

12

5E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame A fast and
stable well-balanced scheme with hydrostatic reconstruction for shallow water
flows SIAM Journal on Scientific Computing 25 (6),.2050-2065, 2004



HLLE by B. Einfeldt®

Introduce a linear variation in the interaction zone :

wy if o <s; <0
20 — (s, +5s .
wWhie (o) = w*—l-gs(rsl)d(w,—w/) ifsy<o<s,
r — 9ol
wr ifo>s,>0

where § is a projection matrix.

Note that 0
/ 20 — (S, + 9/) do — S,S;
Sy Sr— 5y Sy — 5y
/* 20 — (S, + S’)dg _ S8
0 Sr— 5y Sr—58y

®B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Numer.
Anal., 25:294-318, 1988.



HLLE: Consistency with the integral formulation
For any o/ < o,

E(a,) — o (0v) —F(0)) + 0w (01) + /U'B(w) Dy + /U'w _ cﬂ

I}

Straightforward application gives

S¢Sy

Sr— Sy
SrSy

Sr— Sy

¢*—0—f/+S/wl+DT—S/w*+ (5( w,) =0

f, —s,w, — ¢ + 0+ D] + s,w, —

S(w,—w) = O

We then observe that the E-modification do not change the
estimation of w,. The associated fluxes are

. (Sr)i_1 (1) 1
. = f ! D!, — 2 2 P —wi
¢I—% +¢1 1 + 1 (Sr),‘fé o (Sl),‘il é(w w 1)
i+l (Sr)i+l (Sl)i+1
¢.1 = fi+vy —D,-+2 - : 20 (w1 —wi)
2 (Sr)i+% - (S/)i+%



HLLE Scheme

I+ /—,\/
wt —wr N LT (S1)iy 1 G .-+ (8r)i 18 (Wit1 —wj)
ot dx dx 3 (Sr)i+% - (Sl)i-;-%
(Sr);-1 c (81);-10 (wi —wi-1) o
R N T O A )




HLLE Lake at rest : u; = 0 and h; + b; = 7

ot (Sf)i+l (SI),'+1
with = Wl - — 2 2 (1d —6) (wjy1 — wi
i ox (S(r),)_yé _((S)I)i+1 (* 7)( +1 )
ot (Sr i—% Sy ,'_%
o A o CRUICRE
Theorem

If § = 1d the associated HLLE scheme (fisrt order accurate)
preserves the steady state of lake at rest.



well-balanced scheme by hydrostatic reconstruction’

W g 80 s ysi
5t Sx Ox

where the state i— and i+ are obtained by hydrostatic
reconstruction:

hit hoah 0
wir = | hizui |, Sj=1| g ’;r ! (hy —h;)
bis} 0

with iy = h; — (b2 —b;) and - = h; + (bi b, 1 ).

¢fi)1 = ¢ ©) ( i+7w(i+1)7)

"E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame A fast and
stable well-balanced scheme with hydrostatic reconstruction for shallow water
flows SIAM Journal on Scientific Computing 25 (6),.2050-2065, 2004



