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What is time stepping?

Consider a system of PDEs :
0x
— = N(x, Vx,...
o (x,Vx,...)

Now discretize in space using whatever method you prefer

(finite-difference, finite-element, finite-volume, etc.):

0x
E = N(X)

to get a system of ODEs. This is the method of lines. We will
ignore coupled space-time approaches such as space-time finite
elements here. Thus the problem of time stepping reduces to
problem of solving a system of ODEs.
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Desirable Characteristics of Time Stepping Schemes

@ Convergence/Accuracy, Consistency: Lax-Richtmyer theorem
(consistent + stable = convergent)

@ Stability (A, L, B) and Maximum Stable Time Step (CFL
condition): important for stiff problems (very common in
geophysical fluids)

© Strong stability preserving (SSP) or Total variation diminishing

(TVD): preserve monotonicity properties of spatial schemes

Dispersion properties: minimize phase and amplitude errors

No computational modes (ie single step schemes)

© 0 0

Cost (# of rhs evaluations, need for linear or nonlinear solves,
memory usage and movement)

@ Preserve linear invariants (ex. mass)

© Geometric properties: symplectic, preserve phase-space
volume and/or invariants (energy, enstrophy, entropy)
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General Linear Methods (1)

Many time stepping schemes can be unified using General Linear
Methods: schemes with r time levels and s stages (collocation
points). Specifically, we have s stage values Y; and stage
derivatives N; = N(Y;) (i,j=1,...,s), and r approximations
yp! at time step n and y/ ™! at time step n+ 1 (k,/ =1,...,r),

which satisfy: s r
Y, = Z a,'jAth + Z u,-/y,”
j=1 I=1

s r
y,f“ Z bijth + Z vk/y,”
j=1 =1

Can be written in matrix form (analogue of a Butcher tableau) as:

Y\ [(A®I U (N
yn+1 - BRI V®I yn

with A=aj (s xs), B=by (rxs), U=uy(sxr)and V = vy
(rxr), and | is (m x m) identity matrix (m = the number of
discrete degrees of freedom).
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General Linear Methods (II)

Properties of GLM:
e If r = 1: Runge-Kutta method (single-step)

e If s = 1: Linear Multistep method (Adams-Bashford,
Adams-Moulton, Backwards Differentiation Formulas, many
predictor-corrector schemes)

e If A is strictly lower diagonal, scheme is explicit (might not
require linear solves, does not require nonlinear solves) and
usually conditionally stable — CFL condition (something
similar to At" < 1 with characteristic speed c¢)

o IfAis Iower dlagonal, scheme is diagonally implicit (requires
linear and/or nonlinear solves, but stage values can be solved
in sequence) and usually unconditionally stable

@ Otherwise, scheme is implicit (requires linear and/or
nonlinear solves for all stage values at once) and usually
unconditionally stable
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Fast/Slow General Linear Methods (1)

Consider an ODE where

Z); = N(X) = S(x) + F(x)

where S(x) is "slow” and F(x) is "fast”, ie S(x) has characteristic
time scale T and F(x) time scale 7 such that 7 « T. Fully explicit
time schemes will have very restrictive stable time steps, in terms
of T, relative to step size needed for accuracy of S(x), due to CFL
condition on F(x).

This is the usual situation in geophysical fluids: sound waves,

barotropic mode, gravity waves, etc. So how do we take
time steps dictated by accurate resolution of S(x)?
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Fast/Slow General Linear Methods (I1)

Extend general linear method to

Y\ [As® AF®! U®I i:

y1) \Bs®! Br®l VI /o

ie now we have a pair of tableau’s As/Bs and Ag/BF (can extend
further to even more tableau’s, but not discussed here)

o If Ag is strictly lower triangular and Af is lower triangular or
full, we have an IMEX (implicit-explicit) scheme. Often Af
is lower triangular and therefore diagonally implicit so stage
values can be solved in sequence. Horizontally-explicit,
vertically-implicit (HEVI) comes from choosing F such that
linear or non-linear solves occur column-wise.

@ If both As and Afr are strictly lower triangular we have a
split-explicit or multirate scheme. Almost always use many
more active approximations for F(x) than S(x), ie many small
steps for F(x).

AIRSEA GdT 2019 Presentation 7/13



Other Approaches

There are also more sophisticated approaches that don't fit this
model:

o Laplace Transform integrators

o Continuous-stage Runge-Kutta integrators
o Partitioned Runge-Kutta integrators
o

Some geometric integrators (discrete gradients, Lie group
integrators, variational integrators)

Multiderivative integrators

e Staggering in time and/or using different tableau's for
different variables (ie no longer A® I)

e Exponential integrators (but see next talk!)
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Examples of Time Integrators for Geophysical Fluids (1)

Atmospheric Models

e Dynamico (IPSL/LMD): Hydrostatic finite-difference
model, uses explicit Runge-Kutta designed for maximum
stable time step (Kinnmark and Gray)

e HOMME-NH (US DOE): Nonhydrostatic spectral element
(horizontal) /finite difference (vertical) model, uses
IMEX/HEVI Runge-Kutta designed for a balance of
accuracy and computational cost/maximal time step,
currently exploring many differences choices of splittings and
IMEX/HEVI schemes

e Unified Model (UK Met Office): Nonhydrostatic
semi-Lagrangian model, uses (slightly) off-centered
Crank-Nicholson scheme with a simplified Jacobian
(" semi-implicit” ), designed for accurate gravity wave
propagation with reasonably long time steps and acceptable
computational cost
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Examples of Time Integrators for Geophysical Fluids (II)

Oceanic Models

o NEMO: Hydrostatic Boussinesq Finite-difference model, uses
leapfrog with Robert-Asselin filter for 3D dynamics and
generalized forward-backwards scheme for 2D dynamics
(free surface/barotropic mode),

, unstable for diffusion, computational

mode

@ CROCO: Nonhydrostatic Boussinesq Finite-difference model,
uses split-explicit Runge-Kutta designed for coupling
stability, accurate fast waves and ability to handle both
dissipative and non-dissipative processes for 3D dynamics with
a single time stepper

Major differences compared to atmospheric models: driven
by need to accurately simulate fast modes, and different
nature of fast modes (2D /3D coupling vs. vertically

propagating)



Discrete Gradient Integrators (1)

Consider the following system of ODEs:

al
ot

where VH(x) is gradient of H(x) and S(x) is a matrix with either

— S(x)VH(x)

© S(x) = —S(x)T (antisymmetric, Poisson system)
OR

@ S(x) is positive or negative semi-definite (Dissipative
system)

In the first case, the system will conserve H. In the second case,
H will be strictly increasing or decreasing.

How do we construct an integrator that behaves this way?*

*This extends more generally to an n-tensor S(x) with multiple
preserved and/or dissipative quantities
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Discrete Gradient Integrators (II)

Use a discrete gradient integrator:

n+1 n

X — X
At
where S(x" 1, x") is any consistent approximation to S(x) that
preserves anti-symmetry or positive/negative semi-definiteness and
VH(x"1 x") is a discrete gradient
(Xn-i-l o Xn)TvH(Xn-H,Xn) _ H(Xn+1) _ H(X”) (1)
VH(x",x") = VH(x")
Proof of conservation for Poisson systems:
VHT (x™ —x") = AtVHTSVH
H(x"™) — H(x") = AtVH'SVH = —-AtVH'SVH
H(x™) —H(x") = 0

= S(x"L x"VH(x"1 x™)

using (1) and anti-symmetry for S. Similar calculations show H
strictly increasing/decreasing for dissipative systems.



Discrete Gradient Integrators (llI)

Average vector field method (second-order* and fully implicit):

. n+1 n
Sxmixm = s

1
VH(x" x") = J VH(x" + 7(x""* — x")d7
0

-Evaluate VH via quadrature rule — exact for polynomial H, can
be made practically exact for arbitrary H by increasing order of
quadrature; also conserves linear and quadratic Casimirs

-Solve nonlinear system with Newton’s method and simplified
Jacobian — semi-implicit method very similar to existing UK
Met Office scheme!

*Higher-order versions exist

-Alternative discrete gradients are the Gonzalez midpoint discrete
gradient and the Itoh-Abe coordinate increment discrete gradient
(also known as discrete variational derivatives).
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