
Time stepping for numerical models of
geophysical fluid dynamics

Chris Eldred

April 16th, 2019

AIRSEA GdT 2019 Presentation 1 / 13



What is time stepping?

Consider a system of PDEs :

Bx

Bt
“ Npx ,∇x , . . . q

Now discretize in space using whatever method you prefer
(finite-difference, finite-element, finite-volume, etc.):

Bx

Bt
“ Npxq

to get a system of ODEs. This is the method of lines. We will
ignore coupled space-time approaches such as space-time finite
elements here. Thus the problem of time stepping reduces to
problem of solving a system of ODEs.
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Desirable Characteristics of Time Stepping Schemes

1 Convergence/Accuracy, Consistency: Lax-Richtmyer theorem
(consistent + stable = convergent)

2 Stability (A, L, B) and Maximum Stable Time Step (CFL
condition): important for stiff problems (very common in
geophysical fluids)

3 Strong stability preserving (SSP) or Total variation diminishing
(TVD): preserve monotonicity properties of spatial schemes

4 Dispersion properties: minimize phase and amplitude errors

5 No computational modes (ie single step schemes)

6 Cost (# of rhs evaluations, need for linear or nonlinear solves,
memory usage and movement)

7 Preserve linear invariants (ex. mass)

8 Geometric properties: symplectic, preserve phase-space
volume and/or invariants (energy, enstrophy, entropy)
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General Linear Methods (I)

Many time stepping schemes can be unified using General Linear
Methods: schemes with r time levels and s stages (collocation
points). Specifically, we have s stage values Yi and stage
derivatives Ni “ NpYi q (i , j “ 1, . . . , s), and r approximations
ynk at time step n and yn`1

k at time step n ` 1 (k , l “ 1, . . . , r),
which satisfy:

Yi “

s
ÿ

j“1

aij∆tNj `

r
ÿ

l“1

uily
n
l

yn`1
k “

s
ÿ

j“1

bkj∆tNj `

r
ÿ

l“1

vkly
n
l

Can be written in matrix form (analogue of a Butcher tableau) as:
ˆ

Y
yn`1

˙

“

ˆ

Ab I U b I
B b I V b I

˙ˆ

N
yn

˙

with A “ aij (s ˆ s), B “ bkj (r ˆ s), U “ uil (s ˆ r) and V “ vkl
(r ˆ r), and I is pm ˆmq identity matrix (m = the number of
discrete degrees of freedom).
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General Linear Methods (II)

Properties of GLM:

If r “ 1: Runge-Kutta method (single-step)

If s “ 1: Linear Multistep method (Adams-Bashford,
Adams-Moulton, Backwards Differentiation Formulas, many
predictor-corrector schemes)

If A is strictly lower diagonal, scheme is explicit (might not
require linear solves, does not require nonlinear solves) and
usually conditionally stable Ñ CFL condition (something
similar to ∆tc

∆x ă 1 with characteristic speed c)

If A is lower diagonal, scheme is diagonally implicit (requires
linear and/or nonlinear solves, but stage values can be solved
in sequence) and usually unconditionally stable

Otherwise, scheme is implicit (requires linear and/or
nonlinear solves for all stage values at once) and usually
unconditionally stable
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Fast/Slow General Linear Methods (I)

Consider an ODE where

Bx

Bt
“ NpX q “ Spxq ` F pxq

where Spxq is ”slow” and F pxq is ”fast”, ie Spxq has characteristic
time scale T and F pxq time scale τ such that τ ! T . Fully explicit
time schemes will have very restrictive stable time steps, in terms
of T , relative to step size needed for accuracy of Spxq, due to CFL
condition on F pxq.

This is the usual situation in geophysical fluids: sound waves,
barotropic mode, gravity waves, etc. So how do we take

time steps dictated by accurate resolution of Spxq?
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Fast/Slow General Linear Methods (II)

Extend general linear method to

ˆ

Y
yn`1

˙

“

ˆ

AS b I AF b I U b I
BS b I BF b I V b I

˙

¨

˝

S
F
yn

˛

‚

ie now we have a pair of tableau’s AS/BS and AF/BF (can extend
further to even more tableau’s, but not discussed here)

If AS is strictly lower triangular and AF is lower triangular or
full, we have an IMEX (implicit-explicit) scheme. Often AF

is lower triangular and therefore diagonally implicit so stage
values can be solved in sequence. Horizontally-explicit,
vertically-implicit (HEVI) comes from choosing F such that
linear or non-linear solves occur column-wise.

If both AS and AF are strictly lower triangular we have a
split-explicit or multirate scheme. Almost always use many
more active approximations for F pxq than Spxq, ie many small
steps for F pxq.
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Other Approaches

There are also more sophisticated approaches that don’t fit this
model:

Laplace Transform integrators

Continuous-stage Runge-Kutta integrators

Partitioned Runge-Kutta integrators

Some geometric integrators (discrete gradients, Lie group
integrators, variational integrators)

Multiderivative integrators

Staggering in time and/or using different tableau’s for
different variables (ie no longer Ab I )

Exponential integrators (but see next talk!)

AIRSEA GdT 2019 Presentation 8 / 13



Examples of Time Integrators for Geophysical Fluids (I)

Atmospheric Models

Dynamico (IPSL/LMD): Hydrostatic finite-difference
model, uses explicit Runge-Kutta designed for maximum
stable time step (Kinnmark and Gray)

HOMME-NH (US DOE): Nonhydrostatic spectral element
(horizontal)/finite difference (vertical) model, uses
IMEX/HEVI Runge-Kutta designed for a balance of
accuracy and computational cost/maximal time step,
currently exploring many differences choices of splittings and
IMEX/HEVI schemes

Unified Model (UK Met Office): Nonhydrostatic
semi-Lagrangian model, uses (slightly) off-centered
Crank-Nicholson scheme with a simplified Jacobian
(”semi-implicit”), designed for accurate gravity wave
propagation with reasonably long time steps and acceptable
computational cost
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Examples of Time Integrators for Geophysical Fluids (II)

Oceanic Models

NEMO: Hydrostatic Boussinesq Finite-difference model, uses
leapfrog with Robert-Asselin filter for 3D dynamics and
generalized forward-backwards scheme for 2D dynamics
(free surface/barotropic mode), cheap, time-reversible,
symplectic, 2nd order, unstable for diffusion, computational
mode

CROCO: Nonhydrostatic Boussinesq Finite-difference model,
uses split-explicit Runge-Kutta designed for coupling
stability, accurate fast waves and ability to handle both
dissipative and non-dissipative processes for 3D dynamics with
a single time stepper

Major differences compared to atmospheric models: driven
by need to accurately simulate fast modes, and different

nature of fast modes (2D/3D coupling vs. vertically
propagating)
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Discrete Gradient Integrators (I)

Consider the following system of ODEs:

Bx

Bt
“ Spxq∇Hpxq

where ∇Hpxq is gradient of Hpxq and Spxq is a matrix with either

1 Spxq “ ´SpxqT (antisymmetric, Poisson system)
OR

2 Spxq is positive or negative semi-definite (Dissipative
system)

In the first case, the system will conserve H. In the second case,
H will be strictly increasing or decreasing.

How do we construct an integrator that behaves this way?*

*This extends more generally to an n-tensor Spxq with multiple
preserved and/or dissipative quantities
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Discrete Gradient Integrators (II)

Use a discrete gradient integrator:

xn`1 ´ xn

∆t
“ S̃pxn`1, xnq∇Hpxn`1, xnq

where S̃pxn`1, xnq is any consistent approximation to Spxq that
preserves anti-symmetry or positive/negative semi-definiteness and
∇Hpxn`1, xnq is a discrete gradient

pxn`1 ´ xnqT∇Hpxn`1, xnq “ Hpxn`1q ´ Hpxnq (1)

∇Hpxn, xnq “ ∇Hpxnq

Proof of conservation for Poisson systems:

∇HT pxn`1 ´ xnq “ ∆t∇HT S̃∇H

Hpxn`1q ´ Hpxnq “ ∆t∇HT S̃∇H “ ´∆t∇HT S̃∇H

Hpxn`1q ´ Hpxnq “ 0

using (1) and anti-symmetry for S̃ . Similar calculations show H
strictly increasing/decreasing for dissipative systems.
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Discrete Gradient Integrators (III)

Average vector field method (second-order* and fully implicit):

S̃pxn`1, xnq “ Sp
xn`1 ` xn

2
q

∇Hpxn`1, xnq “

ż 1

0
∇Hpxn ` τpxn`1 ´ xnqdτ

-Evaluate ∇H via quadrature rule Ñ exact for polynomial H, can
be made practically exact for arbitrary H by increasing order of
quadrature; also conserves linear and quadratic Casimirs
-Solve nonlinear system with Newton’s method and simplified
Jacobian Ñ semi-implicit method very similar to existing UK
Met Office scheme!
*Higher-order versions exist
-Alternative discrete gradients are the Gonzalez midpoint discrete

gradient and the Itoh-Abe coordinate increment discrete gradient

(also known as discrete variational derivatives).
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