Data-free dimension reduction for Bayesian inverse problems
In collaboration with Tiangang Cui (Monash University)

Olivier Zahm
INRIA - AIRSEA project team

SIAM-CSE,
Fort Worth, March 4, 2021.
olivier.zahm@inria.fr
https://team.inria.fr/airsea/

- Recover an unknown parameter x from the noisy observation of a forward model $G(x)$. For instance

$$
y=G(x)+\xi \quad \text { with } \quad \xi \sim \mathcal{N}\left(0, \Gamma_{\text {obs }}\right)
$$

- The distribution of $x \mid y$ is the posterior distribution

$$
\underbrace{\pi_{\text {pos }}^{y}(x)}_{\text {posterior }} \propto \underbrace{\mathcal{L}_{y}(x)}_{\text {likelihood }} \underbrace{\pi_{\text {pr }}(x)}_{\text {prior }} \quad \text { with } \quad \mathcal{L}_{y}(x)=\mathbb{P}(y \mid x)
$$

- Draw samples $x \sim \pi_{\text {pos }}^{y}$
- Find the MAP estimate $\max _{x} \pi_{\text {pos }}^{y}(x)$
- Compute an expectation over posterior $\int h(x) \mathrm{d} \pi_{\text {pos }}^{y}(x)$

Curse of dimensionality

$$
x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

Standard algorithms suffer when $d \gg 1$ (slow convergence, complexity blows up...)

Low effective dimension of Bayesian inverse problems

In many situations, the data are informative only on a low-dimensional subspace

In many situations, the data are informative only on a low-dimensional subspace

The posterior distribution is *close* to

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x) \propto \widetilde{\mathcal{L}}\left(U_{r}^{T} x\right) \pi_{\mathrm{pr}}(x)
$$

for some positive function $\widetilde{\mathcal{L}}=\widetilde{\mathcal{L}}_{y}: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$and some matrix $U_{r} \in \mathbb{R}^{d \times r}$ with rank r :

$$
\mathbb{R}^{d}=\underbrace{\operatorname{Im}\left(U_{r}\right)}_{\pi_{\mathrm{pos}}^{y} \neq \pi_{\mathrm{pr}}} \oplus \underbrace{\operatorname{Ker}\left(U_{r}^{T}\right)}_{\pi_{\mathrm{pos}}^{y} \approx \pi_{\mathrm{pr}}}
$$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}_{\mathrm{pos}}^{y}(x)=\underbrace{\left(\widetilde{\mathcal{L}}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{r}\right)\right)}_{\tilde{\pi}_{\mathrm{pos}}^{y}\left(x_{r}\right)} \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{Im}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}_{\mathrm{pos}}^{y}(x)=\underbrace{\left(\widetilde{\mathcal{L}}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{r}\right)\right)}_{\widetilde{\pi}_{\mathrm{pos}}^{y}\left(x_{r}\right)} \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

- MCMC to sample from $\widetilde{\pi}_{\text {pos }}^{y}$

1. Subspace MCMC to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{Im}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}_{\mathrm{pos}}^{y}(x)=\underbrace{\left(\widetilde{\mathcal{L}}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{r}\right)\right)}_{\widetilde{\pi}_{\mathrm{pos}}^{y}\left(x_{r}\right)} \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

- MCMC to sample from $\widetilde{\pi}_{\text {pos }}^{y}$

1. Subspace MCMC to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{Im}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x)=\underbrace{\left(\widetilde{\mathcal{L}}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{r}\right)\right)}_{\widetilde{\pi}_{\mathrm{pos}}^{y}\left(x_{r}\right)} \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

- MCMC to sample from $\widetilde{\pi}_{\text {pos }}^{y}$

1. Subspace MCMC to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{Im}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x)=\underbrace{\left(\widetilde{\mathcal{L}}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{r}\right)\right)}_{\widetilde{\pi}_{\mathrm{pos}}^{y}\left(x_{r}\right)} \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

- MCMC to sample from $\tilde{\pi}_{\text {pos }}^{y}$

1. Subspace MCMC to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}_{\text {pos }}^{y}(x)$

- Get samples from the exact posterior $\pi_{\text {pos }}^{y}$ by correcting $x^{(i)}$ via importance weights or a Metropolis scheme 屋[Cui, Zahm 2021], 㞒[Cui, Law, Marzouk 2016],...

Controlled approximation problem

Given $\varepsilon>0$, build an approximation of $\pi_{\text {pos }}^{y}$ under the form of

$$
\widetilde{\pi}_{\text {pos }}^{y}(x) \propto \widetilde{\mathcal{L}}\left(U_{r}^{T} x\right) \pi_{\mathrm{pr}}(x) \quad \text { with }\left\{\begin{array}{l}
\widetilde{\mathcal{L}}: \mathbb{R}^{r} \rightarrow \mathbb{R}_{\geq 0} \\
U_{r} \in \mathbb{R}^{d \times r}
\end{array}\right.
$$

with $r=r(\varepsilon) \ll d$ such that

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \tilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \varepsilon
$$

Road map:

1. Constructing $U_{r}=U_{r}(y)$ using gradients of the likelihood
2. Data-free dimension reduction $U_{r}=0$ (X)
3. A sampling strategy
4. Conclusion

Constructing $U_{r}=U_{r}(y)$ using gradients of the likelihood

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x) \propto \widetilde{\mathcal{L}}\left(U_{r}^{T} x\right) \pi_{\mathrm{pr}}(x)
$$

Optimal profile function $\widetilde{\mathcal{L}}$ given U_{r} [Banerjee, Guo, Wang 2005]

For any (fixed) U_{r}, the function $\widetilde{\mathcal{L}}$ which minimizes $D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{y} \| \tilde{\pi}_{\text {pos }}^{y}\right)$ is

$$
\widetilde{\mathcal{L}}\left(x_{r}\right)=\mathbb{E}_{X \sim \pi_{\mathrm{pr}}}\left(\mathcal{L}_{y}(X) \mid U_{r}^{T} X=x_{r}\right)
$$

As a consequence, $\widetilde{\pi}_{\text {pos }}^{y}(x)$ writes

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x) \propto \pi_{\mathrm{pos}}^{y}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

Error analysis

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x) \propto \widetilde{\mathcal{L}}\left(U_{r}^{T} x\right) \pi_{\mathrm{pr}}(x)
$$

Optimal profile function $\widetilde{\mathcal{L}}$ given U_{r} 甚[Banerjee, Guo, Wang 2005]

For any (fixed) U_{r}, the function $\widetilde{\mathcal{L}}$ which minimizes $D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{y} \| \widetilde{\pi}_{\text {pos }}^{y}\right)$ is

$$
\widetilde{\mathcal{L}}\left(x_{r}\right)=\mathbb{E}_{X \sim \pi_{\mathrm{pr}}}\left(\mathcal{L}_{y}(X) \mid U_{r}^{T} X=x_{r}\right)
$$

As a consequence, $\widetilde{\pi}_{\text {pos }}^{y}(x)$ writes

$$
\tilde{\pi}_{\text {pos }}^{y}(x) \propto \pi_{\text {pos }}^{y}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

Build U_{r} by minimizing a certified error bound ${ }^{\text {E }}$ [Zahm et al. 2018]

Assume $\pi_{\mathrm{pr}}=\mathcal{N}\left(m_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ and let $\widetilde{\mathcal{L}}$ be as above. Then we have

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2} \int\left\|\left(I_{d}-U_{r} U_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Sigma_{\mathrm{pr}}}^{2} \mathrm{~d} \pi_{\mathrm{pos}}^{y}
$$

- proof relies on logarithmic Sobolev inequalities [Gross 1975]
- can be extended to more general (non-Gaussian) priors

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2} \int\left\|\left(I_{d}-U_{r} U_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Sigma_{\mathrm{pr}}}^{2} \mathrm{~d} \pi_{\mathrm{pos}}^{y}
$$

Principal Component Analysis of $\nabla \log \mathcal{L}_{y}$:

1. Compute

$$
\mathrm{H}(y)=\int\left(\nabla \log \mathcal{L}_{y}\right)\left(\nabla \log \mathcal{L}_{y}\right)^{T} \mathrm{~d} \pi_{\text {pos }}^{y}
$$

2. Solve the generalized eigenvalue problem

$$
\mathrm{H}(y) u_{i}^{y}=\lambda_{i}^{y} \Sigma_{\mathrm{pr}}^{-1} u_{i}^{y}
$$

3. Assemble

$$
U_{r}=\left[u_{1}^{y}, \ldots, u_{r}^{y}\right] \in \mathbb{R}^{d \times r}
$$

In the end we get

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2}\left(\lambda_{r+1}^{y}+\cdots+\lambda_{d}^{y}\right)
$$

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2} \int\left\|\left(I_{d}-U_{r} U_{r}^{T}\right) \nabla \log \mathcal{L}_{y}\right\|_{\Sigma_{\mathrm{pr}}}^{2} \mathrm{~d} \pi_{\mathrm{pos}}^{y}
$$

Principal Component Analysis of $\nabla \log \mathcal{L}_{y}$:

1. Compute

$$
\mathrm{H}(y)=\int\left(\nabla \log \mathcal{L}_{y}\right)\left(\nabla \log \mathcal{L}_{y}\right)^{T} \mathrm{~d} \pi_{\text {pos }}^{y}
$$

2. Solve the generalized eigenvalue problem

$$
\mathrm{H}(y) u_{i}^{y}=\lambda_{i}^{y} \sum_{\mathrm{pr}}^{-1} u_{i}^{y}
$$

3. Assemble

$$
U_{r}=\left[u_{1}^{y}, \ldots, u_{r}^{y}\right] \in \mathbb{R}^{d \times r}
$$

In the end we get

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2}\left(\lambda_{r+1}^{y}+\cdots+\lambda_{d}^{y}\right)
$$

Alternative: coordinate selection $U_{r} x=x_{\tau}$ for some $\tau \subset\{1, \ldots, d\}$

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{y} \| \widetilde{\pi}_{\mathrm{pos}}^{y}\right) \leq \frac{1}{2} \sum_{i \notin \tau} H(y)_{i, i}\left(\Sigma_{\mathrm{pr}}\right)_{i, i}
$$

- Estimate gas densities $x=\rho^{\text {gas }}(z)$ from transmission spectra $y_{\omega}(z)$
- Beer's law:

$$
y_{\omega}(z)=\exp \left(-\int_{\text {light path }} \sum_{\text {gas }} \alpha_{\omega}^{\text {gas }}(z(\zeta)) \rho^{\text {gas }}(z(\zeta)) \mathrm{d} \zeta\right)+\xi
$$

- Gaussian prior $\mathcal{N}\left(\mu_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ with squared exponential kernel covariance
- After discretization of the atmosphere, $\operatorname{dim}(x)=200$.

Results 曾[Zahm, Cui, Law, Spantini, Marzouk 2018]

$$
D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{y} \| \widetilde{\pi}_{\text {pos }}^{y}\right)=\text { function }(r)
$$

Results 曾[Zahm, Cui, Law, Spantini, Marzouk 2018]

Results 曾[Zahm, Cui, Law, Spantini, Marzouk 2018]

$D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{y} \| \tilde{\pi}_{\text {pos }}^{y}\right)=$ function (r)

Iterative procedure:

$$
\pi_{\mathrm{pr}} \rightarrow H^{\left(\pi_{\mathrm{pr}}\right)} \rightarrow \widetilde{\pi}_{\mathrm{pos}}^{y} \rightarrow H^{\left(\widetilde{\pi}_{\mathrm{pos}}^{y}\right)} \rightarrow \ldots
$$

Results 曾[Zahm, Cui, Law, Spantini, Marzouk 2018]

$D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{y} \| \widetilde{\pi}_{\text {pos }}^{y}\right)=$ function (r)

Iterative procedure:

$$
\pi_{\mathrm{pr}} \rightarrow H^{\left(\pi_{\mathrm{pr}}\right)} \rightarrow \widetilde{\pi}_{\mathrm{pos}}^{y} \rightarrow H^{\left(\widetilde{\pi}_{\mathrm{pos}}^{y}\right)} \rightarrow \ldots
$$

We have to re-run the whole procedure for each new piece of observed data $y \ldots$

Data-free dimension reduction $U_{r}=(\mathbb{L}(\mathbb{L}$

Recall that, in the Bayesian perspective, the observed data y is a realization of a random variable

$$
Y \sim \pi_{\text {data }}
$$

Objective

Find a $U_{r}=$ Unf 4 such that

$$
\begin{equation*}
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y} \| \tilde{\pi}_{\mathrm{pos}}^{Y}\right) \leq t o l \tag{1}
\end{equation*}
$$

in high probability (w.r.t. Y).

By Markov inequality,

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y} \| \tilde{\pi}_{\mathrm{pos}}^{Y}\right)\right) \leq \varepsilon
$$

is sufficient to ensure (1) with probability greater than $1-\varepsilon /$ tol.

1. Compute
. $\quad \mathrm{H}=\mathbb{E}(\mathrm{H}(Y))$
2. Solve the generalized eigenvalue problem $\mathrm{H} u_{i}=\lambda_{i} \Sigma_{\text {pr }} u_{i}$ and let

$$
U_{r}=\left[u_{1}, \ldots, u_{r}\right] \in \mathbb{R}^{d \times r}
$$

3. Receive a realization y of Y,
4. Compute the optimal function $\widetilde{\mathcal{L}}_{y}=\mathbb{E}_{\pi_{\mathrm{pr}}}\left(\mathcal{L}_{y} \mid \sigma\left(U_{r}^{T}\right)\right)$
5. Assemble the posterior approximation $\widetilde{\pi}_{\text {pos }}^{y} \propto \widetilde{\mathcal{L}}_{y}\left(U_{r}^{T} x\right) \pi_{\mathrm{pr}}(x)$

Proposition

Assume $\pi_{\mathrm{pr}}=\mathcal{N}\left(m_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$. The above procedure yields

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y} \| \tilde{\pi}_{\mathrm{pos}}^{Y}\right)\right) \leq \frac{1}{2}\left(\lambda_{r+1}+\cdots+\lambda_{d}\right)
$$

Proposition [ill [Cui, Zahm 2021]

$$
\mathrm{H}=\int \mathcal{I}(x) \mathrm{d} \pi_{\mathrm{pr}}(x)
$$

where $\mathcal{I}(x)$ is the Fisher information matrix of the likelihood $\mathcal{L}_{y}(x) \propto \pi(y \mid x)$ defined by

$$
\mathcal{I}(x)=\int \nabla \log \mathcal{L}_{y}(x) \nabla \log \mathcal{L}_{y}(x)^{T} \pi(y \mid x) \mathrm{d} y
$$

Proposition [ill $[$ ui, Zahm 2021]

$$
\mathrm{H}=\int \mathcal{I}(x) \mathrm{d} \pi_{\mathrm{pr}}(x)
$$

where $\mathcal{I}(x)$ is the Fisher information matrix of the likelihood $\mathcal{L}_{y}(x) \propto \pi(y \mid x)$ defined by

$$
\mathcal{I}(x)=\int \nabla \log \mathcal{L}_{y}(x) \nabla \log \mathcal{L}_{y}(x)^{T} \pi(y \mid x) \mathrm{d} y
$$

Explicit expression on the Fisher information matrix when:

- Gaussian likelihood: $\mathcal{L}_{y}(x)=\exp \left(-\frac{1}{2}\|G(x)-y\|_{\Gamma_{\text {obs }}^{-1}}^{2}\right)$

$$
H=\int \nabla G(x)^{T} \Gamma_{\text {obs }}^{-1} \nabla G(x)^{T} \mathrm{~d} \pi_{\mathrm{pr}}(x)
$$

- Poisson likelihood: $\mathcal{L}_{y}(x)=\prod_{i=1}^{m} \frac{G_{i}(x)^{y_{i}} \exp \left(-G_{i}(x)\right)}{y_{i}!}$

$$
H=\int \nabla G(x)^{T} \operatorname{diag}\left(G_{1}(x), \ldots, G_{m}(x)\right)^{-1} \nabla G(x)^{T} \mathrm{~d} \pi_{\mathrm{pr}}(x)
$$

A numerical example: elliptic PDE

$$
-\nabla \cdot(\kappa(s) \nabla p(s))=f(s), \quad s \in[0,1]^{2}
$$

- Parameter: $x=\log \kappa$
- Data: $y=\left(p\left(s_{1}\right), \ldots, p\left(s_{m}\right)\right)+\mathcal{N}\left(0, \Gamma_{\text {obs }}\right) \quad$ (Gaussian likelihood)
- Gaussian prior: $-\Delta x+\gamma x=\mathcal{W}$ with $\mathcal{W}=$ white noise and $\gamma=10$

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y^{(i)}} \| \widetilde{\pi}_{\mathrm{pos}}^{Y^{(i)}}\right)=\text { function }(r)
$$

case 3

- data-free: U_{r} computed via $H=\mathbb{E}(H(Y))$

$$
D_{\mathrm{KL}}\left(\pi_{\text {pos }}^{Y^{(i)}} \| \tilde{\pi}_{\text {pos }}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathrm{H}=\mathbb{E}(\mathrm{H}(Y))$
- data set 1: U_{r} computed via $H\left(Y^{(1)}\right)$

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y^{(i)}} \| \widetilde{\pi}_{\mathrm{pos}}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathrm{H}=\mathbb{E}(\mathrm{H}(Y))$
- data set 1: U_{r} computed via $\mathrm{H}\left(Y^{(1)}\right)$
- data set 2: U_{r} computed via $\mathrm{H}\left(Y^{(2)}\right)$

$$
D_{\mathrm{KL}}\left(\pi_{\mathrm{pos}}^{Y^{(i)}} \| \widetilde{\pi}_{\mathrm{pos}}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $H=\mathbb{E}(H(Y))$
- data set 1: U_{r} computed via $\mathrm{H}\left(Y^{(1)}\right)$
- data set 2: U_{r} computed via $H\left(Y^{(2)}\right)$
- data set 3: U_{r} computed via $\mathrm{H}\left(Y^{(3)}\right)$

A sampling strategy

Sample from the approximate posterior

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x)=\pi_{\mathrm{pos}}^{y}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

1. Marginal posterior $x_{r}^{(i)} \sim \pi_{\text {pos }}^{y}\left(x_{r}\right)$
2. Conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \widetilde{\pi}_{\text {pos }}^{y}(x)$

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x)=\pi_{\mathrm{pos}}^{y}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

1. Marginal posterior $x_{r}^{(i)} \sim \pi_{\text {pos }}^{y}\left(x_{r}\right)$
2. Conditional prior $x_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \widetilde{\pi}_{\text {pos }}^{y}(x)$

$$
\pi_{\mathrm{pos}}^{y}\left(x_{r}\right)=\int \frac{\pi_{\mathrm{pos}}^{y}\left(x_{r}+\widetilde{x}_{\perp}\right)}{\pi_{\mathrm{pr}}\left(\widetilde{x}_{\perp} \mid x_{r}\right)} \pi_{\mathrm{pr}}\left(\widetilde{x}_{\perp} \mid x_{r}\right) \mathrm{d} \widetilde{x}_{\perp} \quad \approx \quad \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{\mathrm{pos}}^{y}\left(x_{r}+\widetilde{x}_{\perp}^{(i)}\right)}{\pi_{\mathrm{pr}(}\left(\widetilde{x}_{\perp}^{(i)} \mid x_{r}\right)}
$$

- Low-variance estimator by construction of U_{r} (N can be small)
- Pseudo-Marginal trick: redraw $\widetilde{x}_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)$ at each MCMC iteration.

$$
\widetilde{\pi}_{\mathrm{pos}}^{y}(x)=\pi_{\mathrm{pos}}^{y}\left(x_{r}\right) \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)
$$

1. Marginal posterior $x_{r}^{(i)} \sim \pi_{\text {pos }}^{y}\left(x_{r}\right)$
2. Conditional prior $*_{\perp}^{(i)} \sim \pi_{p r}\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \widetilde{\pi}_{\text {pos }}^{y}(x)$

Pseudo-Marginal MCMC

$$
\pi_{\mathrm{pos}}^{y}\left(x_{r}\right)=\int \frac{\pi_{\mathrm{pos}}^{y}\left(x_{r}+\widetilde{x}_{\perp}\right)}{\pi_{\mathrm{pr}}\left(\widetilde{x}_{\perp} \mid x_{r}\right)} \pi_{\mathrm{pr}}\left(\widetilde{x}_{\perp} \mid x_{r}\right) \mathrm{d} \widetilde{x}_{\perp} \quad \approx \quad \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{\mathrm{pos}}^{y}\left(x_{r}+\widetilde{x}_{\perp}^{(i)}\right)}{\pi_{\mathrm{pr}(}\left(\widetilde{x}_{\perp}^{(i)} \mid x_{r}\right)}
$$

- Low-variance estimator by construction of U_{r} (N can be small)
- Pseudo-Marginal trick: redraw $\widetilde{x}_{\perp}^{(i)} \sim \pi_{\mathrm{pr}}\left(x_{\perp} \mid x_{r}\right)$ at each MCMC iteration.
 Instead of drawing $x_{\perp}^{(i)} \sim \pi_{\text {pr }}\left(x_{\perp} \mid x_{r}^{(i)}\right)$, pick $x_{\perp}^{(i)} \in\left\{\widetilde{x}_{\perp}^{(1)}, \ldots, \widetilde{x}_{\perp}^{(N)}\right\}$ at random.

A numerical example: X-ray tomography with Poisson data

Identify the density of a material in a domain of interest (blue square) using two X-ray sources (red points) and $m=100$ sensors (blue points)

- Data: $Y \in \mathbb{N}^{m}$ integer-valued vector (number of incident photons)
- Poisson likelihood of the form

$$
\mathcal{L}_{y}(x)=\prod_{i=1}^{m} \frac{G_{i}(x)^{y_{i}} \exp \left(-G_{i}(x)\right)}{y_{i}!}
$$

where the forward model $G(x)$ stems from Beer's law.

- Laplace prior

$$
\pi_{\mathrm{pr}}(x) \propto \prod_{i=1}^{d=64^{2}} \exp \left(-\lambda\left|x_{i}\right|\right)
$$

- We use coordinate selection to reduce the dimension.

We use Integrated Auto Correlation Time (IACT) to measure the mixing performances of the MCMC.

	IACT	$\sqrt{\operatorname{var}}\left[\log \widetilde{\mathcal{L}}_{N}^{y}\right]$	
$\sim r=16$	85.1 ± 2.7	1.54 ± 0.02	
\\| r = 32	54.1 ± 3.1	$0.61 \pm .007$	
$\gtrless_{r=48}$	49.4 ± 2.6	$0.45 \pm .002$	
เก $r=16$	60.0 ± 6.2	0.93土.006	
\\| r = 32	47.6 ± 2.5	$0.39 \pm .004$	
$<r=48$	46.5 ± 1.4	$0.29 \pm .001$	

IACT of the full-dimensional H-MALA: $\quad 95.9 \pm 3.3$

[^0]
Conclusion

- Detect the low effective dimensionality of Bayesian inverse problems by:
- deriving an upper bound on the error (KL-divergence)
- minimizing the bound (\equiv PCA on $\nabla \log \mathcal{L}_{y}$)
- fundamentally gradient-based: need access to Fisher information matrix
- Extension to data-free:
- find the directions which *will be* informed by the data
- provides bound on KL-divergence in expectation
- speedup in MCMC computations
[Cui, Zahm 2021] Data-free likelihood-informed dimension reduction for bayesian inverse problems, Inverse Problems 2021.

[^0]: ${ }^{1}$ Hessian-preconditioned Metropolis-Adjusted Langevin Algorithm

