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ABSTRACT

Future exascale machines will embed 1000+ general purpose cores on a single chip.Multi-threaded
applications do not exploit completely the large parallelism offered by current many-core archi-
tectures, a possible solution is to investigate more flexible execution model. This paper proposes
initial results of a 1000+ cores architecture where the thread scheduling enables a dataflow exe-
cution model. Due to the huge number of threads running on the system, we introduce a way to
support thread scheduling in the architecture on a many-core chip. Preliminary results on the COT-
Son demonstrates the ability of fully loading the target machine by distributing threads among
all the available computing cores.
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1 Introduction

In future exascale machines, the number of cores will be one or two orders of magnitude
larger than current multi-core systems. Major constraints impose serious limitations to the
ability of integrating more and more processing units on the same silicon die. Reliability
issues and power-wall are limiting the core number scaling. Current multi-threaded real-
world applications are not capable to take advantage from this large parallelism, since the
communication and synchronization overhead among threads become quickly predominant.
New programming and execution models need to be designed to overcome the limitations of
the current ones [SPN+09].

Dataflow paradigm is known to be capable of taking advantage of the full parallelism
offered by the underlying hardware architecture, by leveraging an implicit way to eliminate
data dependencies and threads synchronization [ZY12]. Although dataflow is not a new
concept, only recently it has generated a revived interest.

Simulating a many-core chip architecture that embeds more than 1000 cores and efficiently
scheduling threads among the computing resources is not a trivial problem [AP12].

This work presents initial results of modeling a machine based on the TERAFLUX Archi-
tecture [ea13]. To support efficient execution of threads we rely on:
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Figure 1: Simulator Setup of DF Scheduler Unit. Host memory is shared among nodes through
a monitor that manage DF-Frames and Shared Frames

• a thread model which subdivides the threads in DF-Threads, Shared-Threads and
Legacy/System Threads

• support for managing these threads through an X86_64 ISA extension [Gio12]

• scalable distributed DF-Scheduler architecture (See Fig.1)

Simulating a many-core chip architecture that embeds more than 1000 cores and efficiently
scheduling threads among the computing resources is not a trivial problem [AP12].

2 Dataflow execution model

In our execution model, dataflow threads, called DF-threads, present a fine granularity, i.e.,
their body is composed of few tens of instructions. Each DF-thread is generated by the
compiler to perform read accesses to the memory at the beginning of its execution, while
all the write access to the memory are performed at the end of the execution. This approach
allows deterministic execution. DF-Threads have no jump outside the thread core. This
execution is DF-Driven [GPP07].

Thread dependencies are generate dinamically by the data produced bu threads themself.
In order to support this producer-consumer paradigm, each DF-thread has an associated
memory, called DF-Frame (the memory region containing all the frames is called DF-Frame
memory).

With the aim of supporting the firing-rule, a synchronization counter (SC) is associated
to each DF-thread. The SC is set to the number of inputs needed by the thread to become
ready, and it is decremented every time a new input is produced. When SC is reduced to
zero for a DF-thread, it passes from the waiting state to the ready one, as mentioned above.
Finally, DF-thread creation is explicitly performed by other DF-threads during their execution,
while DF-thread removal is implicitly performed at the end of the execution by freeing the
associated frame.



Figure 2: Speedup time increase during the execution, assuming simple CPI = 1 in a baseline
timing model

The data-flow simulator presented in this work emulate the dataflow execution by the
T-Star (T*) instructions described in [Gio12].

3 Simulator Details

The simulator presented in this paper is based on COTSon [EA09] for the off-the-shelf simu-
lation. COTSon uses SimNow [SN09] as a virtual machine for an emulation of a full-system
X86_64 architecture. As described in Figure 1, on the host machine are performed multiple
SimNow instances for functional simulation of X86_64 programs , while COTSon provides
decupled functional directed a timing model evaluation of the execution. The data-flow simu-
lator proposed in this work intercepts all T* [Gio12] instructions and performs both functional
behaviour and timing model. It also uses COTSon for evaluation of the standard X86_64
architecture timing model, but add to it the timing model for the hardware architecture that
supports dataflow (called Thread Scheduler Unit).

The communication between different instances of SimNow is done by the use of a
simulation helper called Monitor . This Monitor has direct access to the host Main Memory. In
this way all memory allocations, both DF-Frame and Shared Frame 2, are handled through
the Monitor . It allows all instances of SimNow to have access to a single memory and, thanks
to the pointer returned by the Monitor, read or write on that memory.

4 Experimental Results and Conclusions

During the experiments, we simulated a data-flow architecture with 1024 cores. The host
system used was a DLProliant DL585 G7 based on AMD Opteron 6200 Series (called TFX3),
which provides 64 cores coupled to 1 TB of shared-DRAM main memory. The Fig. 2 shows
the speedup of two benchmarks: fibonacci, and matrix multiplier, when we use a simple
baseline model (CPI = 1) as done in [JWR13]. The functional simulation was launched using
64 physical cores in which each instance of SimNow simulated a 16 cores architecture. The
mechanism of Monitor allows us to increase the number of cores simulated and the number of
running SimNow instances. In addition, the centralized management of host memory allows
us to have , instant by instant, a complete overview of all running T* instructions. In this way
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it is possible to synchronize the timing model for each instance of SimNow, and an overall
assessment of the architecture implemented using the simulator.

These results help to investigate more in optimizing the simulator to support designing
exploration. To automatize design space exploration we could also use PIKE tool [AMG13].
We realize that the T* executional model can efficiently and dynamically spawn and distribute
threads. It means that if we can integrate more number of cores in a chip, we can simulate the
performance of real applications. Our future works are focusing on multi-node architecture
timing model which we target to tera-device chip which can scale to 1000+ cores or more.
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